Title: Baxter Q-Operators for Integrable Spin Chains

Date: Aug 09, 2011 10:00 AM

URL: http://pirsa.org/11080028

Abstract:

Baxter Q-operators for integrable spin chains

Tomasz Łukowski

Institut für Mathematik und Institut für Physik, Humboldt Universität

Exact Results in Gauge/Gravity Dualities
Perimeter Institute.

09.08.2011

arXiv:1005.3261 V. Bazhanov, TL, C. Meneghelli, M. Staudacher

arXiv:1010.3699 V. Bazhanov, R. Frassek, TL, C. Meneghelli, M. Staudacher

arXiv:1012.6021 R. Frassek, TL, C. Meneghelli, M. Staudacher

work in progress R. Frassek, TL, C. Meneghelli, M. Staudacher, Y. Xu

Pirsa: 11080028 Page 2/315

Motivation

Pirsa: 11080028 Page 3/315

Motivation

[D.Bombardielli, D. Fioravanti, R. Tateo '09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira '09; G.Arutyunov, S.Frolov '09]

- Still many questions and unsolved problems
- We need to find analytic properties of Y-functions

Let us focus on some simpler integrable models

Pirsa: 11080028 Page 5/315

Motivation

[D.Bombardielli, D. Fioravanti, R. Tateo '09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira '09; G.Arutyunov, S.Frolov '09]

- Still many questions and unsolved problems
- We need to find analytic properties of Y-functions
- "In integrable models it is frequently much easier to guess the exact

Pirsa: 11080028 Ition than to prove and understand it!"

Page 6/315

Let us focus on some simpler integrable models

Pirsa: 11080028 Page 7/315

- Let us focus on some simpler integrable models
- Problem of finding one-loop anomalous dimensions is mapped to a diagonalization of the psu(2, 2|4)-invariant spin chain

 Minahan, Zarembo;

Beisert, Staudacher

Pirsa: 11080028 Page 8/315

- Let us focus on some simpler integrable models
- Problem of finding one-loop anomalous dimensions is mapped to a diagonalization of the psu(2, 2|4)-invariant spin chain

 Minahan, Zarembo;

Beisert, Staudacher

• More general: diagonalizing integrable spin chains with a given representation of $gl(n_1, n_2|m)$ in the quantum space

Pirsa: 11080028 Page 9/315

- Let us focus on some simpler integrable models
- Problem of finding one-loop anomalous dimensions is mapped to a diagonalization of the psu(2, 2|4)-invariant spin chain

 Minahan, Zarembox

Beisert, Staudacher)

- More general: diagonalizing integrable spin chains with a given representation of $\mathfrak{gl}(n_1, n_2|m)$ in the quantum space
- In order to do it we will construct so called Baxter Q-operators all
 Y-functions are functions of eigenvalues of Q-operators

Pirsa: 11080028 Page 10/315

$$V^{\otimes L}$$
 = $V^{\otimes L}$ + periodic boundary conditions

Hamiltonian

$$H: V^L \to V^L$$

- Let us focus on some simpler integrable models
- Problem of finding one-loop anomalous dimensions is mapped to a diagonalization of the psu(2, 2|4)-invariant spin chain

 Minahan, Zarembo;

Beisert, Staudacher]

- More general: diagonalizing integrable spin chains with a given representation of $\mathfrak{gl}(n_1, n_2|m)$ in the quantum space
- In order to do it we will construct so called Baxter Q-operators all
 Y-functions are functions of eigenvalues of Q-operators
- Other approaches:
 - Derkachov, Korchemsky, Manashov, . . .
 - Kazakov, Laurent, Tsuboi, Vieira

Pirsa: 11080028 Page 13/315

Hamiltonian

$$H: V^L \to V^L$$

Nearest neighbor spin chain

$$H = \sum_{i=1}^{L} \mathcal{H}_{i,i+1}, \qquad \mathcal{H}_{i,i+1} : V^2 \to V^2$$

- We want to diagonalize it
 - directly

$$V^{\otimes L}$$
 = $V^{\otimes L}$ + periodic boundary conditions

Hamiltonian

$$H: V^L \to V^L$$

Nearest neighbor spin chain

$$H = \sum_{i=1}^{L} \mathcal{H}_{i,i+1}, \qquad \mathcal{H}_{i,i+1} : V^2 \to V^2$$

- We want to diagonalize it
 - directly

Hamiltonian

$$H: V^L \to V^L$$

Nearest neighbor spin chain

$$H = \sum_{i=1}^{L} \mathcal{H}_{i,i+1}, \qquad \mathcal{H}_{i,i+1} : V^2 \to V^2$$

- We want to diagonalize it
 - directly

Hamiltonian

$$H: V^L \rightarrow V^L$$

Nearest neighbor spin chain

$$H = \sum_{i=1}^{L} \mathcal{H}_{i,i+1}, \qquad \mathcal{H}_{i,i+1} : V^2 \to V^2$$

- We want to diagonalize it
 - directly
 - with use of Bethe equations efficient method to find them is the

Quantum Inverse Scattering Method

Page 17/315

Pirsa: 11080028 Page 18/315

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Pirsa: 11080028 Page 19/315

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pirsa: 11080028 Page 20/315

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pirsa: 11080028 Inster matrices diagonalized with use of the Algebraic Bethe Ange 21/315 Z

Bethe equations (for the fundamental rep of $\mathfrak{sl}(n)$)

$$\begin{pmatrix}
\frac{z_{1,k} + \frac{1}{2}}{z_{1,k} - \frac{1}{2}}
\end{pmatrix}^{L} = \prod_{j \neq k} \frac{z_{1,k} - z_{1,j} + 1}{z_{1,k} - z_{1,j} - 1} \prod_{j} \frac{z_{1,k} - z_{2,j} + \frac{1}{2}}{z_{1,k} - z_{2,j} + \frac{1}{2}}$$

$$1 = \prod_{j} \frac{z_{2,k} - z_{1,j} - \frac{1}{2}}{z_{2,k} - z_{1,j} + \frac{1}{2}} \prod_{j \neq k} \frac{z_{2,k} - z_{2,j} + 1}{z_{2,k} - z_{2,j} - 1} \prod_{j} \frac{z_{2,k} - z_{3,j} - \frac{1}{2}}{z_{2,k} - z_{3,j} + \frac{1}{2}}$$

$$1 = \prod_{j} \frac{z_{n-1,k} - z_{n-2,j} - \frac{1}{2}}{z_{n-1,k} - z_{n-1,j} + 1} \prod_{j \neq k} \frac{z_{n-1,k} - z_{n-1,j} + 1}{z_{n-1,k} - z_{n-1,j} - 1}$$

Pirsa: 11080028

 $E = \sum_{i=1}^{n} \frac{1}{\frac{1}{4} - z_{1-k}^2}$

ABA works best if we have a reference state

Pirsa: 11080028 Page 23/315

- ABA works best if we have a reference state
- For XYZ model Bethe equations were found by Baxter with use of so called Q-operators – operators which eigenvalues are polynomials with roots being Bethe roots

Pirsa: 11080028 Page 24/315

- ABA works best if we have a reference state.
- For XYZ model Bethe equations were found by Baxter with use of so called **Q-operators** – operators which eigenvalues are polynomials with roots being Bethe roots

Baxter Q-operators – the most powerful tool in integrable systems

Pirsa: 11080028 Page 25/315

- ABA works best if we have a reference state.
- For XYZ model Bethe equations were found by Baxter with use of so called **Q-operators** – operators which eigenvalues are polynomials with roots being Bethe roots

Baxter Q-operators – the most powerful tool in integrable systems

Only recently fully understood for XXX_{1/2} Heisenberg spin chain

[V. Bazhanov, TL, C. Menegheili, M. Staudacher]

Pirsa: 11080028 Page 26/315

- ABA works best if we have a reference state
- For XYZ model Bethe equations were found by Baxter with use of so called Q-operators – operators which eigenvalues are polynomials with roots being Bethe roots

Baxter Q-operators – the most powerful tool in integrable systems

Only recently fully understood for XXX_{1/2} Heisenberg spin chain

[V. Bazhanov, TL, C. Meneghelli, M. Staudacher]

We want to construct Baxter operators in the QISM framework

Pirsa: 11080028 Page 27/315

- ABA works best if we have a reference state
- For XYZ model Bethe equations were found by Baxter with use of so called Q-operators – operators which eigenvalues are polynomials with roots being Bethe roots

Baxter Q-operators – the most powerful tool in integrable systems

Only recently fully understood for XXX_{1/2} Heisenberg spin chain

[V. Bazhanov, TL, C. Menegheili, M. Staudacher]

We want to construct Baxter operators in the QISM framework

Pirsa: 11080028 Page 28/315

- ABA works best if we have a reference state
- For XYZ model Bethe equations were found by Baxter with use of so called Q-operators – operators which eigenvalues are polynomials with roots being Bethe roots

Baxter Q-operators – the most powerful tool in integrable systems

Only recently fully understood for XXX_{1/2} Heisenberg spin chain

[V. Bazhanov, TL, C. Meneghelli, M. Staudacher]

We want to construct Baxter operators in the QISM framework

Pirsa: 11080028 Page 29/315

- ABA works best if we have a reference state
- For XYZ model Bethe equations were found by Baxter with use of so called Q-operators – operators which eigenvalues are polynomials with roots being Bethe roots

Baxter Q-operators – the most powerful tool in integrable systems

Only recently fully understood for XXX_{1/2} Heisenberg spin chain

[V. Bazhanov, TL, C. Menegheili, M. Staudacher]

We want to construct Baxter operators in the QISM framework

Pirsa: 11080028 Page 30/315

- ABA works best if we have a reference state
- For XYZ model Bethe equations were found by Baxter with use of so called Q-operators – operators which eigenvalues are polynomials with roots being Bethe roots

Baxter Q-operators – the most powerful tool in integrable systems

Only recently fully understood for XXX_{1/2} Heisenberg spin chain

[V. Bazhanov, TL, C. Menegheili, M. Staudacher]

We want to construct Baxter operators in the QISM framework

Pirsa: 11080028 Page 31/315

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

Pirsa: 11080028 Page 32/315

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

 YBE is a defining relation for Yangian – every solution of the YBE gives a representation of Yangian

Pirsa: 11080028 Page 33/315

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

- YBE is a defining relation for Yangian every solution of the YBE gives a representation of Yangian
- Example $\square \otimes \square \otimes \square$

$$R_{12}(z) = zI + P_{12}$$

Pirsa: 11080028 Page 34/315

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

- YBE is a defining relation for Yangian every solution of the YBE gives a representation of Yangian
- Example $\square \otimes \square \otimes \square$

$$R_{12}(z) = zI + P_{12}$$

Pirsa: 11080028 Page 35/315

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

- YBE is a defining relation for Yangian every solution of the YBE gives a representation of Yangian
- Example $\square \otimes \square \otimes \square$

$$R_{12}(z) = zI + P_{12}$$

Pirsa: 11080028 Page 36/315

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

- YBE is a defining relation for Yangian every solution of the YBE gives a representation of Yangian
- Example $\square \otimes \square \otimes \square$

$$R_{12}(z) = zI + P_{12}$$

Pirsa: 11080028 Page 37/315

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

- YBE is a defining relation for Yangian every solution of the YBE gives a representation of Yangian
- Example $\square \otimes \square \otimes \square$

$$R_{12}(z) = zI + P_{12}$$

Pirsa: 11080028 Page 38/315

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

- YBE is a defining relation for Yangian every solution of the YBE gives a representation of Yangian
- Example $\square \otimes \square \otimes \square$

$$R_{12}(z) = zI + P_{12}$$

Pirsa: 11080028 Page 39/315

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

- YBE is a defining relation for Yangian every solution of the YBE gives a representation of Yangian
- Example $\square \otimes \square \otimes \square$

$$R_{12}(z) = zI + P_{12}$$

Pirsa: 11080028 Page 40/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

Pirsa: 11080028 Page 41/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

• W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation

Pirsa: 11080028 Page 42/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation

Pirsa: 11080028 Page 43/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

• W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation

Pirsa: 11080028 Page 44/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

• W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation

Pirsa: 11080028 Page 45/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

• W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation

Pirsa: 11080028 Page 46/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation

Pirsa: 11080028 Page 47/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

• W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation

Pirsa: 11080028 Page 48/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation

Pirsa: 11080028 Page 49/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

• W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation

Pirsa: 11080028 Page 50/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

• W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation

Pirsa: 11080028 Page 51/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation

Pirsa: 11080028 Page 52/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices

Pirsa: 11080028 Page 59/31:

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p) $(p \le n)$ representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices

Pirsa: 11080028 Page 61/31

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices

Pirsa: 11080028 Page 62/31

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 63/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 64/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 65/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 66/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 67/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 68/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 69/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 70/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 73/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 74/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 75/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 76/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 77/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 78/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 80/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

Pirsa: 11080028 Page 81/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 82/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 83/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 84/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 85/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 86/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 87/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 88/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 89/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 90/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 91/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 92/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 93/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 94/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 95/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 96/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 97/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 98/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 99/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 101/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 102/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 104/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 105/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 106/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 108/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 110/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 111/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 114/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 125/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 126/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 131/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 134/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 135/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 137/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

Pirsa: 11080028 Page 140/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

• Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 142/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 143/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 144/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 145/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 146/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 147/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 148/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 149/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 150/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 151/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 152/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 153/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 154/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 155/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 156/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

irsa: 11080028 Page 157/

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 158/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 159/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 160/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 161/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 162/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 163/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Pirsa: 11080028

Page 164/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 165/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p) $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

fomasz Łukowski (Humboldt University)

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 167/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 168/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 169/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 170/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 171/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 172/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 173/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 174/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 175/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 176/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 177/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Pirsa: 11080028

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 179/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 180/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 181/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 182/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 183/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 184/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Pirsa: 11080028

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 186/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 187/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Pirsa: 11080028

Page 188/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 189/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 190/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 191/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Pirsa: 11080028

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 193/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 194/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 195/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 196/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 197/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

1080028 Page 198/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 199/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 200/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 201/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 202/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 203/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 204/315

Tomasz Łukowski (Humboldt University)

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 205/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

11080028 Page 206/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 207/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 208/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 209/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 210/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Pirsa: 11080028

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

11080028 Page 212/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any $\mathfrak{gl}(p)$ $(p \le n)$ representation and an **oscillator algebra** representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 213/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y)=R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 214/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 215/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 216/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 217/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 218/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 219/315

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Pirsa: 11080028

Yang-Baxter equation

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

 YBE is a defining relation for Yangian – every solution of the YBE gives a representation of Yangian

Pirsa: 11080028

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 222/315 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 223/215 TZ

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 224/315 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 225/315 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 229/315 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 227/315 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 228/215 Z

■ Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pirsa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 229/315 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 230/215 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 231/215 TZ

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 232/215 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 239/215 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 234/315 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 235/215 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 239/215 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 237/315 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Inster matrices diagonalized with use of the Algebraic Bethe Page 238/215 TZ

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 239/215 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pirsa: 11080028 INSTET matrices diagonalized with use of the Algebraic Bethe Page 240/315 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Inster matrices diagonalized with use of the Algebraic Bethe Page 241/315 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pirsa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 242/215 TZ

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 243/215 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 244/315 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 INSTET matrices diagonalized with use of the Algebraic Bethe Page 245/315 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 240/315 Z

• Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 247/315 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 248/315 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 249/315 Z

Transfer matrices (D is for convergence)

$$T_{aux}(z) = \operatorname{Tr}_{aux}\left[\mathbb{D} R_{aux}(z) \otimes R_{aux}(z) \otimes \ldots \otimes R_{aux}(z)\right]$$

 From the transfer matrix with auxiliary=quantum we can extract local conserved charges

$$U = T(z_{\star})$$

$$H = \frac{d}{dz} \log T(z) \big|_{z=z_{\star}}$$

Transfer matrices form a family of commuting operators

$$[T(z), T(z')] = [T(z), H] = 0$$

Pisa: 11080028 Insfer matrices diagonalized with use of the Algebraic Bethe Page 250/315 Z

Yang-Baxter equation

• We can find R-matrices from the Yang-Baxter equation

$$R_{12}(x-y)R_{13}(x)R_{23}(y) = R_{23}(y)R_{13}(x)R_{12}(x-y)$$

- YBE is a defining relation for Yangian every solution of the YBE gives a representation of Yangian
- Example $\square \otimes \square \otimes \square$

$$R_{12}(z) = zI + P_{12}$$

Pirsa: 11080028

• Take $\square \otimes \square \otimes W$ (W – any space) and try to find all linear solutions of

$$R_{\square,\square}(x-y)R_{\square,W}(x)R_{\square,W}(y) = R_{\square,W}(y)R_{\square,W}(x)R_{\square,\square}(x-y)$$

- W can be the representation space of the tensor product of any gl(p)
 (p ≤ n) representation and an oscillator algebra representation
- For p = n we have previous solutions transfer matrices
- For the singlet in $\mathfrak{gl}(p)$ we define $(R_{\square,W_p} \equiv R_p)$

$$Q_p(z) = \operatorname{Tr}_{aux} \left[\mathbb{D} R_p(z) \otimes R_p(z) \otimes \ldots \otimes R_p(z) \right]$$

- Belong to the same family of commuting operators: $[Q_p(z), T(z')] = 0$
- Even more Q-operators $-\binom{n}{p}$ different ways of fixing $\mathfrak{gl}(p)$ in $\mathfrak{gl}(n)$

Page 252/315

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

Pirsa: 11080028 Page 253/315

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p rac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p \ j=p+1,\ldots,n$$

Pirsa: 11080028 Page 254/315

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\square,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p rac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-ar{a}_j^i S_i^j}, \qquad i=1,\ldots,p \ j=p+1,\ldots,n$$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\square,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p rac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-ar{a}_j^i S_i^j}, \qquad egin{aligned} i=1,\ldots,p \ j=p+1,\ldots,n \end{aligned}$$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\square,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p rac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-ar{a}_j^i S_i^j}, \qquad egin{aligned} i=1,\ldots,p \ j=p+1,\ldots,n \end{aligned}$$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

Pirsa: 11080028 Page 261/315

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p rac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad egin{aligned} i=1,\ldots,p \ j=p+1,\ldots,n \end{aligned}$$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\square,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations
- What are the operators A_k ?

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p rac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p \ j=p+1,\ldots,n$$

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations
- What are the operators A_k ?

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p \ j=p+1,\ldots,n$$

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations
- What are the operators A_k ?

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations
- What are the operators A_k ?

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations
- What are the operators A_k ?

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations
- What are the operators A_k ?

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations
- What are the operators A_k ?

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations
- What are the operators A_k ?

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p \frac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p$$
 $j=p+1,\ldots,n$

This is a plug-in formula expressing R-matrices for Q-operators in terms of $\mathfrak{gl}(n)$ generators in the quantum space

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations

What are the operators A_k ?

- What are the A_k ?
 - a priori, complicated functions of Casimir operators

$$c_k = S_{i_2}^{i_1} S_{i_3}^{i_2} \dots S_{i_1}^{i_k}$$

given by

$$c_i = \sum_{k=1}^{p} \prod_{j \neq k} \left(1 - \frac{1}{A_k - A_j} \right) A_k^i$$

Pirsa: 11080028 Page 274/315

- What are the A_k ?
 - a priori, complicated functions of Casimir operators

$$c_k = S_{i_2}^{i_1} S_{i_3}^{i_2} \dots S_{i_1}^{i_k}$$

given by

$$c_{i} = \sum_{k=1}^{p} \prod_{j \neq k} \left(1 - \frac{1}{A_{k} - A_{j}} \right) A_{k}^{i}$$

• however, they are simply shifted gl(p) weights of the decomposition of the gl(n) representation with respect to the gl(p) subalgebra!

Pirsa: 11080028 Page 275/315

- What are the A_k ?
 - a priori, complicated functions of Casimir operators

$$c_k = S_{i_2}^{i_1} S_{i_3}^{i_2} \dots S_{i_1}^{i_k}$$

given by

$$c_{i} = \sum_{k=1}^{p} \prod_{j \neq k} \left(1 - \frac{1}{A_{k} - A_{j}} \right) A_{k}^{i}$$

• however, they are simply shifted gl(p) weights of the decomposition of the gl(n) representation with respect to the gl(p) subalgebra!

An example: $\mathfrak{gl}(2)$ in $\mathfrak{gl}(3)$

Pirsa: 11080028

0

3

0

1

 \oplus

2

Page 276/315

• Basis of spin $s = -\frac{1}{2}$ representation: $|M\rangle = (\bar{a})^M |0\rangle, a|0\rangle = 0$

- Basis of spin $s = -\frac{1}{2}$ representation: $|M\rangle = (\bar{a})^M |0\rangle, a|0\rangle = 0$
- For length L = 1 all Q-operators are diagonal

$$Q_{0}(z) = 1$$

$$Q_{1}(z,M) = \frac{(M+z-1/2)! \,_{2}F_{1}\left(-M,-M;-M-z+1/2;\frac{1}{1-e^{-i\phi}}\right)}{(z-1/2)!}$$

$$Q_{2}(z,M) = \frac{(-M+z-3/2)! \,_{2}F_{1}\left(M+1,M+1;M-z+3/2;\frac{1}{1-e^{i\phi}}\right)}{(z-1/2)!}$$

$$Q_{12}(z) \equiv T_{0}(z) = \frac{1}{z}$$

Pirsa: 11080028 Page 278/315

- Basis of spin $s = -\frac{1}{2}$ representation: $|M\rangle = (\bar{a})^M |0\rangle, a|0\rangle = 0$
- For length L = 1 all Q-operators are diagonal

$$Q_{0}(z) = 1$$

$$Q_{1}(z,M) = \frac{(M+z-1/2)! \,_{2}F_{1}\left(-M,-M;-M-z+1/2;\frac{1}{1-e^{-i\phi}}\right)}{(z-1/2)!}$$

$$Q_{2}(z,M) = \frac{(-M+z-3/2)! \,_{2}F_{1}\left(M+1,M+1;M-z+3/2;\frac{1}{1-e^{i\phi}}\right)}{(z-1/2)!}$$

$$Q_{12}(z) \equiv T_{0}(z) = \frac{1}{z}$$

• Q_1 is a polynomial in z for all $M \ge 0$

Pirsa: 11080028 Page 279/315

- Basis of spin $s = -\frac{1}{2}$ representation: $|M\rangle = (\bar{a})^M |0\rangle, a|0\rangle = 0$
- For length L = 1 all Q-operators are diagonal

$$Q_{0}(z) = 1$$

$$Q_{1}(z,M) = \frac{(M+z-1/2)! \,_{2}F_{1}\left(-M,-M;-M-z+1/2;\frac{1}{1-e^{-i\phi}}\right)}{(z-1/2)!}$$

$$Q_{2}(z,M) = \frac{(-M+z-3/2)! \,_{2}F_{1}\left(M+1,M+1;M-z+3/2;\frac{1}{1-e^{i\phi}}\right)}{(z-1/2)!}$$

$$Q_{12}(z) \equiv T_{0}(z) = \frac{1}{z}$$

- Q_1 is a polynomial in z for all $M \ge 0$
- \circ Q_2 is a very complicated meromorphic function with an infinite number

Analytic properties of Q-functions

• Hasse diagram for s > 0 – compact case

Pirsa: 11080028 Page 281/315

Analytic properties of Q-functions

• Hasse diagram for s > 0 – compact case

• Hasse diagram for s = -1/2 – non-compact case

Analytic properties of Q-functions

• Hasse diagram for s > 0 – compact case

• Hasse diagram for s = -1/2 – non-compact case

 For su(2, 2|4) we have 2⁸ different Q-operators with various analytic properties - some of them are polynomials and some are very

Pirsa: 11080028 Dicated meromorphic functions

Anybody seen the Hamiltonian?

• We know Bethe equations for all representations for all (super)algebras:

"The nested Bethe ansatz for 'all' closed spin chains" – Belliard, Ragoucy (2008)

Pirsa: 11080028 Page 284/315

- Basis of spin $s = -\frac{1}{2}$ representation: $|M\rangle = (\bar{a})^M |0\rangle, a|0\rangle = 0$
- For length L = 1 all Q-operators are diagonal

$$Q_{0}(z) = 1$$

$$Q_{1}(z,M) = \frac{(M+z-1/2)! \,_{2}F_{1}\left(-M,-M;-M-z+1/2;\frac{1}{1-e^{-i\phi}}\right)}{(z-1/2)!}$$

$$Q_{2}(z,M) = \frac{(-M+z-3/2)! \,_{2}F_{1}\left(M+1,M+1;M-z+3/2;\frac{1}{1-e^{i\phi}}\right)}{(z-1/2)!}$$

$$Q_{12}(z) \equiv T_{0}(z) = \frac{1}{z}$$

• Q_1 is a polynomial in z for all $M \ge 0$

Pirsa: 11080028 Page 285/315

- What are the A_k ?
 - a priori, complicated functions of Casimir operators

$$c_k = S_{i_2}^{i_1} S_{i_3}^{i_2} \dots S_{i_1}^{i_k}$$

given by

$$c_i = \sum_{k=1}^p \prod_{i \neq k} \left(1 - \frac{1}{A_k - A_j} \right) A_k^i$$

• however, they are simply shifted gl(p) weights of the decomposition of the gl(n) representation with respect to the gl(p) subalgebra!

An example: $\mathfrak{gl}(2)$ in $\mathfrak{gl}(3)$

Pirsa: 11080028

0

3

1

1

0

2

Page 286/3

• Solve YBE for $\square \otimes \square \otimes \Lambda$ – leads to $R_{\square,\Lambda}$ (quadratic)

$$R_{\Box,\Lambda}(z) = z e_{ii} + e_{ij} \otimes J_{ji}$$

• Solve YBE for $\square \otimes \Lambda \otimes W_p$ – leads to R_{Λ,W_p} (linear)

$$R_{\Lambda,W_p}(z) = e^{a_i^j S_j^i} \prod_{k=1}^p rac{\Gamma(z+A_k)}{\Gamma(z+p-k)} e^{-\overline{a}_j^i S_i^j}, \qquad i=1,\ldots,p \ j=p+1,\ldots,n$$

- Works for:
 - compact representations,
 - non-compact representations,
 - conjecture: works also for non-hws representations
- What are the operators A_k ?

- What are the A_k ?
 - a priori, complicated functions of Casimir operators

$$c_k = S_{i_2}^{i_1} S_{i_3}^{i_2} \dots S_{i_1}^{i_k}$$

given by

$$c_i = \sum_{k=1}^p \prod_{i \neq k} \left(1 - \frac{1}{A_k - A_i} \right) A_k^i$$

Spin chain in any representation (II)

- What are the A_k ?
 - a priori, complicated functions of Casimir operators

$$c_k = S_{i_2}^{i_1} S_{i_3}^{i_2} \dots S_{i_1}^{i_k}$$

given by

$$c_{i} = \sum_{k=1}^{p} \prod_{j \neq k} \left(1 - \frac{1}{A_{k} - A_{j}} \right) A_{k}^{i}$$

• however, they are simply shifted gl(p) weights of the decomposition of the gl(n) representation with respect to the gl(p) subalgebra!

Pirsa: 11080028 Page 289/315

Spin chain in any representation (II)

- What are the A_k ?
 - a priori, complicated functions of Casimir operators

$$c_k = S_{i_2}^{i_1} S_{i_3}^{i_2} \dots S_{i_1}^{i_k}$$

given by

$$c_i = \sum_{k=1}^p \prod_{j \neq k} \left(1 - \frac{1}{A_k - A_j} \right) A_k^i$$

Pirsa: 11080028

Example: spin $s = -\frac{1}{2}$ spin chain

• Basis of spin $s = -\frac{1}{2}$ representation: $|M\rangle = (\bar{a})^M |0\rangle, a|0\rangle = 0$

Pirsa: 11080028

Analytic properties of Q-functions

• Hasse diagram for s > 0 – compact case

• Hasse diagram for s = -1/2 – non-compact case

Pirsa: 11080028 Page 292/315

Anybody seen the Hamiltonian?

• We know Bethe equations for all representations for all (super)algebras:

"The nested Bethe ansatz for 'all' closed spin chains" - Belliard, Ragoucy (2008)

Pirsa: 11080028 Page 293/315

Anybody seen the Hamiltonian?

• We know Bethe equations for all representations for all (super)algebras:

,The nested Bethe ansatz for 'all' closed spin chains" - Belliard, Ragoucy (2008)

 But what are we diagonalizing? – the Hamiltonian is known only for some representations, e.g. gl(2):

$$\mathcal{H}_{i,i+1} = -2\psi(\mathbb{J}_{i,i+1} + 1) + const$$

Pirsa: 11080028 Page 294/315

Anybody seen the Hamiltonian?

- We know Bethe equations for all representations for all (super)algebras:
- "The nested Bethe ansatz for 'all' closed spin chains" Belliard, Ragoucy (2008)
 - But what are we diagonalizing? the Hamiltonian is known only for some representations, e.g. gl(2):

$$\mathcal{H}_{i,i+1} = -2\psi(\mathbb{J}_{i,i+1} + 1) + const$$

 Similar situation in all loop N = 4 SYM – it was conjectured that the solution is given by the Y-system/TBA equations....
 However, what is the Hamiltonian?

Pirsa: 11080028

• How to generalize the following formula from $\mathfrak{gl}(2)$ to $\mathfrak{gl}(n)$?

$$R_{\Lambda,\Lambda}(z) = \frac{\Gamma(z+\mathbb{J}+1)}{\Gamma(-z+\mathbb{J}+1)}$$

Pirsa: 11080028 Page 296/315

• How to generalize the following formula from $\mathfrak{gl}(2)$ to $\mathfrak{gl}(n)$?

$$R_{\Lambda,\Lambda}(z) = \frac{\Gamma(z+\mathbb{J}+1)}{\Gamma(-z+\mathbb{J}+1)}$$

Using the relation

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

Pirsa: 11080028 Page 297/315

• How to generalize the following formula from $\mathfrak{gl}(2)$ to $\mathfrak{gl}(n)$?

$$R_{\Lambda,\Lambda}(z) = \frac{\Gamma(z+\mathbb{J}+1)}{\Gamma(-z+\mathbb{J}+1)}$$

Using the relation

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

We end up with

$$R_{\Lambda,\Lambda}(z) = \frac{\Gamma(z+\mathbb{J}+1)\Gamma(z-\mathbb{J})}{\Gamma(z)\Gamma(z+1)} = \frac{\Gamma(z+A_1)\Gamma(z+A_2)}{\Gamma(z)\Gamma(z+1)}$$

Pirsa: 11080028 Page 298/315

• How to generalize the following formula from $\mathfrak{gl}(2)$ to $\mathfrak{gl}(n)$?

$$R_{\Lambda,\Lambda}(z) = \frac{\Gamma(z+\mathbb{J}+1)}{\Gamma(-z+\mathbb{J}+1)}$$

Using the relation

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

We end up with

$$R_{\Lambda,\Lambda}(z) = \frac{\Gamma(z + \mathbb{J} + 1)\Gamma(z - \mathbb{J})}{\Gamma(z)\Gamma(z + 1)} = \frac{\Gamma(z + A_1)\Gamma(z + A_2)}{\Gamma(z)\Gamma(z + 1)}$$

Conjecture:

$$R_{\Lambda,\Lambda}(z) = \prod_{k=1}^{n} \frac{\Gamma(z + A_k)}{\Gamma(z + n - k)}$$

where A_k are shifted weights of the decomposition of the tensor product

Pirsa: 11080028. WO copies of the representation Λ

$$R_{\Lambda,\Lambda}(z) = \prod_{k=1}^{n} \frac{\Gamma(z+A_k)}{\Gamma(z+n-k)}$$

Almost correct – works for the rectangular representations

Pirsa: 11080028 Page 300/315

• How to generalize the following formula from $\mathfrak{gl}(2)$ to $\mathfrak{gl}(n)$?

$$R_{\Lambda,\Lambda}(z) = \frac{\Gamma(z+\mathbb{J}+1)}{\Gamma(-z+\mathbb{J}+1)}$$

Using the relation

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

We end up with

$$R_{\Lambda,\Lambda}(z) = \frac{\Gamma(z+\mathbb{J}+1)\Gamma(z-\mathbb{J})}{\Gamma(z)\Gamma(z+1)} = \frac{\Gamma(z+A_1)\Gamma(z+A_2)}{\Gamma(z)\Gamma(z+1)}$$

Conjecture:

$$R_{\Lambda,\Lambda}(z) = \prod_{k=1}^{n} \frac{\Gamma(z + A_k)}{\Gamma(z + n - k)}$$

where A_k are shifted weights of the decomposition of the tensor product

Pirsa: 11080028. WO copies of the representation Λ

$$R_{\Lambda,\Lambda}(z) = \prod_{k=1}^{n} \frac{\Gamma(z + A_k)}{\Gamma(z + n - k)}$$

Almost correct – works for the rectangular representations

Pirsa: 11080028 Page 302/315

$$R_{\Lambda,\Lambda}(z) = \prod_{k=1}^{n} \frac{\Gamma(z + A_k)}{\Gamma(z + n - k)}$$

- Almost correct works for the rectangular representations
- For non-rectangular representations it gives only the 'symmetric part' of the R-matrix

Pirsa: 11080028 Page 303/315

$$R_{\Lambda,\Lambda}(z) = \prod_{k=1}^{n} \frac{\Gamma(z + A_k)}{\Gamma(z + n - k)}$$

- Almost correct works for the rectangular representations
- For non-rectangular representations it gives only the 'symmetric part' of the R-matrix
- This stems from the fact that for non-rectangular representations we have multiplicities in the decomposition of the tensor product

Pirsa: 11080028 Page 304/315

$$R_{\Lambda,\Lambda}(z) = \prod_{k=1}^{n} \frac{\Gamma(z+A_k)}{\Gamma(z+n-k)}$$

- Almost correct works for the rectangular representations
- For non-rectangular representations it gives only the 'symmetric part' of the R-matrix
- This stems from the fact that for non-rectangular representations we have multiplicities in the decomposition of the tensor product
- The resulting Hamiltonian takes the form

$$\mathcal{H} = \sum_{k=1}^{n} \psi(z_{\star} + A_{k}) + \operatorname{const}(n, z_{\star})$$

Pirsa: 11080028 Page 305/315

We found a universal (we believe) method for the construction of Baxter
 Q-operators through the QISM

Pirsa: 11080028 Page 306/315

- We found a universal (we believe) method for the construction of Baxter
 Q-operators through the QISM
- We opened a new chapter in the theory of representations of Yangians

Pirsa: 11080028 Page 307/315

- We found a universal (we believe) method for the construction of Baxter Q-operators through the QISM
- We opened a new chapter in the theory of representations of Yangians
- In particular, this method can be applied to the one-loop spin chain of the AdS/CFT correspondence

Page 308/315 Pirsa: 11080028

- We found a universal (we believe) method for the construction of Baxter
 Q-operators through the QISM
- We opened a new chapter in the theory of representations of Yangians
- In particular, this method can be applied to the one-loop spin chain of the AdS/CFT correspondence
- Next steps:
 - more loops not nearest-neighbor spin chains

Pirsa: 11080028 Page 309/315

- We found a universal (we believe) method for the construction of Baxter
 Q-operators through the QISM
- We opened a new chapter in the theory of representations of Yangians
- In particular, this method can be applied to the one-loop spin chain of the AdS/CFT correspondence
- Next steps:
 - more loops not nearest-neighbor spin chains
 - wrapping breakdown of the spin chain picture (?)

Pirsa: 11080028 Page 310/315

- We found a universal (we believe) method for the construction of Baxter
 Q-operators through the QISM
- We opened a new chapter in the theory of representations of Yangians
- In particular, this method can be applied to the one-loop spin chain of the AdS/CFT correspondence
- Next steps:
 - more loops not nearest-neighbor spin chains
 - wrapping breakdown of the spin chain picture (?)
 - understand analytic properties of all-loop Q-, T-, Y-functions

Pirsa: 11080028 Page 311/315

Thank you!

Pirsa: 11080028 Page 312/315

No Signal

VGA-1

Pirsa: 11080028 Page 313/31

No Signal VGA-1

Page 314/315

- We found a universal (we believe) method for the construction of Baxter
 Q-operators through the QISM
- We opened a new chapter in the theory of representations of Yangians
- In particular, this method can be applied to the one-loop spin chain of the AdS/CFT correspondence
- Next steps:
 - more loops not nearest-neighbor spin chains
 - wrapping breakdown of the spin chain picture (?)
 - understand analytic properties of all-loop Q-, T-, Y-functions

Pirsa: 11080028