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Abstract: The motion of superstrings on symmetric space target spaces is classically equivalent, via the Pohlmeyer reduction, to a family of 2-d
relativistic integrable field theories known as semisymmetric space sine-Gordon (SSSSG) theories. In this talk | will review recent progress in
constructing the relativistic S-matrix corresponding to the quantum solution of the AdS5 x S5 SSSSG theory.
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= | Symmetric space sine-Gordon (SSSG) theories

P S
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@ Relativistic integrable theories in 1+1 dimensions that are classically
equivalent, via the Pohlmeyer reduction, to the non-relativist
(gauged fixed) world-sheet theories of strings on symmetric space

spacetimes like R; x S”, R, x CP", AdS, x S}. AdS,, ...

@ Admit soliton solutions that, for R x S” or R; x CP”, are the images
of the string giant magnons
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@ Relativistic integrable theories in 1+1 dimensions that are classically
equivalent, via the Pohlmeyer reduction, to the non-relativistic
(gauged fixed) world-sheet theories of strings on symmetric space

spacetimes like R; x S”, R, x CP", AdS, x S1, AdS,, ...

@ Admit soliton solutions that, for R x $” or R; < CP”, are the images

of the string giant magnons
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@ [o describe the world-sheet theory of superstrings with all the
fermionic degrees of freedom one has to generalize the SSSG theories
to the case where the symmetric space is replaced by a
semi-symmetric space F /G, with F a supergroup

— Z4 automorphism: o =1. o(G)=G

— Lie superalgebra decomposition: = f ©— 1 = f» = 3
aven odd aven aodd

= | Semisymmetric space sine-Gordon (SSSSG) theories |

e AdSs x S° — PSU(2 2’-4)/50(4. 1) x SO(5)

e AdS, x CTP3 — 0OSp(6(4) / SO(3.1) x U(3)
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@ [o describe the world-sheet theory of superstrings with all the
fermionic degrees of freedom one has to generalize the SSSG theories
to the case where the symmetric space is replaced by a
semi-symmetric space F /G, with F a supergroup

— Z4 automorphism: c* =1. o(G)=G

— Lie superalgebra decomposition: = f3 & 1 - H = 13
ayen aodd ayen odd

= | Semisymmetric space sine-Gordon (SSSSG) the{:}rie&é

e AdS; x S5 — PSUZ 2-4)/50(4. 1) x SO(5)

o AdS, x CP3 — 05p(6’4)/50(3.1) x U(3)
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The S55G and SS55G theories

= [ he relativistic SSSSG theory for

 PSU(2.24)
- 5p(2.2) x Sp(4) |

| F/G

is classically equivalent, via a fermionic generalization of Pohlmeyer
reduction, to the non-relativistic (gauge fixed) Green-Schwarz
superstring world-sheet theory on AdSs x S
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== [ he relativistic SSSSG theory for

PSU(2.24)

;FG:&@mxﬁm?

is classically equivalent, via a fermionic generalization of Pohimeyer
reduction, to the non-relativistic (gauge fixed) Green-Schwarz
superstring world-sheet theory on AdSs x S
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is classically equivalent, via a fermionic generalization of Pohimeyer
reduction, to the non-relativistic (gauge fixed) Green-Schwarz
superstring world-sheet theory on AdSs x S

@ In general, the equivalence between the (S)SSSG theories and
(super)string world-sheet theories is expected to be purely classical

~ They have different Hamiltonian structures
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he SS55G and SS5S5G thearies

= [ he relativistic SSSSG theory for

| o PSUZ24)

Sp(2.2) x Sp(4)

Is classically equivalent, via a fermionic generalization of Pohlmeyer
reduction, to the non-relativistic (gauge fixed) Green-Schwarz
superstring world-sheet theory on AdSs x S

@ In general, the equivalence between the (S)SSSG theories and
(super)string world-sheet theories is expected to be purely classical

——— o ——

= They have different Hamiltonian structures
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irsa: 11080035 Page 11/166



= [ he relativistic SSSSG theory for

_ PSU(2.214) |
~ Sp(2.2) x 5,:(4);

F/G

Is classically equivalent, via a fermionic generalization of Pohimeyer
reduction, to the non-relativistic (gauge fixed) Green-Schwarz
superstring world-sheet theory on AdSs x S

@ In general, the equivalence between the (S)SSSG theories and
(super)string world-sheet theories is expected to be purely classical

M ka1

AL Balal L AT

ik

~ They have different Hamiltonian structures

Jh Leitrls LTV eV e on

% ...but the equivalence has been conjectured to remain in the
(conformally invariant) quantum theory
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= [ he relativistic SSSSG theory for

| o PSU224) |
& Sp(2.2) x Sp(4)

Is classically equivalent, via a fermionic generalization of Pohimeyer
reduction, to the non-relativistic (gauge fixed) Green-Schwarz
superstring world-sheet theory on AdSs x S°

@ In general, the equivalence between the (S)SSSG theories and
(super)string world-sheet theories is expected to be purely classical

~ They have different Hamiltonian structures
* ...but the equivalence has been conjectured to remain in the
(conformally invariant) quantum theory
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= [ he equivalence has already passed several tests: | — A Tsevtiin's 2

e The AdSs x S° SSSSG theory is UV-finite

T 2T o= | A 3= S& -

@ Semiclassical partition function matches with string theory at one loop
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== [ he equivalence has already passed several tests: | — A Tseur

o The AdSs x S® SSSSG theory is UV-finite

- oLl T L3Sl L ™ LISV i LIL
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@ Semiclassical partition function matches with string theory at one loop
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== [ he equivalence has already passed several tests: | — A Tseur

e The AdSs x S° SSSSG theory is UV-finite

e Semiclassical partition function matches with string theory at one loop

Outstanding problem: Find the exact relativistic S-matrix of the
= | AdSs < S° SSSSG theory and clarify the relationship with the
non-relativistic superstring S-matrix —— interesting by itself!
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= [ he equivalence has already passed several tests: | — A T=e

e The AdSs x S° SSSSG theory is UV-finite

ooaTre-lSasSniTs—ISeyLLIN

IWa3sSnITsE" 1

e Semiclassical partition function matches with string theory at one loop

Outstanding problem: Find the exact relativistic S-matrix of the
= | AdSs x S° SSSSG theory and clarify the relationshtp with the
non-relativistic superstring S-matrix —— interesting by itself!

» Focus not so much on the Lagrangian and perturbation theory but
rather on the solitons: perturbative fields re-appear!
» Quantize the moduli space dynamics of the solitons vielding the
semi-classical spectrum
» Conjecture the S-matrix by imposing all the axioms of S-matrix theory
rrsau0000is aNd solving the bootstrap (account for all poles on the physical strig)



== [ he equivalence has already passed several tests: | — A Tsevtlin's talk

e The AdSs x S° SSSSG theory is UV-finite

@ Semiclassical partition function matches with string theory at one loop

QOutstanding problem: Find the exact relativistic S-matrix of the
= | AdSs x S° SSSSG theory and clarify the relationship with the
non-relativistic superstring S-matrix —— interesting by itself!

i

» Focus not so much on the Lagrangian and perturbation theory but
rather on the solitons: perturbative fields re-appear!

» Quantize the moduli space dynamics of the solitons vielding the
semi-classical spectrum

» Conjecture the S-matrix by imposing all the axioms of S-matrix theory
rrsa 10000 aNd solving the bootstrap (account for all poles on the physical sfrig)




he 4 5 S555G theory

SSSSG Lagrangian

&L = Lywzw[G/H] — ZSTr (/\“.-_1/\“_-)
+2i,_ STr (z;'+[/\. D_v.]—4_[NDivr ] — 20 vt 4 )

@ v= G =¢€" and AL — bosonic fields
e €fg, v_ € 3 —— fermionic fields

@ The potential is fixed by A € {5 (constant)

= Gauge symmetry group |H=SU(2)**C G| [H.A]=0
= [ he coupling constant is the level of the WZW term = k
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L = Lowzwl|G/H] — %STr (A“-_]‘A"_ )

+5 STr (e_'+[/\. D_ oy, ] —o_[N.Ditr ] — 20 v~ )

@ v = G=¢€" and AL — bosonic fields
v €1, U_ € f3 — fermionic fields

@ The potential is fixed by A € {5 (constant)

= Gauge symmetry group |H=SU(2)"*C G| [H.A]=0

.= [ he coupling constant is the level of the WZW term = k
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¢ 5~ S555G theory

@ Zero-curvature conditions | |£,(z).£,(z)] =0

L (z)=8  +7 a9+ 7 Ay L=y — A,
L@D=8 1+ A 7 vz %

z — spectral parameter = !Classical integrability
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@ Zero-curvature conditions | |£,(z). L, (z)

L (n)=8y +v7 v +7 Ay +ziy — 2N,
E@—8 +A +7 "y T y—7"7 N

z = spectral parameter| = | Classical integrability
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z = spectral parameter| = | Classical integrability

0
Al
§1]
{
—

tivistic equations! Lorentz boost x= AX— ~ ‘ 7z \/2z
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@ Zero-curvature conditions | |£,(z).L,(z)] =0 '
L ()= +7 o y+7 Ay =y — 2N,
L (D=0 +tA t 7y 9 7%

z = spectral parameter| = | Classical integrability

.= Relativistic equations! Lorentz boost x= — M= ~ | z — \/?%2
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@ Zero-curvature conditions | |£,(z2). L, (z)] = O|

L ()= +v o y+v Ay =y — A,
L (D)= +A +z Y v 729 M

z — spectral parameter — !Classical integrability

.= Relativistic equations! Lorentz boost x= — M= ~ | z — A%z

= Integrability is controlled by the twisted affine loop superalgebra

L(psu(2.2/4). @@241”—!—} R = @?‘k [?k?!] C %k:—f
keZ

n—_L j—f}

Pirsa: 11080035 Page 25/166



Equations of motion

|
@ Zero-curvature conditions | |£,(z).L,(z)] =0 |
' |
L) =8y +7 0y +7 Ay + = — 2N, |
L(D=8 +tA +7 v vy—757 M

z — spectral parameter = !Classical integrability

5=° Relativistic equations! Lorentz boost x= — d™ ~ | z — A%z

== Integrability is controlled by the twisted affine loop superalgebra

L(psu(2.2/4). @@Z“TJ k= @%k > 1] < Faes i

ncZ j=0 k=l
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Hidden symmetries

@ Infinite (classical) symmetry algebra |

= Ker(adA) N L(psu(2.2/4). o)
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Hidden symmetries

@ Infinite (classical) symmetry algebra

= Ker(adA) N L(psu(2.2[4). o)

add Eoea o .

== T[he elements of grade =1 (or Lorentz spin +=1/2) generate SUSY
transformations whose closure is the (exotic) ' = (8/|8) superalgebra

— & 2T S 1TSS 31T 5

s = (psu(2]2) = psu(2]2)) x (R = R)
— s+ central elements corresponding to the components of p,

+;: generators of SUSY transformations
- generators of global gauge transformations
= non-abelian R-symmetry group SU(2)**
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Hidden symmetries

@ Infinite (classical) symmetry algebra

- = Ker(adA) N £(psu(2.2/4). o)

S = S H ok bl aoa

== [he elements of grade =1 (or Lorentz spin +=1/2) generate SUSY
transformations whose closure is the (exotic) ' = (8|8) superalgebra

5= (psu(2]2) © psu(2]2)) x (RER) | =5 255 1 S50 5515 540

— 5.5 central elements corresponding to the components of p,
— s.;: generators of SUSY transformations
— sq. generators of global gauge transformations

= non-abelian R-symmetry group SU(2)**
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Hidden symmetries

@ Infinite (classical) symmetry algebra

- = Ker(adA) N £(psu(2.2/4). o)

= [he elements of grade +1 (or Lorentz spin =1/2) generate SUSY
transformations whose closure is the (exotic) N' = (8|8) superalgebra

— 5 205 OSPS5O0

s = (psu(2/2) = psu(2|2)) x (R = R)
central elements corresponding to the components of p,

— s.3: generators of SUSY transformations
— sq. generators of global gauge transformations
= non-abelian R-symmetry group SU(2)**

5" 5 is a finite subalgebra of | £(p(su(2]2) = su(2]2)).0) C - | and the
zd/dz| is the generator of Lorentz boosts EE
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Hidden symmetries

@ Infinite (classical) symmetry algebra

- = Ker(adA) N £(psu(2. 2/4). o)

= — =
e .

2) generate SUSY

= [ he elements of grade =1 (or Lorentz spin =1/
[ — (8|8) superalgebra

transformations whose closure is the (exotic) N
s = (psu(2/2) = pﬁu(2:§2)) X (RER) =5 255 1F55¢F5:1F 512

— §.5: central elements corresponding to the components of p,
generators of SUSY transformations

e T
— sq. generators of global gauge transformations
= non-abelian R-symmetry group SU(2)**
5" 5 is a finite subalgebra of | £(p(su(2|2) = su(2]2)).0) C - | and the

is the generator of Lorentz boosts

T derivation | zd /dz
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= [he SUSY transformations act in a mildly non-local way on the
Lagrangian fields
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= [ he SUSY transformations act in a mildly non-local way on the
Lagrangian fields
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= [ he SUSY transformations act in a mildly non-local way on the
L agrangian fields

p—

— (Conjecture: the symmetry algebra becomes g-deformed in the

quantum SSSSG theory || U, (psu(2]2)” x RB7) ‘ —
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= [ he SUSY transformations act in a mildly non-local way on the
L agrangian fields

p—

— (Conjecture: the symmetry algebra becomes g-deformed in the

quantum SSSSG theory || U, (psu(2/2)* x R%) | ||g=e&™"

¥ Different from the symmetry algebra of the superstring S-matrix

psu(2]2)* x B>
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= [ he SUSY transformations act in a mildly non-local way on the
Lagrangian fields

p—

— (Conjecture: the symmetry algebra becomes g-deformed in the

quantum SSSSG theory || U, (psu(2]2)* x RB7) ‘ | g = ei™/k
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= [ he SUSY transformations act in a mildly non-local way on the
L agrangian fields

— (Conjecture: the symmetry algebra becomes g-deformed in the

quantum SSSSG theory Uq{pﬁu(2|2)2 X 3:)

k

[q—o
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= [ he SUSY transformations act in a mildly non-local way on the
L agrangian fields

—

— (Conjecture: the symmetry algebra becomes g-deformed in the

quantum SSSSG theory | U, (psu(2]2) x R?) g — e’k

¥ Different from the symmetry algebra of the superstring S-matrix

psu(2]2)* x B> |
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= [ he SUSY transformations act in a mildly non-local way on the
L agrangian fields

p—

— (onjecture: the symmetry algebra becomes g-deformed in the

quantum SSSSG theory | U, (psu(2]2)* x RB?) g = ek

¥ Different from the symmetry algebra of the superstring S-matrix

psu(2]2)* x B>
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= [ he SUSY transformations act in a mildly non-local way on the
L agrangian fields

j

— (Conjecture: the symmetry algebra becomes g-deformed in the

quantum SSSSG theory | U, (psu(2]2)* x RB?) i g — ik

% Different from the symmetry algebra of the superstring S-matrix

psu(2]2)* x B>

...although

psu(212)? x R? © L(p(su(2]2) = su(2]2)).0) = C¢E
T ———— e ——————

and both can be related to the same underlying loop algebra
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= [ he SUSY transformations act in a mildly non-local way on the
L agrangian fields

—

— (Conjecture: the symmetry algebra becomes g-deformed in the

quantum SSSSG theory || Uy (psu(2]2)* x B* g — e/

% Different from the symmetry algebra of the superstring S-matrix

psu(2]2)* x B>

...although

psu(2(2)* x R* < L(p(su(2]2) = su(2]2)).0) = CE
S R R R

and both can be related to the same underlying loop algebra
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¢« §7 SSS5G theory

B Continuous spectrum of relativistic non-abelian Q-ball kinks with
bosonic and fermionic degrees of freedom
| 2k

— sin &

I

B
i

abelled by = < (0.7/2) — | m,

iy | . SU(212)  Su(22)
Non-trivial moduli space |9 = U(2/1) < U(2/1)
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he AdSs x S° SSSSG theory

T TERE 4

B Continuous spectrum of relativistic non-abelian Q-ball kinks with
bosonic and fermionic degrees of freedom

2k
labelled by o € (0.7/2) — |m, = —sing

—
I

= _ _ SU(212)  SU(212)
Non-trivial moduli space |91 = U21) - U(2/1)
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B Continuous spectrum of relativistic non-abelian Q-ball kinks with

bosonic and fermionic degrees of freedom

2k
labelled by - € (0.7/2) — |m, = —sing

—
i

FA

- | . SU(212)  SuU(212)
Non-trivial moduli space |9 = U(2/1) : U(2/1)

@ Grassmann coordinates arise from the non-compact AdSs sector

— turning off the Grassmann coordinates the solitons live in S
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he AdSs x 57

olitons

= . TEREY A

B Continuous spectrum of relativistic non-abelian Q-ball kinks with
bosonic and fermionic degrees of freedom

2k
labelled by o € (0.7/2) — |m, = —sing

d —

fa

 SU(212)  SU(212)

Non-trivial moduli space |91 =

U21) U2

@ Grassmann coordinates arise from the non-compact AdSs sector

—— turning off the Grassmann coordinates the solitons live in S°
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B Continuous spectrum of relativistic non-abelian Q-ball kinks with
bosonic and fermionic degrees of freedom

2k
labelled by - = (0.7/2) — | m, = —siny

—
i

il

N | . SU(2]2)  Ssu(22)
Non-trivial moduli space |9 = U(2/1) : U(2/1)

@ Grassmann coordinates arise from the non-compact AdSs sector

— turning off the Grassmann coordinates the solitons live in S°

= [he SUSY group acts on M
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B Continuous spectrum of relativistic non-abelian Q-ball kinks with
bosonic and fermionic degrees of freedom

2k

— —— SER

labelled by - < (0.7/2) — | m,

r _ _ SU212)  su(22)
Non-trivial moduli space |9 = U21) . U(2/1)

@ Grassmann coordinates arise from the non-compact AdSs sector

— turning off the Grassmann coordinates the solitons live in S°

= [he SUSY group acts on M
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Quantization of moduli space dynamics |

B Semiclassical spectrum
Hilbert space of modules for the short (atypical) representations of

the SUSY algebra of dimension |4a x 43

' ) 7k d 5 |
Mass spectrum | m, — g sin ( ) la—L..., ki

2k
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Quantization of moduli space dynamics |

B Semiclassical spectrum
Hilbert space of modules for the short (atypical) representations of

the SUSY algebra of dimension 43 x 43

Mass spectrum m, — [&Sin (;‘j) [ a==F ..., k
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B Continuous spectrum of relativistic non-abelian Q-ball kinks waith
bosonic and fermionic degrees of freedom

labelled by - < (0.7/2) — |

Non-trivial moduli space |91 =

2%k

| M, = — Sy

 SU(2)2)  SU(212)
U@21) = U2

@ Grassmann coordinates arise from the non-compact AdSs sector

—— turning off the Grassmann coordinates the solitons live in S°

= [he SUSY group acts on 9N
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B Continuous spectrum of relativistic non-abelian @-ball kinks with
bosonic and fermionic degrees of freedom
2k

—= sSin 2

FA

—
i

labelled by - < (0.7/2) — [ m,

= | - SU(212)  SU(212)
Non-trivial moduli space |9 = U(2/1) ) U(2/1)

@ Grassmann coordinates arise from the non-compact AdSs sector

— turning off the Grassmann coordinates the solitons live in S°

= [he SUSY group acts on M
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Quantization of moduli space dynamics |

B Semiclassical spectrum
Hilbert space of modules for the short (atypical) representations of

the SUSY algebra of dimension |43 x 43

Mass spectrum m, = [£Sin (ZTE) .-3 == k
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Quantization of moduli space dynamics%

B Semiclassical spectrum
Hilbert space of modules for the short (atypical) representations of

the SUSY algebra of dimension 43 x 43

Mass spectrum | m, = g sin (ZTE) la—1___ k|
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Quantization of moduli space dynamics |

B Semiclassical spectrum
Hilbert space of modules for the short (atypical) representations of

the SUSY algebra of dimension |43 x 43

Mass spectrum | m, = g sin (;j) %a ==K ki

—

= [ he semiclassical spectrum is discrete
== 3= 1 —— perturbative states

a > 1 —— bound states
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Quantization of moduli space dynamics |

L

B Semiclassical spectrum

Hilbert space of modules for the short (atypical) representations of

the SUSY algebra of dimension |42 x 43

| . (T3 ! -
Mass spectrum.ma:;xsm(zk) fa—EFE.. ., k{

= [ he semiclassical spectrum is discrete
== 2 =1 —— perturbative states

a > 1 —— bound states
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theory

* m, = psin (57 ) can be understood as the BPS condition for the

F

Fi

short representation of | U, (psu(2/2) x R*)| of dimension 4a x 4a

i

with | g = >
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Quantization of moduli space dynamics%

!
¢

B Semiclassical spectrum

Hilbert space of modules for the short (atypical) representations of

the SUSY algebra of dimension 42 x 43

| . (7a i :
Massspectrum?ma:,umn(zk) la=—1___, ki

= [ he semiclassical spectrum is discrete
= 23— 1 —— perturbative states

a > 1 —— bound states
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Quantization of moduli space dynamics |

B Semiclassical spectrum

Hilbert space of modules for the short (atypical) representations of

the SUSY algebra of dimension 43 x 43

| . (7a
Mass spectrum | m, — psin (’H()

1= [ he semiclassical spectrum is discrete

a =1 —— perturbative states

b

a > 1 —— bound states
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* m, — usin (%) can be understoad as the BPS condition for the

1]

short representation of | U,(psu(2|2) x Rz)g of dimension 42 x 4a

with | g — = k
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* m, = pusin (357 ) can be understood as the BPS condition for the

short representation of | Ug(psu(2|2) x Rz)i of dimension 42 x 4a

with | g = e
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* m; = psin (57 ) can be understood as the BPS condition for the

short representation of | U, (psu(2|2) x R*)| of dimension 42 x 42

k|
|

with | g = &'™

¥ The semiclassical spectrum consists of a tower of massive states in
short symmetric representations, just like the magnon bound states of
the superstring world sheet theory......

Pirsa: 11080035 Page 61/166



% m, = psin (57 ) can be understood as the BPS condition for the

short representation of | U, (psu(2|2) x R*)| of dimension 42 x 42

with | g = ™/ k|

% The semiclassical spectrum consists of a tower of massive states in
short symmetric representations, just like the magnon bound states of
the superstring world sheet theory......
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* m, = psin (57 ) can be understood as the BPS condition for the

short representation of | Uy(psu(2|2) x Rz)i of dimension 42 x 43
i

kaE

with g —==¢€

The semiclassical spectrum consists of a tower of massive states in
short symmetric representations, just like the magnon bound states of
the superstring world sheet theory......

but in the SSSG theory the tower is truncated by k, the level of the
WZW term.__..
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5!

=

m, = pesin (32) can be understood as the BPS condition for the

short representation of ! Ug(psu(2]2) x Rz)! of dimension 42 x 43

with | g =& ™/ *

The semiclassical spectrum consists of a tower of massive states in
short symmetric representations, just like the magnon bound states of
the superstring world sheet theory......

but in the SSSG theory the tower is truncated by k, the level of the
WZW term.___.

gL 7 44

SOl LOWOOO—JLLT " L1

Semiclassical quantization using the string world-sheet action gives
rise to the usual infinite spectrum of magnon bound states in short
symmetric representations!
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x*

m, = psin (52) can be understood as the BPS condition for the

short representation of | U,(psu(2|2) x Rz)i of dimension 42 x 4a

with | g = ™%

The semiclassical spectrum consists of a tower of massive states in
short symmetric representations, just like the magnon bound states of
the superstring world sheet theory......

but in the SSSG theory the tower is truncated by k, the level of the
WZW term.___.

Semiclassical quantization using the string world-sheet action gives
rise to the usual infinite spectrum of magnon bound states in short

symmetric representations!
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he relativistic S-matrix

@ The SSSSG S-matrix with symmetry U, (psu(2/2)% x R?) will be
constructed as a graded tensor product of elementary blocks with

symmetry | Ug(psu(2/2) x R?) |

—— Supported by perturbation theory

@ | he blocks are obtained as a limit of the fundamental R-matrix for
U, (psu(2|2) x R?) constructed by Beisert and Koroteev
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NE NEEatVISLIC J-Matrx

he relativistic S-matrix

@ The SSSSG S-matrix with symmetry U, (psu(2/2)% x R?) will be
constructed as a graded tensor product of elementary blocks with

symmetry | U, (psu(2(2) x R?) |

—— Supported by perturbation theory

@ | he blocks are obtained as a limit of the fundamental R-matrix for
Uz {psu{2]2} Ri) constructed by Beisert and Koroteev
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he relativistic S-matrix

@ The SSSSG S-matrix with symmetry U, (psu(2/2)% x R?) will be
constructed as a graded tensor product of elementary blocks with

symmetry | U, (psu(2]2) x R?)

—— Supported by perturbation theory

@ [ he blocks are obtained as a limit of the fundamental R-matrix for
Ug (psu(2]2) x R3) constructed by Beisert and Koroteev

o

psu(2|2) x R? is a “finite” affine algebra
psu(2]2) x R* C L(su(2]2).0)

—— our relativistic S-matrix fits into the well known class of
S-matrices associated to trigonometric solutions to the Yang-Baxter
equation with affine quantum group Ug(a) symmetry

—Bearmarra= ai™ 257 7 O
el Ul i~ lall SN

.1........“ -Iq I
irsa: 11080035 T Lpage 68/166 -
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he relativistic S-matrix

@ [he SSS55G S-matrix with symmetry Uq(psu(2\2)2 X Rz) will be
constructed as a graded tensor product of elementary blocks with

symmetry | U, (psu(2]2) x R?)

—— Supported by perturbation theory

@ | he blocks are obtained as a limit of the fundamental R-matrix for
U, (psu(2|2) x R?) constructed by Beisert and Koroteev

= psu(2]2) x R? is a “finite” affine algebra

psu(2]2) x R? C L(su(2]2). o)

—— our relativistic S-matrix fits into the well known class of
S-matrices associated to trigonometric solutions to the Yang-Baxter
equation with affine quantum group Ug,(a) symmetry

irsa: 11080035 S5 Lpage 69/166 -
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@ Generators

Even — si(2)2: R3,. £%;

Odd — SUSY: 9%,. &% Centres: | .

'
IJI.-I

= C TCoead = C ik T =T ence O CE
[R5, RE,] = 65R7y — 2R [£%5. £75] =618%5 — 628
= I == .3 L S3<YY Tk 3 _ STy 1 soeeyr
[ﬁbﬂ i} =—903%) b_fabﬂ 4 g s ;ﬁ_jﬂ d_j”iﬂ d
= N w = . 1l o3, ~cC Ak ——, S W e 1 otk ~cC
[ﬁ Z L i = .r'lbt? B E(]b - 5 [L q L 5‘ e _t}ri = 2 1 E!‘jj - A
i X - _ NC ¢HE EgEEC | SC S oy
']L.._ b L 1} = }b-}_ 3 )i nb{jfi -
¥ ") — Y - = Sy B —i x
{L..‘;_-,-L cl‘]l’:w.i “hd + {'\:' - Gr}}:w £ 36
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VISTIC J-Malrx

he extended s/(2|2) superalgebra

@ Generators
Even —si(2)?: R3,. £%;

Odd — SUSY- 9°,. &°;  Centres: | .

-
IJ-.-I

@ | psi(2]2) x B> | algebra

3 pec TCopad T3 C ik 7y _ £7T e SO XY
{f‘{ b R aj — ”b‘ d ‘jdm [‘L 3.~ 5] —0O -;’L ) f—‘._? -
= y F__ T3 1 sy 1 y = ¥ 1 sex
3 ~C TC ~3 1 ga~c ¥ ~C SO o~ I oo ~c
[ﬂ b- S L..T —— ;‘ibt*_r = Erjb (e 5 _':‘1* 3.0 5| — — "';-, ' 3 T E‘j j"':j a
| ik 0 _ NC ¢ae (@ | £ 1 S€ S
£1%, 6% =0 L% + 05 R 05,05 €
| X & Y 1 3 — = - ) ~
]‘-“Dﬂd}_'L Shd ‘L ‘it" -I\:"ni’—: 36
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he relativistic S-matrix

Defining representation(s)

5" psi(2/2) x B> has a family of 4-dimensional representations labelled by four

parameters 3. b. c. d constrained by |ad — bc =1

@ Odd generators

O —aes; + beos. ¥ —aen— bes
%) —aey — bess. 0% —aep + beys
1‘511 —deys +cen. 613:0‘314—:&32.
&%, =deys — cey. &% = d ey + cey,

@ Centres ¢—=C1, B=—P1 =K1
g

—fad+-bc), P—ab K-—d

|
U
x
|
|t
[l

shortening (BPS) condition
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5" psi(2/2) x B® has a family of 4-dimensional representations labelled by four

parameters 3. b. c. d constrained by | ad —bc =1

@ Odd generators

Pirsa: 11080035

¥ —aey + bess.

9, = =1 bE14.

. 3
1} —aey — bess. 31> —aegn +De
Sy =deis +cen. St =deny —cesp.
P I P ;
O —adey3 —C€y. < 2 :d824‘i_CE31.
CE B—FPL f— K1
C—f{xditix} P—ab K-—d

shortening (BPS) condition
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NE NESEStVvISsTIC o-Mairtx

/~gradation and Z,; automorphism

@ Z-gradation of psi(2/2) x R3

stR",) —=s(£"3) —0 s(£)%s) = 1. s(&%;) = —1.
s(€) =0. si*B)—2 s(R) = -2

@ Z4 automorphism of si(2|2): £%;5. R¥. 9%, &7%;. 1

{T(U) =i e;’Ts{u) 2

u, o(l)=-1

= psi(2]2) x B3 is a finite subalgebra of the centrally extended twisted
affine algebra

si(212)(?) = £(si(2]2).0) = C¢ 2g1

+
Il
N
el
1l
N

I
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= psi(2/2) x B? has a family of 4-dimensional representations labelled by four

parameters 3. b. c. d constrained by | ad — bc =1

@ Odd generators

Pirsa: 11080035

— 2e3; + bess. ae3 — beqy.

— gey — bexs. aep +bes

eest

— dey3 + cegp, den — cesp,

N

@ G 1o |

— d ey —Ceyy, » = d ey + ces.

i=K1

P—ab K-—ao

shortening (BPS) condition




NE NRESOVISLIC o-M3irx

/-gradation and Z, automorphism

@ Z-gradation of psi(2/2) x R?

s(R%) =s(L£93) =0. s(Q%)=1. s(&%)=-1
s(¢) =0. s{*B) =2 s(R) = -2

@ Z4 automorphism of sli(2|2): £%5. R¥,. Q%,. &7;.

= psi(2]2) x B3 is a finite subalgebra of the centrally extended twisted
affine algebra

s{(2]2)) = L(s(2]2).0) = C¢ i‘l’fzzz 21. A=z231
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@ Generators
Even — si(2)? :
Odd — SUSY:

e £

%, &%

@ | psi(2]2) x R’ | algebra

[98%5. |’ 4] = R4 — 43RS, [£% 5. £75] = 038%5 — 62€7 5
[R5 Qo] = -39, + 20207y [£%5.974] = 639% — L0397,
[ﬂjb CC, - *:"‘gt""; o %ﬂ-g :—"Cﬁ [Ea g 6{:;1 —ri:? ,:--_,-'f:j L %éﬁﬁca
(£, 65} — 5" L 0, |+ &EaF €
(2%, Tt =" cpa B {673,6% ) =< cps R

Pirsa: 11080035
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e N"‘EaSivISEIC o-Matrx

/-gradation and Z, automorphism

@ Z-gradation of psi(2/2) x R3

5(9‘{"“;,) = 5(1::{l j) —4 S(ﬂab) —F 5(@55) — —1,
s{€) —0. s(°B) =2. s(R) = -2

@ Z4 automorphism of si(2|2): £%5, R¥. 9%, &%;3. 1

.{T(u) — ™2y 5(1)=-1

= psi(2]2) x B3 is a finite subalgebra of the centrally extended twisted
affine algebra

si(2]2)7) = L(s1(2]2).0) = C¢ i:L =221 A=zr231
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NE NEtalvISTIC J-MILTx

/~gradation and Z,; automorphism

e Z-gradation of psi(2/2) x R3

S(‘}{ab) = 5(.'.'..:{l J) = S(ﬂﬂb) —F 5(555) = —1,

s(&) =0. s’B) —2 s(R) = -2

@ Z4 automorphism of si(2(2): £%;5. R¥,. 9%, &%;. 1

o(u) =e™V/2y  5(1)=—-1|

= psi{2]2) x B3 is a finite subalgebra of the centrally extended twisted
affine algebra

si(2|2)\) = L(sl(2]2).0) = C¢ I B—2=0) fR=z"¢ 1I
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e rergiivisilicC J-Mallix

Quantum deformation U,(ps{(2]2) x R?)

@ Chevalley generators

2 -1 4
@ Cartan matrix A— ( —1 0 1 ) [X]q = q;__tf_l
0 1 -2
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NE NESTIVISTIC o-TSIIx

Quantum deformation U,(ps((2]2) x R?)

@ Chevalley generators

—

[€1. 51] = [91]e- {&2. 852} = —[92],- [€3. 53] = —[93]q

. i (. 5 BT T 5
T —q g™ o5 —g5Ee"

+ deformed Serre relations

2z —1 G
e Cartan matrixx A;=| —1 0 1 Xle ==
0 T =2

= q:EITk
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The reiatvistic S-matrx

@ Chevalley generators in the fundamental representation(s)

> 1 /9 =) > - Y
& =g’ Ry, & = 0%, E&=q /- LH
— __ 2 - ""h—j S T § ’:’
5 —q 7 o, 02 — O 2. S§3=¢q ' L°

= (Centres

P—ahk K—cal ad:[C+l.r2]q. bc=[C—1 2]q

2 -3 Zy. : .
[Cl, —PK=[1/2],| = deformed shortening condition

Page 82/166
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@ Chevalley generators in the fundamental representation(s)

&; = g''2 R, & = 9% & =g V% gl
S1=q 2Ry §F=6% FH=q24
= (entres
P—ab K=o, ad=[C+12_, bc=JC—1/2]

— deformed shortening condition

[CE-PK=[1/2]2| =

—l

Page 83/166
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@ Beisert-Koroteev parameterization of {2.b.c.d}

o ér?(_'t = X_
* =i b=~ (1—Q“C_l—).
¥ \ i
o Zv g C+1/2 g0 ?qc_l 2 — o Tt
¥ X il
subject to
X" q B 1 _ S x+ gx— F
—+——¢ ————+iglg—q ) e =
9 X ax gx = g

= | (g. q) = coupling constants (x™.x7) = 1 variable

(a. 7) = normalization factors
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@ Beisert-Koroteev parameterization of {2.b.c.d}

e :é,?ﬂ v > 2
3:\*%‘“__ b: v (l_qu{:—l__)‘
7 \ x
I :-- C11/2 i é,? | ‘
a x -
subject to
x*r q B ]_ . — X:_ qx— !
—+——@ ————+iglg—q ) e e
q X ax gx X g
== | (g. q) = coupling constants (x™.x) = 1 variable

(a. 7) = normalization factors
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@ Magnon representation:

x* :
g—1| (ork—x) = |—=¢€"
-
p = world-sheet momentum g = string tension

[C_ﬁi —PK =1, 2]; — €p) = V*fl +4g2sin*(p/2)
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@ Magnon representation:

x* :
g—1| (ork—x) = |—=¢€F
-
p = world-sheet momentum g = string tension

[C]” — PK = [1/2]°
g L Tle

ep) = Vfl +4g2sin*(p/2)
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NE NElISIVISIIC o-TEiTx

he magnon and the soliton representations

@ Magnon representation:

xT -
g—1| (ork—x) = |—=¢€*
—
p = waorld-sheet momentum g = string tension
1= | 72 : - /
[C;; — PK = [1, 2|, ep) = vfl +4g2sin*(p/2)
55 Soliton representation:
=t
g—0a| = =g € —={
| »
2 72 L i -
s % Pef PP =1 EJq becomes a relativistic mass-shell condifign



eiativistic S-matrix

he magnon and the soliton representations

@ Magnon representation:

x* :
g—1| {(ork—x) = |—=¢€F
—
p = world-sheet momentum g = string tension

[C_ﬁi —PK =1, 2_2 — €p) = Vf’fl +4g2sin*(p/2)

i Ballogood—IIM

= OSoliton representation:

becomes a relativistic mass-shell conditign




@ Magnon representation:

xT :
g—1| (ork—x) = |—=¢€F
X

p = world-sheet momentum

g = string tension

[C_'.; — PK = |1, 2:; —— €(p) = V“jl +4g2sin*(p/2)

= Solito

irsa:

Soliton representation:
ot
= X
32 . 7 .
11030035 _C4 — P = [1 .’2_.q becomes a3 relativ

istic mass-shell conditign



@ Magnon representation:

xT -
g—1| {(ork—x) = |—=¢€F
-
p = world-sheet momentum g = string tension
32 - - E _Il — =" [ T et /
[C;q =5 2] €p) = \/1 ~4g%sin~(p/2)
=" Soliton representation: S

e " - ... . S
—x BER=- ERE- [1 2 5 becomes a relativistic mass-shell condifign
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The redatvistic S-matrix

ok
(]
h
|
|

] s o 2 ]
'fh]""_'q' — upsin{w/k) P+

- +2 . _ 2
—PK = [1 z;q =p.p ;zzsmz(r, 2k} — my

The rapidity appears in the way dictated by the Z-gradation!
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The relativisric S-matrix

] -0 — i

_'{_]"2‘::' — psin{w/k) -
[ i f
!hl.2‘q: = o7k P

—PK = |1 2; = p.p_ = psin’(7/2k) = mg

The rapidity appears in the way dictated by the Z-gradation!
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e P=il1/2]| &* "
g

psin{7/k) =
= f“l' 2"*1?':__ = _usin{xr k) o
—PK = [1/2]7 = pyp_ = p?sin®(w/2k) = mg

The rapidity appears in the way dictated by the Z-gradation!

* Ug(psi(2]2) x R?) — Ug(psi(2]2) x B?)

Pirsa: 11080035
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[,

1]

e P—=ijl1/2]
L7 “1q

—PK =1 zji = p.p = p?sin®(7/2k) =

2
—

* Ug(psi(212) x R?) — U, (psi(2]2) x B?)

irsa: 11080035

The rapidity appears in the way dictated by the Z-gradation!
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e P—il|1/2] e * :
il

psin(=/k) P—
K=ill, 2;;“5; — sin(fr k) P+
— P =0 7_12 = p.p_ = p?sin’(7/2k) = mg |
~' The rapidity appears in the way dictated by the Z-gradation!
* U,(psi(2)2) x R?) — U,(psi(2]2) x B?)
=== Fundamental particle multiplet V;(#) of mass
my = psin(m/2k) — lightest semiclassical solitons

my >~ p + O(1/k) — perturbative modes
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e P—ijl1/2] e * -
L7 “1gq

psin(z/k) P—

p
|
rr;‘l
I-[\-}I

£l
|
|
Il

i
— psin{w/k) e

:1 Zf’, = p — ,uz sinz(r___..’2k) — m%

The rapidity appears in the way dictated by the Z-gradation!
* U,(psi(2)2) x R?) — U,(psi(2]2) x B?)

5° Fundamental particle multiplet V;(#) of mass

my = psin(7/2k) — lightest semiclassical solitons

my ~ pu + O(1/k) — perturbative modes

irsa: 11080035

Page 97/166




%* Z gradation (s;. 5.53) = (0.1.0)

o PB—pafl g ), S—pgao Hg™=—7) W=xt/g -1
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he co-product

@ Involves a new abelian generator Ul

A(E)=€R1+q TUIRE, AF)=3i2¢" +U 73§
A(C)=€21+132C. A(B) =P 21+¢%* 2P
A(R)—R2qg+U?2 R A(U)=U® U

v
L]
09
19
a
.
£
-
O
=
ol
g
Ly
L5
I
©
™
(-
e il

e P—gafl - ¢gH), K—poH{g 7)) W—x/gc -1
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* Z gradation (s;. 5.53) = (0. 1.0)

e P—pafl giF). S—po g4 F—xt/gc -1
= |n the soliton representation % =1

* ACE)=TF=1+1= L. A(R)=RR1+13 K,
needed to interpret °I and K as po

Pirsa: 11080035 Page 100/166

* !l becomes the fermion number



AlE)=€R1+g TUSRE, A@F)=3FQq  +U T35

ePT—pnll —g*if). S—po (g7 ¥—xtjogc -1
== |n the soliton representation L% =

* ACE)=P21+12B. AR)=R=21+12 8K,
needed to interpret L and K as po

Pirsa: 11080035 Page 101/166

* !l becomes the fermion number




3 511(912) : V}_(Hl) & VI(HE)

Vi(h2) @ Va(fh) [ =61 — 6>

S11(6) = Y (B)Y(im —8) R(%)|

= R =g — x limit of the fundamental R-matrix for U,(psi(2]2) x R?)
of Beisert and Koroteev
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2 511(913) - Va(fr) @ Va(6n)

Vi(ho) @ Vi(f1) |12 =61 — 6>

511(8) = Y(0)Y (im — 0) R(e%) |

= R =g —  limit of the fundamental R-matrix for U,(ps{(2]2) x R?)
of Beisert and Koroteev
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@ R-matrix: basis {|o?).|v™)}. x=¢€°

RB(x) &*a™ = A |é%a™ . Rix) ©= o= =D v~

o oy HA—B) | > ; A+ B » c " qC "
Rlx) o 6" =~ 66" )+ —— & @" 5 + = i) — _ |yt
g1 T £33 3 Efgq-
s gtA—H), ; 3 e A s = 3 -
Rix) o0 ) =——— &6 é" ) +— (&0 ) — L s ) + % : o e

5.2 dB—E}, ; ;n FDLE| ; 5 E e aF B

Mx)jiwd }—— (¥ ¥ ) — ¥ )4+ & @ §) — D b

e G i o 70 P FE+D | 5 ; gF E.2 g F >
RI‘.‘:’E oy ) ——— ‘e e YL e e z I

£ = — -

- - > 3 z F , a T » .3 » .3 & ;@
Rix) o ) —Giv o )+ H oY ), Rix) v o") =K |v™ ™) +L | ™

{gr —1}{x +1) (g —x}x+1)

. =
oLl = Gl'l’ =X

& — (€ — 20 +2a—1pe—x’ Exr— (@ — 2 +2g—1)x—1
g7 x ' g/ “x

g —1Mg=+1)x — 1) 2

- T -
— e . F A

b

(g —L)}{x+1)

- —— -

o
I
x
I

g X"
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The reliatwistic S-matrx

’ _ _ | ) .
@ R-matrix basis {|o%) . |v™)}, ;

R({x) o*a™ —Ale%a™ . Rix) | o™ o™ =D | o™ o™

e afA—BY, > ; CA-B | ;- C _— qC o

Rix)lo o) = ——— " ¢ ) +———1&d" )+ _ ) — T
g-i1 g-+I IL+g° El g
1 i .,
+ 1 afA — B) 3 A g8+ A S gC i .2 g C » 1
Rlx)lo"d s = " & d )+ ——  lé@ 3} —— |ra" )+ T

g +1 g +1 1+g= l—|—c;p-

. r 2 oD —E), > 4 IDL+E; ; - —_ aF -

Hix) »v « — = P )+ = Y )+ s @ ) — — i O
g-+1 g +1I I§q° g

. ofE—E)y 3 v CEED; 5 3 o ) q o F 53

Rix} v v ) = _ o 1 ST — @& )b @ O

g —1}{x +1} (g —x)}{x+1)

5 I3 T iy
gt/ <x gt/ %x

a —-q"—._a_——.“_a—l}x—wl qi'fl—{qa—zq:—zq—l)x—l

g x | >/ Zx
(g — 1){g= +1)(x — 1) =
C=F= = . CG=L—=—x—x "

| g d S L
q X

(g —L1){x+1)

- . - -

.r__r:* St =
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* 311({4) has U,(psi(2/2) x R?) symmetry

15° The form of 51;(#) ensures that it satisfies crossing symmetry

Y (#) is fixed by the unitarity condition 511(9)511(—9) —1IQ1

E F{ &)
Y(YY(im —8) = —
Xqg—q )
- e 2, T - - & xn = 3 inll
roe gt cosiy (il — —Jisimhitfl — —}) sinh{ =—
Fid)—ep  —2 — 2 — m. - E2L (o)
0 t sinh tcosh= t
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* §11(H) has U,(psi(2]2) x R?) symmetry

15" The form of 5;;(#) ensures that it satisfies crossing symmetry

Y (#) is fixed by the unitarity condition 511(6')511(—9) —1@1

- : Fi8%
V[H]Y[ff—#ﬂ_ — = _ :
Hg—qg )
R 2, : : B =
> dr cosh~{t{1 — )}sinh{t{1 — =)} sinh{ =
HFo) —ep | 2 IIII _ & | : '-T}‘I l:rT}
L L sinh r cosh<
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Bound stotes bootstrap

Bound states: the boostrap programme

* [ he most difficult aspect of building a consistent QF T is to explain
all the singularities of the S-matrix on the physical strip 0 < Ilm @ < 7
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DOUNnG sSgfes. DOOTSETID

Bound states: the boostrap programme

* [ he most difficult aspect of building a consistent QF T is to explain

all the singularities of the S-matrix on the physical strip0 < Im @ < 7
in terms of bound states and anomalous thresholds

== Bound states give rise to simple poles, and their positions have to
mesh with the representation theory of the quantum group

If 3 bound state corresponding to a multiplet V. is produced in the
collision of V. and V; in the direct channel, then

Q@ 5.»(#) has a simple pole at & = iuS,

@ The representation V.(#;) = Vi(#>) becomes reducible:
VR V=V _& V-

© ResS (iw,): V- —0

Pirsa: 11080035
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* [ he most difficult aspect of building a consistent QF T is to explain
all the singularities of the S-matrix on the physical strip 0 < Im @ < 7

= Bound states give rise to simple poles, and their positions have to
mesh with the representation theory of the quantum group

If 3 bound state corresponding to a multiplet V_ is produced in the
collision of V. and V; in the direct channel, then

@ S5.5(#) has a simple pole at = iuS,

@ The representation V,(#;) = Vi(#>) becomes reducible:
VLR Ve—=—V_ &V

Q@ ResS5,(iug): Voo —0
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Bound stotes bootstrap

= Res S,p(ius,) is a weighted sum of “projectors’

V. =% vY  vY) = irreducible representations of U, (s1(2)%)

| ] Z e ei __ cpha e
Sab(ﬁ) g 0 _ f-ucb a‘-}j Pab‘ E:ab il ‘P*‘-‘J ‘Pab
: ke :
]
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=5 Res S,p(ius,) is a weighted sum of “projectors’

V. =% VE}, Vf} — irreducible representations of Uq(sl(2)"“2)

] mC.J c.J mba mCJ
Sab((_}) e Z I{'}..I; Pa; H;aé = ‘Pg_}' Paf;,

F — S, <~
ab ]
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15 Res S p(ius,) is a weighted sum of “projectors’

V.—0; vE). Vé"') — irreducible representations of Uq(sl(Q)\""l)

i .Ir' C_f ,c._,r'_rba- C-j
Sabl?) ~ 5 —— > sl E-T5T

* [ he scattering amplitudes of the bound state ¢ with state d can be
constructed in term of those of d with 3 and b.

24c(0) = (EJ VIl P35 < 1) (1 2 San(0 —I—!'L_IEE))
. (5_—_:(9— f’EEE) : ) ( >y, w gﬁ)
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1 Res S p(ius,) is a weighted sum of “projectors’

V.=25; vY Y _ irreducible representations of U, (sl(2)*?)

] = €4 __ pba P
Sab(f_t}) - g __ i:M.::i:, Z ] Pab ; J-Pab = ‘PCJ Pab
' p= |

3

* [ he scattering amplitudes of the bound state ¢ with state d can be
constructed in term of those of d with 2 and b.

Sac(®) = (Z; V1P 75 2 1) (12 Sunl0 + 7))
< (a0t o1) (15 5, A7)
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Bound stotes bootstrap

Representation theory

Zhang-Gould’05

Baisert* QT

Baisart—Rorotocaey
el SETrT—ROTOTEEY

@ For g not a root of unity, the representations of U,(psi(2]|2) x R?) are
simply deformations of the representations of psi(2/2) x R3
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Representation theory

i I C
LASHE—FOILO " US

Baisexrt*OT

Bat sarr—RKoroTraay

@ For g not a root of unity, the representations of U,(psi(2]2) x R3) are
simply deformations of the representations of psi(2/2) x R3
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DOUNG sEgfes. DOOTSTaD

Representation theory

g - P S
LASNE—FOUIa " Us

Bajsart 07

Beizert—Horoteey

@ For g not a root of unity, the representations of U,(psi(2]|2) x R3) are
simply deformations of the representations of psi(2/2) x R3

15 Long (typical) representations | |{m.n} — dim =16(m+ 1)(n+ 1)

09

Irreducible for generic values of C. P. K

@ Become reducible but indecomposable for specific values of

[C]i — PK (shortening or BPS conditions)

V{'m-n‘- — M WV Ve ctor — V{m.n}.ﬁ;\éub-rep

i - ke L —_——

7]

Veub-rep- Viactar = short (atypical) representations
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Representation theory

— . vy
LAan—0uiad - Us

r

el Sert

Bait sart—RoroCoas

@ For g not a root of unity, the representations of U,(psi(2]|2) x R3) are
simply deformations of the representations of psi(2/2) x R3

15 Long (typical) representations | |m.n} | —dim=16(m+ 1)(n+ 1)

Irreducible for generic values of C. P. K

@ Become reducible but indecomposable for specific values of

[C]i — PK (shortening or BPS conditions)
V{m_nl — b-:,,__..__,“ ; V_. 1‘-_;"'4';;:3 = V{m.n}fﬁvsuh-rep

representations

i
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Bound stotes bootsirap

5 Short representation | m.n | —dm=4(m+1){n+1)+4mn
Exists for | [C]i —PK =[(m+n+1) 2]§ —— Shortening condition
* Fundamental representation = (0.0)

Semiclassical solitons live in (m. 0
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Bound stotess bootstrap

= Short representation m.n |—dm=4(m+1)}{n+1)+4mn
Exists for | [C]i —PK =[(m+n+1) ZE —— Shortening condition
* Fundamental representation = (0.0

Semiclassical solitons live in (m. 0
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15 Short representation | m.n |— dm=4(m+1)}{n+1) +4mn

2

Exists for [C]i — PK =[(m+n+1)/2]_| — Shortening condition

* Fundamental representation — (0.0)

Semiclassical solitons live in (m. 0

@ Tensor product (m.0) = (n.0) = Z?:ém'”]{m+n— 2k.0}

@ Multiplet splittings
{m 0} — (m+1.0 = (m.1) for [C]i — PK =[(m+ 2)2]§

— (m—1.0) & (m.0)3 for [C]i — PK = [m,.-‘ZE
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= Short representation . m.n — dim=4(m+1}{n+ 1) +4mn

Exists for [C]‘:‘T —PK =[(m+n+1) 2]§ —— Shortening condition

* Fundamental representation = (0.0)

Semiclassical solitons live in (m. 0

@ lensor product (m.0) = (n.0) = T‘mm m”]{er n—2k.0}

@ Multiplet splittings

{mO0} — (m+1.0 £ (m1) for [C]f:,—

— (m—1.0) = (m.0)3 for [CE—PK:

Pirsa: 11080035
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= [(m+2)/2;
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=" [ he shortening conditions indicate the location of the poles

corresponding to the bound states
Via.0}

= | —— —
@ 511(f12) : Vigo (f1) @ Vigoy(#2) — Vieo(02) @ Vigoy(P1)

G=G=60 P=HFH+tP K=K1+K
@ Shortening condition for {0.0} — (1.0) = (0.1

i |

_pK:mi -, z_-,luzik.
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=" [ he shortening conditions indicate the location of the poles
corresponding to the bound states

—
@ S511(f12) : Vigo (01) 2@ Vigoy(#2) — Vi (82) 2 Vigo)(01)

@ Shortening condition for {0.0} — (1.0) = (0.1,

PR =12 = fp— =+

irsa: 11080035
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COuna sSagfes. J00SsTa3D

=" [ he shortening conditions indicate the location of the poles
corresponding to the bound states

,_
@ S511(f12) - Vigo (61) @ Vig.oy(92) — Vi (82) 2 Vigg(P1)

@ Shortening condition for {0.0} — (1.0) = (0.1)

—PK = [lli =3 g5 — :|:..|r

i5° Bound state at # = i7/ k in the (factor) representation (1.0

* Consistent with the quantum group representation theory
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= [ he shortening conditions indicate the location of the poles

corresponding to the bound states
Via.a;
“

2 §11(912) : V{]_g (91) X VG_D (Hz) = VD.D (HE) : V‘D-D}(HI)

G=G=0, P=FPi+P, K=Ki+K
@ Shortening condition for {0.0} — (1.0) = (0.1

T

—P—pE = O~

5* Bound state at # = 7/ k in the (factor) representation (1.0

* Consistent with the quantum group representation theory
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Bound stotes bootstrap
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Bound stotess bootstrap

eV —V avVilgyvtliaytlaytliagy

[0.0} 20) T Y(1.1) T Y(0o0 @Y "an YV “@2
—— ——
1.0 0.1
T . ) a4 —q+1
Sulg) x /2 TR T Y 3/2¢ - (0.0)
2+ < ' 2g*/*(q+1)
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Bound stotess bootstrap
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Bound stotess bootstrap
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Bound stotes bootstrap

I s UYEF . YUY (—) TN (—) T
® Vioor = Yi20) T Vi11) © Yoo © V{D.D} - V{l.l} - V{_o.z_]
~—— ‘“
1.0 0.1
4 % 2 .
= . G E_ =613y O —q g —q 1 g
S () x SE(20) Ty T _ P
< qu v 2, (1.1) 2q3.2(q__ 1) (0.0)
* |S(0)= (125, (0+ = §H—,f,i_1)!
12(9) ( 1 2"‘)) ( 1 "k) 7 \V9.0y2 V1.0

= 513(9) has four simple poles that can be explained in terms of the
fustons Vi1 gy @ Viog — V3o and Vi3 @ Vg — Vi1 In the
direct- and cross-channels

++++++++++++
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Bound stotes bootstrap

15 515(#) has four simple poles that can be explained in terms of the
fusions Viy g @& Viog — V3o and Vi g @ Viog — Vi1 in the
direct- and cross-channels

------------
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Bound stotes bootstrap

= Quantum spectrum of particles associated to the representations

i Va(#) =(a—1.0)| with mass | m, = usin(ma/2k)

iclassical spectrum is exact!
Bound states of 2 and b correspond to simple poles at

§=inr(a+b)/2k and im—imla—b|/2k
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Bound stotess bootstrap

_ ™ YNTF YV o A= 7 A\ N
. V—!E}-D'}_ (20) ¥ T(11) ¥ T(00) - V{UD} ' V 1) - V{0-2]
——— — “_"v_"
1.0 0.1,
%) x I 1, 0 + B ¢ — @ +4q¢ — g+ 1
":-“'[1 = . '
k 2g1/2 (L) * 2¢3/2(q+ 1) (0.0)

'Vi0.0y@V (10

= 512(!4) has four simple poles that can be explained in terms of the
fusions Vi1 gy @ Viagy — Vi3 and Vi1 g @ Vo g — V(1) in the
direct- and cross-channels

............
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Bound stotes bootstrap

= Quantum spectrum of particles associated to the representations

Vo(6) = (a—1.0)| with mass | m, = psin(7a/2k)

M
N
)

= Clas.

')

)
LN

i $ —— —
al=T r Y,
L-F"\--'L-N-- et § —

(M

fu

v —
b —_——

I1C
o

Bound states of a2 and b correspond to simple poles at

#=ir(a+b)/2k and im—im|la— b|/2k
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. 513(9) = (l X 511(‘9“;-_:}) (.511(9_%) | l) ivw Vs o

51-;( ) has four simple poles that can be explained in terms of the
fusions Vi1 gy @ Viogn — Vi3 and Vi g @ Viog — Viig In the
direct- and cross-channels

------------
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_ VN Aa TA RS antl B T [_} i (_} TN
- V—:o.o} — (20 Y "(1.1) ¥ “(00) - V{D.D_‘r | V(l-l) ' V{0-2J
——’ \\——J

1.0 0.1
T (imy Il o) @A — g+l
uli) a0 e +Pay 22 (q+1) (09

S12(8) = (1 2 S511(f+ 5'—;)) (511(H —5%) € 1) !vm-.: -

= 513(6‘) has four simple poles that can be explained in terms of the

fusions Vi; g0 & Viog — V3o and Vi34 Vizay — Vi1 in the

direci- and cross-channels

++++++++++++
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Bound stotes bootstrap

= Quantum spectrum of particles associated to the representations

| V() =(a—1.0)| with mass | m; = pusin(ma/2k
|

—
P by -,-.r-..-...-..-..-._.-ll.-..-. crhiartriirm — S ———

— T = =T Ty 3 == S 2N
S T L - Liaaai al ST U LI LU - - W N

Bound states of a2 and b correspond to simple poles at

# =in(a+ b)/2k and im— im|a— b|/2k
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Bound stotess bootstrap

= Quantum spectrum of particles associated to the representations

Va(6) =(a—1.0)| with mass | m,; = usin(ma, 2k)‘

T 1

—_—

h
(¥h]
A

PRp——
=i ila

Ln

un
1

LN

pecLrum

-
o £ SR 0 -

h

o

SIC: XaCLl!

[

Bound states of 2 and b correspond to simple poles at

8 =inr(a+b)/2k and im—im|la— b|/2k
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= Quantum spectrum of particles associated to the representations

Va(#) =(a—1.0)| with mass | m, = usin(ma/2k)

— T he semiclassical spectrum is exact!
Bound states of 2 and b correspond to simple poles at
#—=in(a+b)/2k and im—im|la— b|/2k

* [ his meshes with the quantum group representation theory

Va(6r) @ Vo(8r) ={a+b—-2.0}={a+b—4.0}=---% {|a— b|.0}

— At i 61> = iw{a + b)/2k | the representation {3 + b — 2.0} becomes

reducible with a factor representation V... and ib(é’u) is only
non-vanishing on V..,

— AL | 612 = im —iwla— b|/2k | the representation {|a — b|. 0} becomes

reducible with a factor representation V|, 5, and S.;(61>) is only
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Bound stores hootstr=s

= Quantum spectrum of particles associated to the representations

Va(#) =(a—1.0)| with mass | m, = psin(ma/2k)

—— T he semiclassical spectrum is exact!

Bound states of 2 and b correspond to simple poles at
8 =in(a+ b)/2k and im— im|la— bl/2k

* T his meshes with the quantum group representation theory

Va(61) @ Vi(82) ={a+b—2.0}={a+b—4.0}=---= {|la—b].0}

— At | 61 = in{a + b)/2k | the representation {2 + b — 2.0} becomes

reducible with a factor representation V... and ib(b‘u] is only
non-vanishing on V..,

— At 612 = im —iwja— b|/2k | the representation {|a — b|. 0} becomes

reducible with a factor representation V|, g, and S.5(612) is only
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he relativistic SSSSG S-matrix

@ Particlesin  (a—1.0) @, (a—1.0)| representations of the

quantum symmetry group U, (psi(2]2)* x R?)

—~——

o S.5(0) = Xa(8) San(f) D gr SanlP)

= X,5(#) — supplies the simple poles on the physical strip
inh(Z + 7¢ |
)=t a) D1 E= 2k )
sinh(5 — 77) :

Xoo(0) =[a+b—1[a+b—3]---[Ja— b + 1]
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DOuUNna sigfes. J00TSiraD

he relativistic SSSSG S-matrix

@ Particlesin | (a—1.0) @54 (a—1.0)| representations of the

quantum symmetry group U, (psi(2/2)* x R?)

o S.6(8) = Xa6(8) Sa6(8) Dgr Sa6(8)

= X, 5(#) — supplies the simple poles on the physical strip
o2 =)
= smh(g—;) tx}—(x—1)x11) Ik—Iix}{Zk—x]}

Xoo(0) =[a+b—1]Ja+b—3]---[la— b +1]

Pirsa: 11080035
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Open questions

Open questions

B Complete the closure of the bootstrap

a Interpretation of all the singularities on the physical strip: bound
states, anomalous thresholds. etc
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Jpen questions

Upen questions

B Complete the closure of the bootstrap

@ Interpretation of all the singularities on the physical strip: bound
states, anomalous thresholds. etc
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Upen questions

B Complete the closure of the bootstrap

e Interpretation of all the singularities on the physical strip: bound
states, anomalous thresholds, etc

% Truncation of the spectrum: m, = pusin(7a/2k}), a=1..... k

= Requires a better understanding of the quantum group representations
for g=¢€™" a root of unity
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Jpen questions

Upen questions

B Complete the closure of the bootstrap

o Interpretation of all the singularities on the physical strip: bound
states, anomalous thresholds. etc

* Truncation of the spectrum: m; = usin(wa/2k), a=1..... k

= Requires a better understanding of the quantum group representations

for g =&™* a root of unity
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Jpen questions

Open questions

B Complete the closure of the bootstrap

o Interpretation of all the singularities on the physical strip: bound
states, anomalous thresholds. etc

% Truncation of the spectrum: m; = usin(7a/2k), a=1.....k

= Requires a better understanding of the quantum group representations

for g = &™* a root of unity

B Algebraic structure underlying the relativistic S-matrix

:-1—.-\.-“ -_—_.#1-1-;-#1-\- _:'f-—- —— — e
[__—_ elsSer yal leas—Matsumoto ¢¢]
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Open questions

B Complete the closure of the bootstrap

o Interpretation of all the singularities on the physical strip: bound
states, anomalous thresholds. etc

% Truncation of the spectrum: m,; = usin(7a/2k). a=1.....k

= Requires a better understanding of the quantum group representations

for g = €&™* a root of unity

B Algebraic structure underlying the relativistic S-matrix

:-u—. — s _.d‘--r-'-.-‘r- _:'u'f-u' — ~
[— Beisert—Gal leas—Matsumoto ll]

)]
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Open questons

Upen questions

B Complete the closure of the bootstrap

o Interpretation of all the singularities on the physical strip: bound
states, anomalous thresholds. etc

% Truncation of the spectrum: m, = usin(7a/2k), a=1..... k
= Requires a better understanding of the quantum group representations

imfk

for g=¢€"'" a root of unity

B Algebraic structure underlying the relativistic S-matrix

[— Beisert—Galleas—Matsumoto 11]
B Connection with semiclassical calculations
[— Hoare—Iwashita—Roiban—-Tseytlin C-E*-ll]
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Upen questions

B Complete the closure of the bootstrap

o Interpretation of all the singularities on the physical strip: bound
states, anomalous thresholds, etc

* Truncation of the spectrum: m; = usin(7a/2k), a=1..... k

= Requires a better understanding of the quantum group representations

for g—=¢&™* a root of unity

B Algebraic structure underlying the relativistic S-matrix
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Jpen questions

How can a relativistic S-matrix be equivalent to 3

non-relativistic one?
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Jpen quesiions

How can a relativistic S-matrix be equivalent to a

non-relativistic one?

B Non-relativistic interpolating S-matrix

—-1

Slg. gl

(non-relativistic) string/magnon S-matrix

= . (relativistic) SSSSG S-matrix
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Jpen questions

How can a relativistic S-matrix be equivalent to a

non-relativistic one?

B Non-relativistic interpolating S-matrix

g—1

Sle. 4]

(non-relativistic) string/magnon S-matrix

=™ . (relativistic) SSSSG S-matrix
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Jpen questions

How can a relativistic S-matrix be equivalent to 3

non-relativistic one?

B Non-relativistic interpolating S-matrix

g—1

Sle. 4]

(non-relativistic) string/magnon S-matrix

=™ . (relativistic) SSSSG S-matrix

== Quantum version of the intepolating classical Poisson brackets

Pirsa: 11080035 Page 155/166



Jpen questions

How can a relativistic S-matrix be equivalent to 3

non-relativistic one?

B Non-relativistic interpolating S-matrix

g—1

Sle. 4]

(non-relativistic) string/magnon S-matrix

=™ . (relativistic) SSSSG S-matrix

== Quantum version of the intepolating classical Poisson brackets
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Jpen questions

How can a relativistic S-matrix be equivalent to a

non-relativistic one?

B Non-relativistic interpolating S-matrix

g—1

Sle. 4l

(non-relativistic) string/magnon S-matrix

=™ . (relativistic) SSSSG S-matrix

== Quantum version of the intepolating classical Poisson brackets

#* Requires the construction of the interpolating dressing function
[Eoare-Hollowood-JLM in progress]
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Jpen questions

How can a relativistic S-matrix be equivalent to a

non-relativistic one?

B Non-relativistic interpolating S-matrix

g—1

Sle. 4]

(non-relativistic) string/magnon S-matrix

=™ _ (relativistic) SSSSG S-matrix

== Quantum version of the intepolating classical Poisson brackets

#* Requires the construction of the interpolating dressing function
[Foare-Hollowood—JLM in progress)
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Bound st=res hootstr=s

= Quantum spectrum of particles associated to the representations

Va(#) =(a—1.0)| with mass | m, = usin(ma/2k)

—— T he semiclassical spectrum is exact!
Bound states of a2 and b correspond to simple poles at

# =in(a+b)/2k and im— iwla— b|/2k

* T his meshes with the quantum group representation theory

Va(61) @ Vi(8:) ={a+b—2.0}={a+b—4.0}=---& {|la— b|.0}

— At | 6y = in{a+ b)/2k| the representation {2 + b — 2.0} becomes

reducible with a factor representation V... and §5b(6‘u) is only
non-vanishing on V..,

— At ‘ 612 = im —iwla— b|/2k | the representation {|a — b|. 0} becomes

reducible with a factor representation V|, 5, and S.5(612) is only
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Bound stotess bootstrap

15 Res S5_p(ius,) is @ weighted sum of “projectors’

V. =g; VEJ. VE} — irreducible representations of U, (sl(2) "2)

[ : - P T——-
Swl®)~ 3 . P =P P
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he magnon and the soliton representations

@ Magnon representation:

e
g—1| {ork—x) = | —=¢€*
| X_
p = world-sheet momentum g = string tension

I
wJ

(] — PK =[1/2]]

.

k
8 |

(p) = \/1+4g%sin*(p/2)

" Doliton representation:

- L e i ———

E—x]|=

- a2 72 . ™
. EC.q —PK = |1 2':; becomes a relativistic mass-shell condjtion

e



* m, = usin(5;) can be understood as the BPS condition for the

short representation of | U, (psu(2/2) x R?)| of dimension 4a x 4a

with:q:eﬁk;

% The semiclassical spectrum consists of a tower of massive states in
short symmetric representations, just like the magnon bound states of
the superstring world sheet theory......

but in the SSSG theory the tower is truncated by k, the level of the
WZW term.___.
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Solitons

B Continuous spectrum of relativistic non-abelian Q-ball kinks with
bosonic and fermionic degrees of freedom

_ 2k
labelled by £ < (0.7/2) — |m. = —sing

SU(212) SU(22)
u@21) — U(21) |

Non-trivial moduli space |90 =
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Hidden symmetries

@ Infinite (classical) symmetry algebra

- = Ker(adA) N L(psu(2.2/4). o)

WY A

Hellaowood—JLM

il =
TETre—1 SayT
R T e ¥ e il

5 [he elements of grade +1 (or Lorentz spin ==1/2) generate SUSY
transformations whose closure is the (exotic) NV — (8|8) superalgebra

s = (psu(2]2) = psu(22)) x (R=R) =5 >=s5 1 F59F5:7F5.0

— §.15° central elements corresponding to the components of p,
— s5.;: generators of SUSY transformations
— sqg. generators of global gauge transformations

= non-abelian R-symmetry group SU(2)**

5 s is a finite subalgebra of | L(p(su(2]|2) = su(2|2)).0) C i~ and the

Pirsa: 1108Q035 =

erivation | zd/dz| is the generator of Lorentz boosts
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The AdSs x 57 S555G theory

SSSSG Lagrangian

L = Lowzw|G/ H] — %STr (/\" Sy ) s )

+ STr (w4 [N D_vi] — o [N Dywr | — 2097 0 o)

@ = G=2¢€" and AL — bosonic fields
U €1, U_ € f3 —— fermionic fields

@ The potential is fixed by A = {5 (constant)

1= Gauge symmetry group | H = SU(2)** C G [H.A] =0

=5 [ he coupling constant is the level of the WZW term = k
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£ = Lonzw|G/H] — £STr (A~ —IA- )

+,;f‘—_ STr (3_;[/\. D v ]—v_ [ND. o |—2¢4 _lf-'—“-) !
2n |

@ = G=2¢€" and AL — bosonic fields
. €1, U_ € f3 —— fermionic fields

@ The potential is fixed by A = {5 (constant)

15" Gauge symmetry group | H = SU(2) oot = 4 JH. Al —@

== [ he coupling constant is the level of the WZW term = k
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