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Superconductivity/
Superfluidity

Landau/Ginzburg < F = a(T-T)lg| + B¢l +..

Broken U(1) symmetry

B.C.S. Theory— fermions=> Cooper
pair = condense into boson
superfluid
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CFT at 7>0

e Quantum ...
\ crtical ,




AdS/CFT Correspondence
N=4 SYM in 3+1 <> IIB on 4ds, x§°

The precise statement:

< eJ'd xgho (% )0(i=)> = Ziine &D(f z = O)E b, (56 )]
T

CF

Generalized to “Gauge/Gravity” Duality
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The Dictionary
rongly Coupled Field Theory << Weak Gravity

cne| P(,2 =0) = ¢ (%) | = e 5 [BC. — b (3)]

Fields in AdS <> Local Operators in CFT
Spin < Spin
Mass <> Scaling Dimension
Black Holes <<= Thermodynamics
Gauged Symmetries << Global Symmetries
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Gravity Dual to Superconductor/
Superfluid

» Einstein-Maxwell-charged scalar

= [-gd’ r(R+— iEm,F-‘“’

'I 9

M =m” +q g"A < Lower temperature —
g closer to double horizon
= more instability
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Gravity Dual to Superconductor/
Superfluid

» Einstein-Maxwell-charged scalar

P ey PO P
[ ed x(mﬁ LEF

mlﬁ =M +q1g”A — Lower temperature —
g closer to double horizon
—> more instability
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Condensation
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Numerical results for the real and imaginary parts of the ele
shown in figure 6 above. These plots have not appeared elsewher
physical interpretation of th@ plots in the following subsection. F
the depletion of the real part at frequencies below a scale set by tk

2.8 Comparison to experiments in graphene

It is amusing and instructive to compare our results for the conduci
recent experimental data in graphene. Graphene is a natural ma
at low energies it is described by a 241 dimensional relativistic
potential determined by the gate voltage (see e.g. [46]). It therefor
kinematics as the AdS/CFT system we are studyingee.Gsaphene
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Ei Numerical results for the real and imaginary parts of the ele
| shown in figure 6 above. These plots have not appeared elsewher
physical interpretation of these plots in the following subsection. F
the depletion of the real part at frequencies below a scale set by tk

2.8 Comparison to experiments in graphene

It is amusing and instructive to compare our results for the conduct
recent experimental data in graphene. Graphene is a natural ma
at low energies it is described by a 2+1 dimensional relativistic
potential determined by the gate voltage (see e.g. [46]). It therefor
kinematics as the AdS/CFT system we are studying. Graphene
intense study recently following the isolation of single layered sam;
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L =1 and furthermore to scale the horizon to r4 = 1. However, one then needs to undo

this scaling to recover physical units.
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Figure 6: The real (left) and imaginary (right) parts of the electrical conductivity computed

via AdS/CFT as described in the text. The conductivity is shown as a function of frequency.

Different curves correspond to different values of the chemical potential at fixed temperature.
" **The gap becomes deeper at larger chemical potential. We have set g = 1 in (115)." ™"



derivative thereof, respectively. In performing numerics it is generally convenient to set
L =1 and furthermore to scale the horizon to r+ = 1. However, one then needs to undo

this scaling to recover physical units.
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Figure 6: The real (left) and imaginary (right) parts of the electrical conductivity computed
via AdS/CFT as described in the text. The conductivity is shown as a function of frequency.
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"2 Bifferent curves correspond to different values of the chemical potential at fixed température.



DCCED SR "D S

derivative thereof, respectively. In performing numerics it is generally convenient to set
L =1 and furthermore to scale the horizon to r = 1. However, one then needs to undo
this scaling to recover physical units.
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Figure 6: The real (left) and imaginary (right) parts of the electrical conductivity computed
via AdS/CFT as described in the text. The conductivity is shown as a function of frequency.
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Disorder

precise weighting/interaction of disorder
not important

B
ZIV.J1,.
ZWJ=md/[ lr-o

[ pv Py
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Disorder

precise weighting/interaction of disorder
not important

B
ZIV.Jl,
ZWJ=md/[ li-0

[ DV PV
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Memory Function Formalism
H = f VO(©.y)

—f : 2G00a)k)
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Adding Disorder
Perturbatively

Free, massive scalar field matter (J)( t,y) - ¢

2

¢,,_¢.(2+g' x‘)+¢(6"c§f _K m)
r 2

8 8 rg 8
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Memory Function Formalism

H = f V(y)O(r y)

— f sz00 k)
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Adding Disorder
Perturbatively

Free, massive scalar field matter (J)( t,y) = ¢

2 2

" | 2 g' x' exwl k— n
A
ro g 2 8 rg 8
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Gravity Dual to Superconductor/
Superfluid

» Einstein-Maxwell-charged scalar

= [-gd* r(R+— iEm,F"”’

m‘:ﬁ = m +q1g"A P Lower temperature —
g closer to double horizon
=> more instability
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Memory Function Formalism

H = | V()O(.y)

IFF ), O —f k2G00 ), k)
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Memory Function Formalism

H = | V(»O(©.y)

'FF ), 0 —f k2G00 ), k)
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Schwarzschild-AdS Black Brane

dr’
g(r)

Y =y(r) A, =(¢(r),0,0,0)

ds” = —g(r)e ™ "dt” + +r°(dx’ +dy”®)
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Equations of Motion

9,

m-

Y-y =0
8




Adding Disorder
Perturbatively

Free, massive scalar field matter (J)( t,y) = ¢

' ' 2 g' x' exwl kz n’l2
o
r g 2 g r'g 8
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Memory Function Formalism

H = | V(O(©.y)

IFF ), 0 —f k2G00 ), k)
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Adding Disorder
Perturbatively

Free, massive scalar field matter (J(¢, y) = ¢

¢ - ¢(2 £ ")+¢( ol K —m_)
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Memory Function Formalism

H = f V(y)O(r y)
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Disorder

precise weighting/interaction of disorder
not important

B
ZIV.Jl,
ZWJ=md/[ li-0

[ pv PV
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Memory Function Formalism

H = | VO(©.y)

'FF ), O —f szOO 0, k)
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Adding Disorder
Perturbatively

Free, massive scalar field matter (J)( t,y) = ¢

2

¢.,_¢.(2+g' x')+¢(6"‘c§f _K m)
r 2
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Holography/Drude Model

Drude Model
= Re[K(w ]oc kTZ -
K(w) = ' _ l+wT
| —iwT

Holography+Perturbative Disorder
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Holography/Drude Model

Drude Model
= Re[K(w ] x kTZ 5
K(w) = ' == l+wT
l —iwt

Holography+Perturbative Disorder
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Conclusions/Further Thoughts

Holography+Perturbative Disorder — agrees with
crude Drude model

Disorder Weak in some dimensionless units

Extract temperature dependence from holography
+Perturbative Disorder

Consider direct coupling of disorder to order
parameter
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Holography/Drude Model

Drude Model
- Re[fc(a) ] x ktz >
K(CU) _ ' — l+w°T
| —iwT

Holography+Perturbative Disorder
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