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Thermodynamic Bethe Ansatz

infinite time periodicity
Path integral Z ~ e REs(L)
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TBA equations

Sciving
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TBA equations

“‘ i ~ Equations of the form
Yas(u) =3 . e log (1 + Yx o (u)~
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@ Extra assumption : Excited states obey the same

R

equations.
Each state correspond to a different solution of Y-system,

charactenized by its zeroes and poles Rk



TBA equations

J:: - Equations of the form
Youdal =) .00 ' xlog (1 + Yy o(u)?)

= i i =
+0s 0 L log = + (Source lerms
X 1 1

x=3 = x(u+al) =

|t
-
(i H
V¥
4|
|
]
-
~ E
I
=
o | !
W
(]
S —

e Yos(u)isafunctionof a.scZand uin R

L
@ Extra assumption : Excited states obey the same

equations.
Each state correspond to a different solution of Y-system,

characterized by its zeroes and poles e e



Y-system and Hirota equation

Sciving -
\dS /CFT Y-System EQUE'[JGF‘I

The TBA integral equation imply the ‘local’ relation
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Y-system and Hirota equation

Y-system Equation

The TBA integral equation imply the ‘local’ relation
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Y-system and Hirota equation

Salving :
\dS/CFT Y-system Equation

The TBA integral equation imply the ‘local’ relation
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Y-system and Hirota equation

The TBA integral equation imply the ‘local’ relation
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Y-system and Hirota equation

Y-system Equation

The TBA integral equation imply the ‘local’ relation
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TBA equations

Solving

el ~ Equations of the form
Yas(u) =3, o K57 ~log (1 + Yo (u)?)
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Q-functions solve Hirota equation

Hirota equation is solved by determinants of Q-functions :
eg. for SU(4),
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Q-functions solve Hirota equation
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Q-functions solve Hirota equation

Hirota equation is solved by determinants of Q-functions :
eg. for SU(4),
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Q-functions solve Hirota equation

e Hirota equation is solved by determinants of Q-functions :
eg. for SU(4),
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Q-functions solve Hirota equation

] Hirota equation is solved by determinants of Q-functions :
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Q-functions solve Hirota equation

= Hirota equation is solved by determinants of Q-functions :
eg. for SU(4),
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Classical limit

In the classical limit, g — o>, and T, — T,(u/g).
= shifts by =5 in Hirota equation can be neglected.
o = T,s(u) = xas (2 u)) where Q € U(2,2/4).

s
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Classical limit

In the classical limit, g — >, and T, — T,(u/g).
= shifts by =5 in Hirota equation can be neglected.
=" = T.s(u) = xa.s (2 u)) where Q € U(2,2)4).
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Classical limit

In the classical limit, g — >, and T, — T,.(u/g).
— shifts by =5 in Hirota equation can be neglected.
= = Tis(u) = xas (2 u)) where Q € U(2,2/4).

@ Actually, the PSU(2.2/4) symmetry imposes more constraints :

@ det =1
@ invariance under 3 7.4 transformation

That gives extra symmetries of the cl'll@ractera (generalizing to
symmetries of T-functions at finite size).
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Classical limit

In the classical limit, g — >, and T, — T,(u/g).

— shifts by =5 in Hirota equation can be neglected.
= T.s(u) = xas (2u)) where Q € U(2.2/4).

@ Actually, the PSU(2.2/4) symmetry imposes more constraints :

@ det =1
@ invariance under a2 74 transformation

That gives extra symmetries of the cl'taractera (generalizing to
. = . P .
symmetries of T-functions at finite size).
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{Ai} = {1/}
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L4 symmetry

Sciving
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:4- sym metry

symmetry of the classical limit
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L4 symmetry
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Classical limit

In the classical limit, g — oc, and 7,5 — T.s(u/g).
— shifts by =5 in Hirota equation can be neglected.
= Tis(u) = xas(2u)) where Q € U(2,2/4).

@ Actually, the PSU(2.2/4) symmetry imposes more constraints :

e det=1

@ invariance under a 74 transformation

That gives extra symmetries of the characters (generalizing to
. S , ey g
symmetries of T-functions at finite size).
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Classical limit

In the classical limit, g — oc, and T, — T,.(u/g).
shifts by =5 in Hirota equation can be neglected.

= T.s(u) = xas (Qu)) where Q € U(2.2/4).

|

@ Actually, the PSU(2.2/4) symmetry imposes more constraints :

@ det — 1
@ invariance under a3 Z4 transformation

That gives extra symmetries of the characters (generalizing to
symmetries of T-functions at finite size).
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Z.4 symmetry
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Ly symmetry

Z4 symmetry of the classical limit
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Z.4 symmetry

L4 symmetry of the classical limit

Q-—C Y YH)'C
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Quantum case
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L4 symmetry
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Example of the rnight Strip

Solving
\dS /CFT

L9 |

Y -Sysi&m

For instance, in a real gauge where g1 = 1,

nmetries ?_l-'j e —C-;\"_}(U) - CJ’_"(U)
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Example of the rnight Strip

Sciving
\dS/CFT
Y -system
For instance, in a real gauge where g1 = 1,
nMmetres TI—:} = _az(u) o qj(u)

@ Hence g2(u) = —iu +
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Example of the right Strip

civing
\dS/CFT
system
For instance, in a real gauge where g1 = 1,
i ho=—-q(u) — q(u)

Page 80/96



Z.4 symmetry

=i
SCIVINE

\dS/CFT
Y -System
Z4 symmetry of the classical limit
Q—CHaY)'c
nimetre

i} ={1/);}

Page 81/96



Classical limit

In the classical limit, g — o>, and T, — T,(u/g).
shifts by +5 in Hirota equation can be neglected.

= Tis(u) = xas(2u)) where Q € U(2.2..4).

|

@ Actually, the PSU(2.2/4) symmetry imposes more constraints :

@ det =1
@ invariance under a3 4 transformation

That gives extra symmetries of the cl't@ractErS (generalizing to
. ; ; oo =
symmetries of [-functions at finite size).
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Classical limit

In the classical limit, g — o0, and T, — T,(u/g).
= shifts by + .", in Hirota equation can be neglected.
i = A \&;(Q(u))whereQEU(Z.Zd-).

@ Actually, the PSU(2.2/4) symmetry imposes more constraints :

@ det =1
@ invariance under a3 74 transformation

That gives extra symmetries of the criaractera (generalizing to
symmetries of T-functions at finite EIZE]
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Example of the nght Strip

For instance, in a real gauge where g1 = 1,
Ti0 = —q(u) — q(u)

, 2 22 p(
@ Hence qz(uJ SR 3 1,%—_ ..’_?g Lt—ﬁj

@ generalizable to all T-functions [}
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Conclusion

\dS, CET @ A better understanding of Y-system
@ analytic properties
@ new symmetries

& Finite set of NLIEs
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Conclusion

\dS/CFT @ A better understanding of Y-system
@ analytic properties

@ new symmetries

o Finite set of NLIEs
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Conclusion

\dS/CET @ A better understanding of Y-system
= analytic properties

new symmetries

Finite set of NLIEs
Mo T = 2

Exact Bethe equations arise as absence of poles of
T-functions

¢ ¢ ¢ w
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Conclusion

\aS,/CFT @ A better understanding of Y-system
F-systamm @ analytic properties
@ new symmetries
» Finite set of NLIEs
? r*!Og T::-_C: — :-f
iz @ Exact Bethe equations arise as absence of poles of

T-functions
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Conclusion

\dS/CFT @ A better understanding of Y-system
g o analytic properties

new symmetries

Finite set of NLIEs

3
u—C  JF

- *”Og Too n .

@ Exact Bethe equations arise as absence of poles of

MIMELrees

T-functions

@ to be continued

@ currently restricted to symmetric slo “sector’ states
j numeric efficiency
| best FINLIE formulation
application to other Y-systems ?
BFKL
strong coupling construction of T (? T = (tracef2))

are to be studied

L 3

¢ & & &

weak coupling interpretation of T
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Conclusion

4S/CFT @ A better understanding of Y-system
= @ analytic properties

@ new symmetries

Finite set of NLIEs
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@ Exact Bethe equations arise as absence of poles of

T-functions

@ to be continued

@ currently restricted to symmetric s> “sector’ states
- f ?ullnr*lii‘:_-_tlﬂi(;irjrlf.'ﬁ' |

| best FINLIE :u:‘uminr:uuh_
@ application to other Y-systems ?
¢ BFKL
@ strong coupling construction of T (? T = (traceQl))
@ weak coupling interpretation of T

are to be studied
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Conclusion

&S/ CFT @ A better understanding of Y-system
@ analytic properties

@ new symmetries

o Finite set of NLIEs

- f"iOi T;'I'* — 2=
Thank you |
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@ currently restricted to symmetric sl; “sector’ states
f numeric efficiency
[ best FINLIE :’:rrum[;triuut}
application to other Y-systems ?
BFKL
strong coupling construction of T (? T = (trace(l))

> are to be studied
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weak coupling interpretation of T
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Conclusion

Sciving

\dS/CFT @ A better understanding of Y-system

@ analytic properties
@ new symmetries

@ Finite set of NLIEs
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@ currently restricted to symmetric sl; “sector’ states
f numeric efficiency

L best FINLIE formulation p
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are to be studied

@ application to other Y-systems ?

» BFKL

o strong coupling construction of T (? T = (tracef2))
@ weak coupling interpretation of T
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Example of the right Strip

Sclving
\dS/CFT
em
For instance, in a real gauge where g1 = 1,
NimeLries TI—-:} = _ar—}-(u) o qﬁ(U)

1 ’-Eg plv)
2ixc J—-2g v—u

@ generalizable to all T-functions [}

@ Hence qo(u) = —iu +
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Example of the nght Strip

JICIVINE
\dS/CFT
-sysTem
For instance, in a real gauge where g1 = 1,
nmetnes TL:]' A _Ef'l(u) o qz(U)

1 28 p(v)
I

2ix J—-2g v—u

@ generalizable to all T-functions [}

@ Hence qo(u) = —iu +
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Example of the nght Strip

For instance, in a real gauge where g1 = 1,

nmetries T_'E_:} — _,a:(u) — C]j(u)
@ Hence Q‘g(u) — —ju + 3,%__ ’fig :l_«':

@ generalizable to all T-functions [}

Page 96/96



