Title: Physics in Nature Presentation: Reflections of Nature

Date: Aug 19, 2011 03:45 PM

URL: http://pirsa.org/11080109

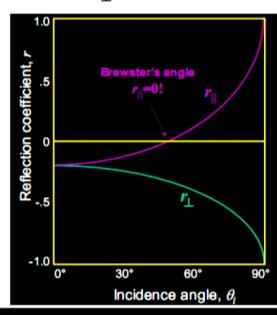
Abstract:

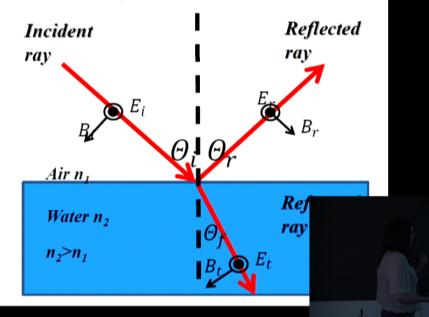
Pirsa: 11080109 Page 1/10

Specular Reflection in Nature

Pirsa: 11080109

Specular Reflection in Nature




Pirsa: 11080109

Fraction of light reflected

One can calculate the fraction of light reflected using Fresnel Equations:

$$\left(\frac{E_{0r}}{E_{0i}}\right)_{\parallel} = \frac{\left[n_{i} \cos \theta_{t} - n_{t} \cos \theta_{i}\right]}{\left[n_{i} \cos \theta_{t} + n_{t} \cos \theta_{i}\right]}$$

Page 4/10 Pirsa: 11080109

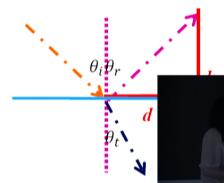
Back of the envelope calculation

On: How much light reflected?

Assume:

$$n_{air} = 1$$

 $n_{water} = 1.33$
 $d_{to\ camera} = 10\ m$
 $h_{of\ camera} = 3.5m$
 $\theta_t = \theta_r = 30^\circ$


Amount of light transmitted (Snell's Law)

$$\theta_t = \sin^{-1} \left[\frac{n_{water}}{n_{air}} \sin \theta_i \right]$$
$$\theta_t \approx 42^{\circ}$$

As the incident light is unpolarised the amount of light reflected is

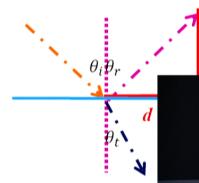
$$|R| = \frac{1}{2} \left[\left(\frac{E_{0r}}{E_{0i}} \right)_{\perp} + \left(\frac{E_{0r}}{E_{0i}} \right)_{\parallel} \right] = 14\%$$

Back of the envelope calculation

On: How much light reflected?

Assume:

$$n_{air} = 1$$
 $n_{water} = 1.33$
 $d_{to\ camera} = 10\ m$
 $h_{of\ camera} = 3.5m$
 $\theta_t = \theta_r = 30^\circ$


Amount of light transmitted (Snell's Law)

$$\theta_t = \sin^{-1} \left[\frac{n_{water}}{n_{air}} \sin \theta_i \right]$$
$$\theta_t \approx 42^{\circ}$$

As the incident light is unpolarised the amount of light reflected is

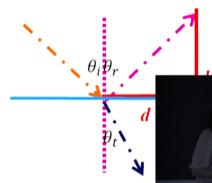
$$|R| = \frac{1}{2} \left[\left(\frac{E_{0r}}{E_{0i}} \right)_{\perp} + \left(\frac{E_{0r}}{E_{0i}} \right)_{\parallel} \right] = 14\%$$

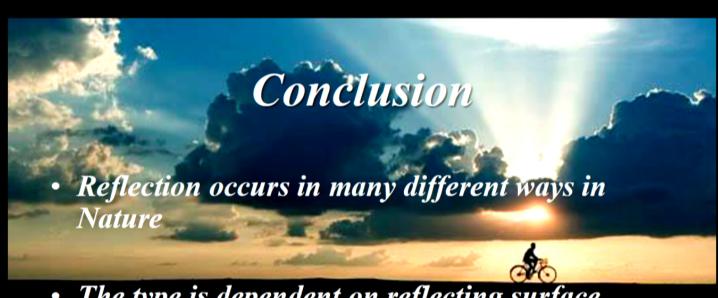
Back of the envelope calculation

On: How much light reflected?

Assume:

$$n_{air} = 1$$
 $n_{water} = 1.33$
 $d_{to\ camera} = 10\ m$
 $h_{of\ camera} = 3.5m$
 $\theta_t = \theta_r = 30^\circ$

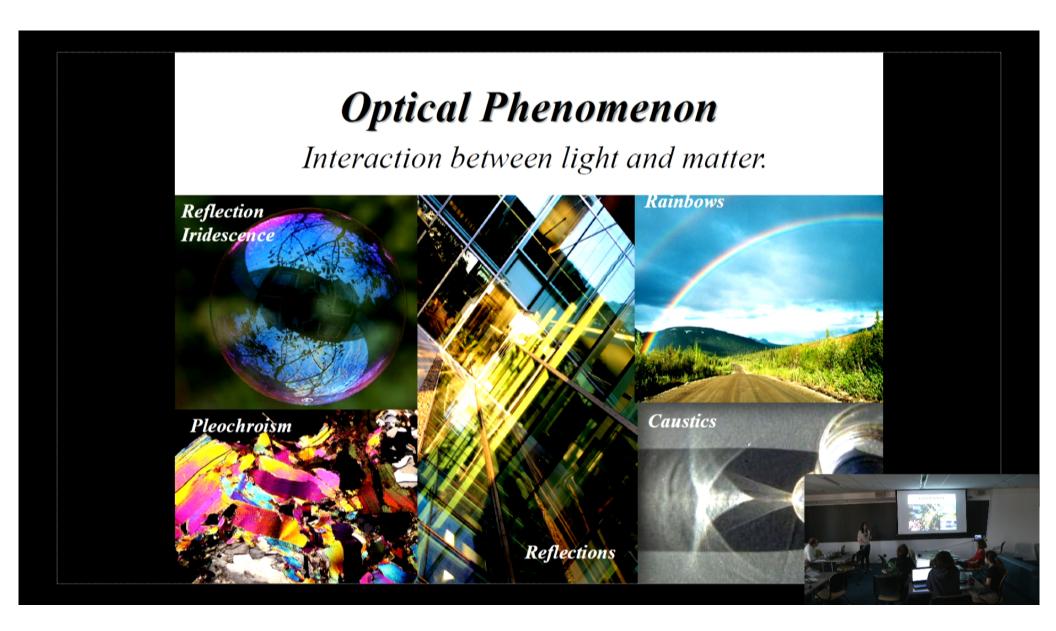

Amount of light transmitted (Snell's Law)


$$\theta_t = \sin^{-1} \left[\frac{n_{water}}{n_{air}} \sin \theta_i \right]$$
$$\theta_t \approx 42^{\circ}$$

As the incident light is unpolarised the amount of light reflected is

$$|R| = \frac{1}{2} \left[\left(\frac{E_{0r}}{E_{0i}} \right)_{\perp} + \left(\frac{E_{0r}}{E_{0i}} \right)_{\parallel} \right] = 14\%$$

The type is dependent on reflecting surface


- Light behaves in a very predictable way
 - Law of Reflection
- Using basic geometry one can explain the behaviour of light between different media.

Pirsa: 11080109 Page 8/10

- · The type is dependent on reflecting surface
- Light behaves in a very predictable way
 Law of Reflection
- Using basic geometry one can explain the behaviour of light between different media.

Pirsa: 11080109 Page 9/10

Pirsa: 11080109 Page 10/10