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Abstract: We study the dimensions of non-chiral operators in the Veneziano limit of N=1 supersymmetric QCD in the conformal window. We show
that when acting on gauge-invariant operators built out of scalars, the 1-loop dilatation operator is equivalent to the spin chain Hamiltonian of the
1D Ising model in atransverse magnetic field, which isanontrivial integrable system that is exactly solvable at finite length. Solutions with periodic

boundary conditions give the anomalous dimensions of flavor-singlet operators and solutions with fixed boundary conditions give the anomalous
dimensions of operators whose ends contain open flavor indices.

Pirsa: 11080058 Page 1/36



irsa:

4D CFTs and SCFTs are interesting for many reasons:

11080058

» Basic building blocks of 4D QF Ts,

» Dual to theories of quantum gravity in AdS,
» Could play a role in BSM physics!
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Operator dimensions at A ~ O(1)

Unfortunately,

» Phenomenological applications often involve statements about
operator dimensions that are difficuit to check.

» In N =1 SCFTs, we know lots about chiral operators, but
not much about non-chiral operators. Gravity duals useful at

very strong coupling A > 1.

Hard to say things at A ~ O(1). Major exception is in (planar)
N =4 SYM (and related theories), using integrability.

» So far, dilatation operator studied in somewhat narrow range
of theories (N = 4, orbifolds, 3-deformation, recently N’ = 2
» None of them phenomenologically relevant.
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Let’'s gather some datal!

Some early evidence for interesting structure in N = 4: Minahan,
Zarembo '02 showed that the 1-loop dilatation operator acting on
scalars Tr( X ... X;) is equivalent to an exactly solvable
Heisenberg spin chain.

This talk: follow Minahan and Zarembo for (planar) N =1 SQCD

» Simplest nontrivial N' = 1 superconformal theory, outside the
N = 4 family.
» Two weak coupling (Banks-Zaks) regimes. For now, we'll

focus on the weakly-coupled electric description. Eventually,
we might hope to learn more about Seiberg duality.
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& N =1S5QCD

@ 1-loop Dilatation Operator

€ Spin Chain Solution

O Outlook
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N =15QCD

Qutline

& N =15QCD
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» Matter content:
SU(N.) SU(Ng)r SU(Ny)r U(l)p U(1)g

Qai ] (] 1 1 1 — 3=
2% = = N,
] 1 _ —1 1 — N

Qlﬂ
i,7 = 1,...,N;

e — ... N

.
<_‘T<‘3

| ] [

» Conformal window:

- i r » ] N: .
» Veneziano limit: N¢, N. — oc, with 5~ fixed.

» Electric weak-coupling regime: € = 3%— -1k,

3 T }
g°N, = 9 a3 3
A= 2 - €t3 —4[__1—25;3,16
T - '
IN. Page 12/36

Pirsa: 11080058 g & : _
» Magnetic weak-coupling regme e =1 — 5= < L




N =1SQCD

Large- N Counting

» 't Hooft limit: Double lines for adjoints; Single lines for
fundamentals
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Generalized Single Trace Operators

Basic objects are “generalized single-trace” (GST) operators.
Using only scalars, we have: flavor singlets,

e

Qat‘ an é%QJC

where,

...Q" = THXY...X) “closed”

X=(QQY%, Y=(Q'Q;
and flavor adjoint+bifundamentals,

Q'XY...XQ )
QXY ...XQ

Q' XY ...XQt
QXY ...XQ" |
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N =1S8SQCD

Factorization

What about big chiral operators,

eg: Tr(MM..M) = Qu.Q®°Q:QF...Q"?

Left-right flavor indices contracted are generalized mufti-trace

7@1 i ‘i
4 S
R &

Dimensions and correlators of GMT operators factorize at large V-
dim(©;02) = dim ©@; + dim Q> + O(1/N?)
(01...0,) = Y [](0:0;)+0(1/N)

pAaIrings pairs
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Qutline

@ 1-loop Dilatation Operator
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l-iccp Dilatation Operator

To compute anomalous dimensions, study 2-pt functions

(O(2)O(0)) ~ g HAoFAd+) — p~280(] _ \A; log(z?) +...)

]

Q Q@ @ (z)
I - i
: & E
. = =
: : : : = ‘\';[ _\.—}fﬁ:r—z: 2L)
| g

. S =
QI Q ] Q O)
2L
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1-iocp Dilatation Operator

One Loop Contributions

o
I
I
: t 1
wavefunction: : ) = (0 (Feynman gauge)
I
I
| S
— =
: |
I
color-loop: : ; = hord + e
I
‘ |
_: |
(a) b
ES e
|
I
- U
flavor-loop: = —
L /\
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l-ioop Dilatation Operator

Color Loops

e _—— =

S ———

Q-’:h— QTF Qﬁ;; QT-E
(a) (b)

Graph (b) comes from the D-term potential: (Q"7T4Q — QTAéf}z

[ 1 QQ QQ Q@ QQ
QQT A+B
{ﬂl 3y 3 {b) — QQ A—B X ’\:ﬁa\.'or
QT Qf A—B
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Flavor Loops

NE >\/ \/
Ii " Qs Q Q1

fr:] = () (d)

Graph (d) is a 4-scalar contact interaction, so equals (b) up to
overall factors

Q' @'\ .
(e)+ (d) = QQ| B -B | xAx e ore
Q'|-B B )
__In the planar limit, 2T 42 ® T# is equivalent to I Reclins N

Exception: 2-field operators, where Tr(T4) ® Tr(T4) = 0.



1-icop Dilatation Operator

R — Qai Q.i-j Q. Q*
z v,

Q*:; er'_? Q"C': Qi
(c) =0 (d)

Flavor Loops

Graph (d) is a 4-scalar contact interaction, so equals (b) up to
overall factors

. Q" Q'Q N;
(©+@d) = | QQ| B -B | xZAx2r*eTr”
QQ'| -B B ke
In_the planar limit, 2T* @ T# is equivalent to Iy S

irsa: 11080058

Exception: 2-field operators, where Tr(T4) ® Tr(T4) = 0.



l-icop Dilatation Operator

Fixing A, B from Consistency

Q
\ @

Q' | A+B )

No need to evaluate any diagrams:

Y(QQ) = (A— B)A - (chiral: A = 3R/2)
HTHQ'Q—QQ") = (A+B)x = 0 (conserved current)

(remember A = 3= — 1 at one loop)
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1-icop Dilatation Operator

Spin Chain Notation

» We have gauge-adjoint dimers X = QQ'",Y = éTé

» Useful notation: XY X ... — | T.T...) (spin chain state).
Tr{ XY ... X) corresponds to a shift-invariant state.

color-loop = MAL®RL.; +Bo, @c;,)
ANg,
flavor-loop = —(BL; — Bo?T)
Ne '
h ] L]
*\.F—-\IC ,\ZLI S N =
o 5 S— — - -+ — |_J""U"“___ — _J_g-'-‘-'"
m— 2N, T e
= h
H
» H is Hamiltonian for Transverse Field Ising Model
irsa: 11080058 N¢ ' Page 23/36
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Spin Chain Solution

QOutline

€ Spin Chain Solution
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Spin Chain Sciution

Jordan-Wigner Transformation

The Hamiltonian is

Ny,
N,

L—1
H = gxo: . —ho’ (with h =
n“n—1 4]

n=_0

» Jordan-Wigner transformation ('28):

n—1 n—I1
m—=0 m—{)
{en:em} =Onms  {nsCm} = {€n.m} =0
> Flip o® is parity symmetry of the gauge theory Q «— Q
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Spin Chain Sciution

Diagonalizing the Fermion System

Key fact: Hamiltonian quadratic in ¢, ¢',

i
H = Y (d+e)(e,;— 1) —(2dec, —1)
n=—>0
-~ Z :_—[2 cos k + Qh}c;ck — isink(cikc,;f + C—kck)- + Lh
- ]
: 1 :
- Z e(k) (bkb;c — E) ( Bogoliubov)

L
n

— A system of free fermions, with dispersion relation

: N: x
Ny = ‘2\/h2-l——2hcosk (h: \': =3—-—O(z\j>
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Spin Chain Sciution

Quasimomenta Quantization

For closed chains, boundary condition is twisted by —(—1)F":
L—1 -
—1: k= 2zm
P = z — B
H JJ'? { _'"l k — .ZmE+
n=>_

We can also think of operators with open flavor indices as states in
an open chain with “Dirichlet” boundary conditions,

Q' XY...YQ . i P

This system is still solvable poucs:. Fegeiman. iofe. ossievicn, conc-ma __
Same H as above, with an interesting quantization condition,

= — = —h (open chains).
Pirsa: 11080058 S (k(L g 3 1)} Page 27/36



Spin Chain Solution

Example: Closed 4-field Operators

4 field flavor singlet operators: Tr(X?), Tr(Y?), Tr(XY).

» Odd parity
b |0) byl0) —— Tr(X?*—Y?)
T
Y k=0
P & ‘
Yy = +§v10ﬂ-60050—5v’10+6c05?r =

» Even parity

0), bLb}, |0) —> (X% +Y?), Tr(XY)

> k=0

|

1 / r 1/ 3 ,
irsa: 11080058 ¥ = (2 e = EV{ 10 + 6 cos "2_1' i = Ev 10 + 6 cos ) p T2 b \'4 13@5184;\



Spin Chain Sclution

H

-
= 71!

AL [™ __
- — AMLE / dkv 10 +6cosk (Large L)
0
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Qutline

O Outlook
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New features (cf. N =4 SYM)

» |0) is not BPS.

» fundamental excitations are non-local “dimer solitons”.
Possible directions

» Other operators at 1-loop? At 2-loops, mixing with
fermions+gauge fields, but still nearest neighbor in X, Y.
Nontrivial S-matrix for b', b?

> Magpnetic dual? Building blocks aren’t so simple:
g(MM")*q", g (MTM)*g, o(MM")*Mg,
g (MTM)*M'q". Need a good way to organize DOF.
_ » Speculation: TFIM seif-dual around A = 1 (naively % =1}
= Could this be relevant in SQCD?



Spin Chain Solution

Asymptotics

e —_ _- = e __

— —— —— —_
R ——=— = : —_ —— ———

—— e :— — ——

g -
i

AR £~
v+ = AL+ / dkv'10 +6cosk (Large L)
0
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Spin Chain Sciution

Example: Closed 4-field Operators

4 field flavor singlet operators: Tr(X?), Tr(Y?), Tr(XY).

» Odd parity
b2|0)

S k=0
1

; |
*r'=( +§v’10*6c050~5\;"104-61::0517),\=3A

» Even parity

0), b%b.|0) — (X2 +Y?), Tr(XY)

> k=8

-

1 / r 1/ 3 :
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— e



Spin Chain Sclution

Quasimomenta Quantization

For closed chains, boundary condition is twisted by —(—1)F:

L—1 %rm

—-1: ,ZC—_ e
P I jE' 4T
IIGT?, = { l: k__,_m 1)=

We can also think of operators with open flavor indices as states in
an open chain with “Dirichlet” boundary conditions,

Q' XY...YQ = it . it

This system is still solvable poucs: Fegeiman. ioffe. oslevicn. cond-mat :
Same H as above, with an interesting quantization condition,

sin(k(L +2)) h {. hains
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Spin Chain Solution

Diagonalizing the Fermion System

Key fact: Hamiltonian quadratic in ¢, c',

L—1
H = ) (d +e)(e; —ent1) — b2, — 1)

n=0

Z —(2cosk ——Qh}c;c_;_. — rjsink(c’-_kc;: + e _ree)| + Lh

[ =8 -

I

L
M

- £ 1 :
z e(k) (bkbk - 5) (Bogoliubov)

k

—> A system of free fermions, with dispersion relation

e(k) = 2v/h2+1+2hcosk (h: = =3-O~:_A_;>
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Spin Chain Sciution

Quasimomenta Quantization

For closed chains, boundary condition is twisted by —(—1)":

We can also think of operators with open flavor indices as states in
an open chain with “Dirichlet” boundary conditions,

Q' XY...YQ s o P

This system is still solvable pouco: megeiman. ioffe. ossievicn. cond-mar :
Same H as above, with an interesting quantization condition,

sin(k(L +2)) B {, hains)
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