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AdS/CFT correspondence
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of composite operators excitations
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Y-system, TBA eguations

¢ Stll many questions and unsoived problems

@ We need to find analytic properties of Y-functions
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@ [et us focus on some simpler mtegrable modeis

Pirsa: 11080028 Page 5/315

09082011




AdS/CFT correspondence
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Anomalous dimensions Energies of string
of composite operators excitations
Integrability

.

Y-system, TBA eguations

@ Sull many guestions and unsoived problems
@ We need to find analytic properties of Y-functions

@ _In integrable models it is frequently much easier to guess the exact
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09082011




@ Let us focus on some simpler mtegrable models
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@ Let us focus on some simpler mtegrable models

@ Problem of finding one-loop anomalous dimensions is mapped to a

diagonalization of the psu(2, 2/4)-invanant spin chain
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@ [et us focus on some simpler integrable models

@ Problem of finding one-loop anomalous dimensions is mapped to a

diagonalization of the psu(2. 2/4)-invariant spin chain

@ More general: diagonalizing integrabile spin chains with a given

representation of gi(n;. n; m) in the quantum space
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@ [ et us focus on some simpler mtegrable models

@ Problem of finding one-loop anomalous dimensions is mapped to a

diagonalization of the psu(2. 2|4)-invariant spin chain

@ More general: diagonalizing integrable spin chains with a given
representation of gi(7;. n; m) m the gquantum space
@ In order to do it we will construct so called Baxter Q-operators — all

Y-functions are functions of eigenvalues of Q-operators
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ntegrabie spin chains

[ -times

@ Hamiltoman
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@ [et us focus on some simpler mtegrable models

@ Problem of finding one-loop anomalous dimensions is mapped to a

diagonalization of the psu(2Z, 2/4)-invariant spin chain

@ More general: diagonalizing integrable spin chains with a given
representation of gi{n;. 7, m) mn the quantum space

@ In order to do it we will construct so called Baxter Q-operators — all
Y-functions are functions of eigenvalues of Q-operators

@ Other approaches:

@ Derkachov, Korchemsky. Manashov. . ..

a Kazakov. | auorent. Tsuboi. Vieira
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ntegrabile spin chains
= V®LL periodic boundary conditions
[ -times
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ntegrable spin chains

L-times

¢ Hammitoman H-vE_ yE

@ Nearest neighbor spin chamn
L
H — /; H.."__- ..H{_i_i . 1‘/’; —_— L’:;

@ We want to diagonalize it

s directly
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ntegrable spin chains

[ -times

@ Hamiltonian H - vt 5 yL

@ Nearest neighbor spin chain
L

H = T .Hf'.;——i_- ;’"{._ : VE — Vz

A

@ We want to diagonahize it

a directly
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ntegrable spin chains

@ Hamiltonian H: vt s yL

@ Nearest neighbor spin chain

& We want to diagonahize it

s directly
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ntegrabile spin chains

V®L L periodic boundary conditions

[L-ttmes

@ Hamiltonian H: VLt vyt

@ Nearest neighbor spin chain

@ We want to diagonalize it
s directly
a with use of Bethe equations — cificient method to find them 1s the

Quantum Inverse Scattering Method
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Juantum Inverse Scattering Method
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Quantum Inverse Scattering Method

e ——

HHHTE

—r — Bia, e A F % — -]
I--'Ii_l’."-h- — TI-J__-IH_I — R-.‘.IHI:'.M} o Riﬂl () '€ o o= &S R{lu_tin."'l-'i_

L

@ Transfer matrices (U is for convergence) . J_

@ From the transfer matrix with anxihary=quantum we can extract local

conserved charges
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Juantum Inverse Scattering Method

— - T —

' T 3 £ .r{’ '; 1‘1
@ Transfer matrices (D is for convergence) =1 “_L}‘LHLH E_(_ 3
i
| n
L aux(Z) = T | U Raue(Z) @ Raux(2) @ - .. @ Raux(Z)

@ From the transfer matrix with auxihary=gquantum we can extract local

conserved charges

& — Hz)
d

B — —laeTFir
d:: et z

@ Transfer matrices form a family of commuting operators

—

=

o). ) =[Eo, Bl —a
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Juantum Inverse Scattering Method

e ——

3 ! ) Ff’ ; ‘--,‘
@ Tramnsfer matrices (D is for convergence) 2 ‘H-H‘HH}%" 3
Tazux &) — Tl',ﬂﬂ : Raru: (2} & R{Iw: Z) . X R{ILL'{ \Z) |

@ From the transfer matrix with anxihiary=quantum we can extract local
conserved charges

Lr —— &a

o
H — i a T|
&z = =

@ Transfer matrices form a family of commuting operators

(o), T ) —[F() By —a

r@ubgRnsier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tommasz | okowsio (| Humboidt Unrversaty) 09082011




Bethe equations (for the fundamental rep of si(n))
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Bethe equations (II)

@ ABA works best if we have a reference state
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Bethe equations (II)

@ ABA works best if we have a reference state
@ For XYZ model Bethe equations were found by Baxter with use of so
called Q-eperators — operators which eigenvalues are polynomials with

roots being Bethe roots
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Sethe equations (1)

@ ABA works best if we have a reference state

@ For XYZ model Bethe eqguations were found by Baxter with use of so
called Q-eperators — operators which eigenvalues are polynomals with

roots being Bethe roots

Baxter Q-operators — the most powerful tool in integrable systems
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Bethe equations (II)

@ ABA works best if we have a reference state

@ For XYZ model Bethe equations were found by Baxter with use of so
called Q-operators — operators which cigenvalues are polynomials with

roots being Bethe roots

Baxter Q-operators — the most powerful tool in integrable systems

@ Only recently fully understood for XXX, /» Heisenberg spin chain
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Bethe equations (I1)

@ ABA works best if we have a reference state

For XYZ model Bethe equations were found by Baxter with use of so

called Q-operators — operators which eigenvalues are polynomals with

roots being Bethe roots

Baxter Q-operators — the most powerful tool in integrable systems

Only recently tully understood for XXX, /» Heisenberg spmn chamn

@ We want to construct Baxter operators m the QISM framework
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Bethe equations (II)

@ ABA works best if we have a reference state

@ For XYZ model Bethe equations were found by Baxter with use of so
called Q-operators — operators which cigenvalues are polynomials with

roots being Bethe roots

Baxter Q-operators — the most powerful tool in integrable systems

@ Only recently fully understood for XXX, /» Heisenberg spin chamn

@ We want to construct Baxter operators in the QISM framework
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Sethe equations (II)

@ ABA works best if we have a reference state

@ For XYZ model Bethe equations were found by Baxter with use of so
called Q-operators — operators which eigenvalues are polynomals with

roots being Bethe roots

Baxter Q-operators — the most powerful tool in integrable systems

@ Only recently fully understood for XXX, /» Heisenberg spin chain
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Bethe equations (II)

@ ABA works best if we have a reference state

@ For XYZ model Bethe equations were found by Baxter with use of so
called Q-operators — operators which eigenvalues are polynomals with

roots being Bethe roots

Baxter Q-operators — the most powerful tool mn integrabie systems

@ Only recently fully understood for XXX, /» Heisenberg spin chain

@ We want to construct Baxter operators in the QISM framework
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Bethe equations (I1)

& ABA works best if we have a reference state

@ For XYZ model Bethe equations were found by Baxter with use of so
called Q-eperators — operators which eigenvalues are polynomials with

roots being Bethe roots

Baxter Q-operators — the most powerful tool in integrabie systems

@ Only recently fully understood for XXX, /» Heisenberg spin chain

@ We want to construct Baxter operators i the QISM framework
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Yang-Baxter equation

@ We can find R-matrices from the Yang-Baxter equation

Riz(x — Vv IRi3{x)Rx3({ V)

1
=
d
v
)y

NRz(x)Riz(x — y)
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Yang-Baxter equation

@ We can find R-matrices from the Yang-Baxter equation

Ri2(x —y)R13(x)Rx3(y) = R3(y)R13(x)R12(x — y)

@ YBE is a defining relation for Yangian — every solution of the YBE

gives a representation of Yangian
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@ We can find R-matrices from the Yang-Baxter eguation

(K

Riz2(x —y)Ri3(x)R3(y) = Ry3(y)Ri3(x)Ri2(x —y)

@ YBE is a defining relation for Yangian — every solution of the YBE
gives a representation of Yangian

@ Example [ QIR LI
RL:[.:;’ =18 —Pi:
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Yang-Baxter equation

@ We can find R-matrices from the Yang-Baxter equation

Ri2(x — yv)R3(x)Rx3{y) = Rx3(y)Ri3(x)R12({x — y)

@ YBE is a defiming relation for Yangian — every solution of the YBE
gives a representation of Yangian

—

@ Example [ LIQ LI
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@ We can find R-matrices from the Yang-Baxter equation

Ri2(x — y)R13{x)Rx3{y) = Rx3(y)R13(x)Ri2{x — ¥)

@ YBE is a defiming relation for Yangian — every solution of the YBE

gives a representation of Yangian

—

@ Example [ LIKQ LI
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@ We can find R-matrices from the Yang-Baxter equation

Rix{x — ¥V 'Rg:-t"R:gr}‘ = R;}[}"]RL}E-‘CERL:{'_I — ¥}

@ YBE is a defining relation for Yangian — every solution of the YBE
gives a representation of Yangian

@ Example [ QLI LI
Ri>(z) =z + P>
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@ We can find R-matrices from the Yang-Baxter equation

Rlzl'_.r s 'Rl_;t-t' .'R:} WV = R:E (_.}‘I,]Rig L".‘C}RELJ: —=

@ YBE is a defiming relation for Yangian — every solution of the YBE

gives a representation of Yangian

—

@ Example [ QLI
Riz(z) =z + Py

A 4
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@ We can find R-matrices from the Yang-Baxter equation

Rix(x — ) _'Rlu:a-t‘_‘R:g:}“ — KR>3 {__}"_']R;g [-Y:FRL:[:I —

@ YBE is a defiming relation for Yangian — every solution of the YBE

gives a representation of Yangian

@ Example [ LI LI
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@ We can find R-matrices from the Yang-Baxter equation

R1:1I —Y¥ 'RIEEI'RQE:}-“ - R;} {_}"_]R;:LI}RL:U: — ¥)

@ YBE is a defining relation for Yangian — every solution of the YBE

gives a representation of Yangian

@ Example (R LIR LI
Ri>(z) =z + P>

! 5
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Spin chain in the fundamental representation

Roof{x — y)Row(x)Row(y) = Row(y)Ro.w(x)Roo(x —y)
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Spin chain in the fundamental representation

@ Take [ | ® [ @ W (W — any space) and try to find all inear solutions of
Roofx — y)Row(x)Row(y) = Row(y)Row(x)Roo(x — y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation
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Spin chain mm the fundamental representation

@ Take LI ® 1 ® W (W —any space) and try to find all inear solutions of
Roo{x —y)Row(x)Row(y) = Row(y)Row(x)Roofx — y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation
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Spin chain in the fundamental representation

@ Take [ 1 ® LI ® W (W — any space) and try to find all inear solutions of
Roo(x — y)Row(x)Row(y) = Row(y)Row(x)Roo(x — y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an escillator algebra representation
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Spin chain in the fundamental representation

@ Take (L1 ® LI @ W (W — any space) and try to find all inear solutions of
Roo—(x — y)Row(x)Row(y) = Row(y)Row(x)Roof(x — y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an escillator algebra representation
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Spin chain in the fundamental representation

@ Take L I @ I ® W (W — any space) and oy to find all inear solutions of
Ro{x — y)Row(x)Rowly) = Row(y)Row(x)Roolx —y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation
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Spin chain in the fundamental representation

@ Take L I @ 1 @ W (W —any space) and oy to find all linear solations of
Roo(x — y)Ro.w(x)Row(y) = Row(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation
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Spin chain in the fundamental representation

R-—(x — y)Row(x)Row(y) = Rowly)Rowl{x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation
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Spin chain in the fundamental representation

@ Take (1 @ LI ® W (W — any space) and try to find all linear solations of
Roo{x — y)Row(x)Rowly) = Rowl(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation
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Spin chain in the fundamental representation

@ Take [ | ® [1 @ W (W —any space) and oy to find all inear solutions of
Ro{x — y)Row(x)Rowl(y) = Rowly)Row(x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation

Pirsa: 11080028 Page 50/315

Tomase Faokowsikns ( Humboidt Umversity) 094082011 3/18




Spin chain in the fundamental representation

@ Take (1 ® I ® W (W — any space) and try to find all linear solations of
Roof{x — y)Row(x)Ro.w(y) = Rowly)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation
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Spin chain in the fundamental representation

@ Take L1 ® [ ® W (W — any space) and try to find all inear solutions of
Roo(x — y)Ro.w(x)Row(y) = Row(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation

Pirsa: 11080028 Page 52/315

Tomass fakowsio ( Humbeidt Umversity ) 09082011 9/18




Spin chain in the fundamental representation

@ Take [ | @ 1 @ W (W —any space) and try to find all linear solutions of

Rix — }'?R:_T,{"L’_I]R:_W"_}' F — R:_W{_}' "lR:_Wr.,‘C_:R:_:L_I — V)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices
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Spin chain in the fundamental representation

@ Take (1 ® LI ® W (W — any space) and try to find all linear solutions of
Ro—(x — y)Row({x)Rowly) = Rowl(y)Rowlx) R0 ={x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillater algebra representation

@ For p — n we have previous solutions — transfer matrices
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Spin chain in the fundamental representation

@ Take [ 1 ® [ ® W (W — any space) and try to find all inear solutions of
Ro—(x — y)Rowl(x)Rowly) = Rowly)Rowl{x)Ro1(x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p — n we have previous solutions — transfer matrices
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Spin chain in the fundamental representation

@ Take [ 1 ® L1 @ W (W — any space) and try to find all linear solations of
Roolx —y)Row(x)Row(y) = Row(y)Row(x)Roofx — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p — n we have previous solutions — transfer matrices
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Spin chain in the fundamental representation

@ Take [ | @ [1 @ W (W — any space) and try to find all inear solutions of
Ro{x — y)Rowl{x)Row(y) = Rowly)Rowl(x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices
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Spin chain in the fundamental representation

@ Take [ 1 ® LI ® W (W — any space) and try to find all inear solutions of
Rolx — vIROowix)Rowly) = Rowly)Rowl{x)Ro7lx — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p — n we have previous solutions — transfer matrices
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Spin chain in the fundamental representation

—=

@ Take L 1 @ 1 ® W (W — any space) and try to find all inear seolutions of

R::[I —9 :.‘R:_W{_:C_]R:_Wé V) = R:‘W{_}f '!R:_Wa,tij_jlx —¥]

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices
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Spin chain in the fundamental representation

@ Take [ I ® [ @ W (W — any space) and try to find all inear solutions of
Roofx —y)Row(x)Rowl(y) = Rowly)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices
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Spin chain in the fundamental representation

@ Take L I @ [ ® W (W —any space) and try to find all inear solutions of
Ro—(x — y)Row(x)Rowly) = Row(y)Rowl({x)Ro=(x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices
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@ Take LI @ 1 @ W (W — any space) and try to find all inear solutions of

Roolx — v)Row(x)Rowly) = Rowl(y)Rowlx)Roo{x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices
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Spin chain in the fundamental representation

@ Take [ {1 @ [ @ W (W —any space) and try to find all linear selutions of
Ro{x —y)Row(x)Rowly) = Row(y)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (R0 w, = R),)

0,7 — Tiaua | DRYZ) SR} FD ... ®R,(2Z)
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Spin chain in the fundamental representation

@ Take L1 ® LI @ W (W — any space) and try to find all inear solutions of
Rofx — v)Row(x)Rowl(y) = Rowl(y)Rowl{x)Roo(x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet i gi(p) we define (Row, = R,)

T f % < f ,__. oy - P i}
Q:,-: — Trg_ux L Rg\:: s Rgiu:l S e - D Rg\ -3
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Spin chain in the fundamental representation

@ Take [ 1 ® 1 ® W (W — any space) and try to find all linear seolutions of
Rolx — y)Rowlx)Rowly) = Row(y)Row{x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p — n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

0,(2) = Trgu | D R,HZ) RRLZ) D ... R RL{Z)
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Spin chain in the fundamental representation

@ Take [ | @ [1 @ W (W — any space) and oy to find all inear solations of
Roolx —y)Row(x)Rowl(y) = Rowly)Row(x)Roof{x —y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)
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Spin chain in the fundamental representation

@ Take L1 @ L1 ® W (W — any space) and oy to find all linear solutions of
Rootx — y)Row(x)Rowly) = Rowly) Rowl(x)Roolx — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi{p) we define (Row, = R,)
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Spin chain in the fundamental representation

@ Take L1 ® LI ® W (W — any space) and try to find all inear solutions of
Roo{x — y)Row(x)Ro.w(y) = Row(y)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)
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Spin chain in the fundamental representation

@ Take [ | @ [1 @ W (W — any space) and try to find all inear solutions of
Rof{x — vIROwix)Rowl(y) = Rowly)Row(x)Roo7(x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi{p) we define (Row, = R,)

0,(z2) = Trau |DR,(Z) R D ... R Ry(2)]
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Spin chain in the fundamental representation

@ Take (1 ® LI ® W (W — any space) and try to find all linear solutions of
Roolx — y)Rowlx)Rowl(y) = Rowly) Rowl(x)Roo{x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

O,(7) — Tiau |DR,(Z) @R XD -.- QR,Z)]
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Spin chain in the fundamental representation

@ Take LI @ 1 ® W (W —any space) and try to find all inear solutions of
Roo{x —y)Row(x)Rowly) = Row(y)Row(x)Roo(x — )

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

£.% N £} F =Y A o4 Tal
Q;?'~-«-- = Traux o R.E?‘*“f R?L‘"J ey R-r“ i
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Spin chain in the fundamental representation

@ Take L1 ® LI ® W (W — any space) and try to find all inear solutions of
Roof{x — y)Row(x)Row(y) = Ro.w(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (R w, = R,)

Oplz) = T D R,H(Z) @ Ry(Z) D ... B RH(Z)
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Spin chain in the fundamental representation

@ Take [ 1 ® LI ® W (W —any space) and try to find all inear solutions of
Rofx — v)IRow(x)Rowl(y) = Rowl(y)Row(x)Roo(x — v)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi{p) we define (Row, = R,)

(7)) — Ban DRz  Rplz) @ - .. @ Rp(Z)

e
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Spin chain in the fundamental representation

@ Take [ I @ [ ® W (W —any space) and try to find all inear solutions of
Rooo{x —y)Row(x)Row(y) = Rwly)Row(x)Ro o x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

O,(2) = Trau |DR,Z) SR,(Z) @ ... R Ry(7)]

=
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Spin chain in the fundamental representation

@ Take [ 1 @ L1 @ W (W — any space) and try to find all linear seluations of
R:’_:l__l' —=1 f‘R:_W{,‘C ]R:_L}" Vi = R:_ W{_}-']R:‘ Wi I?R:_:l_,‘f — V)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)
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Spin chain in the fundamental representation

Rooo{x —y)Row(x)Rowly) = Row(y)Row(x)Roo(x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

O:({7) — Do |DR,(Z) RRYZ) R ... DRI
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Spin chain i the fundamental representation

@ Take (I @ I ® W (W — any space) and try to find all inear solutions of
Roo{x — y)Row(x)Rowly) = Row(y)Row(x)Roo{x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

et

— y \ s _-_- — ey . _..
Qﬂl: — Tramr e ‘Rf-":":: £ R::?ll.h/ll Y e o Ay Rgt & )|
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Spin chain i the fundamental representation

@ Take LI @ 1 ® W (W — any space) and oy to find all linear solutions of
Ro(x —yv)Rowl{x)Rowly) = Rewl(y) RO w(x) R0 {x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p — n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

07} = Tran |DR,(Z) SR D ... DR
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Spin chain in the fundamental representation

@ Take LI ® 1 @ W (W — any space) and try to find all inear solutions of
R(x — }'HR:.W‘LI IR w FF = R:.WU- :R:.W'Ex ;R:_:[__I =3

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet m gi(p) we define (Row, = R,)

0,(7) = T |DR{Z) R R,Z) D ... @ Ry(2Z)
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Spin chain mn the fundamental representation

@ Take L1 ® LI ® W (W —any space) and try to find all inear solutions of
R:.ZL.I — }':-‘R:'_Wl'._l"]R:"W%_‘v" - R:_W{}' fiR:_wf.’c;'R:_:i_I —=¥)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (R0 w, = R,)

\ T ok F % = E. )
Qp'l. -: — Traur __---r' RII_')'L . J f.‘.c.f Rfﬁll o J P " SRR ¥ R;‘}\ ) |
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Spin chain in the fundamental representation

@ Take L1 @ 1 @ W (W —any space) and oy to find all linear solutions of
Ro(x — y)Row(x)Rowly) = Row(y) R wl(x)Ro{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

£ % - ™ £ % £ N < > £
Q_pi..... — Tr;;ux S R__pu-.. B, Rg[-.]| Y e e Rpaq.,_
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Spin chain in the fundamental representation

@ Take (| ® 1 @ W (W —any space) and try to find all linear solutions of
Ro-{x — yv)Rowl(x)Rowly) = Rowl(y) Rowl(x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p — n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R),)

Op(z2) = Tra D Rp(Z) S RL(Z) D ... 3 RY{Z)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 ® [ @ W (W — any space) and try to find all inear solutions of
Roof{x —y)Row(x)Rowly) = Rowl(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet m gi(p) we define (Row, = R,)

Q,(z) = = Ty [D R,(z) 3 Rp(2) D ... R RyT)|

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take ({1 @ 1 ® W (W —any space) and oy to find all linear selutions of
Roof{x — y)Row(x)Row(y) = Row(y)Row(x)Roo(x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R),)

O:(7) = Trgu [DRy(Z) S Ry(2) @ ... @ Ry(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ I ®

1 @ W (W —any space) and try to find all linear selutions of
Roo{x —y)Row(x)Ro.wly) = Rowly)Row(x)Roolx —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
& For the singlet in gi(p) we define (Row, = R,)
0,(7) = T |DR,(2Z) RRY(Z) D -.. @ Ry(2Z)]

}, T(Z) =0

@ Belong to the same family of commuting operators: |Q,(z
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@ Take [ 1 ® LI ® W (W — any space) and try to find all inear solutions of

Rofx — vIRow(x)Rowly) = Rowly)Rowl(x)Ro7(x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)
0,(7) — Bau |DRZ) SR D -.. RR(Z)

@ Belong to the same family of commuting operators: (Q,(z),T(Z)| =0

Pirsa: 11080028 Page 86/315

fomass f aokowsks | Humboidt Universaty) 09082011




Spin chain in the fundamental representation

@ Take [ 1 ® [ ® W (W — any space) and try to find all linear solations of
Ro(x — y)Row(x)Row(y) = Rwly)Rowlx)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O,({7) — Trau |DR,Z) SRYZ) VD ... DRI

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

Pirsa: 11080028 Page 87/315
08082011




Spin chain in the fundamental representation

@ Take (L1 ® LI ® W (W — any space) and try to find all linear solutions of
Roofx —y)Row(x)Ro.w(y) = Row(y)Row(x)Roofx — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p — n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)
0,(7) = Trau |DRZ) @ Rp(2) @ ... @ Ry(Z)]

£

@ Belong to the same fammly of commuting operators: 'Qpi zL Il )} —@
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Spin chain in the fundamental representation

@ Take [ 1 @ L1 @ W (W — any space) and try to find all linear seolutions of
Roo{x —y)Row(x)Row(y) = Rowly)Row(x)Roolx —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

7)) = Bau|DR,(Z) SR S ... @ Ry(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take L1 ® (I ® W (W — any space) and try to find all linear solations of
Ro—(x —y)Row(x)Rowly) = Rewl(y)Ro.w({x)Roo(lx — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p — n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,,)

O.(7) = Trau |[DR,(Z) @ Ry(2) @ - .- @ Ry(T)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain i the fundamental representation

@ Take (1 ® LI @ W (W —any space) and try to find aill inear solutions of
Roof{x — y)Row(x)Ro.w(y) = Row(y)Row(x)Roo(x — )

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

Op(7) = Traw D RH(Z) R RY(Z) D ... @ Ry(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

Pirsa: 11080028 Page 91/315

Tomasz Faokowsia ( Huomboidt University) 09082011




Spin chain i the fundamental representation

@ Take [ I ® LI ® W (W — any space) and try to find all linear solutions of
Roo{x —y)Row(x)Rowly) = Rowly)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O,(2) — Trau |DR,(2Z) SR X ... @R,{T)]

@ Belong to the same family of commuting operators: '_Qp: 2L L) —6
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Spin chain in the fundamental representation

@ Take (1 ® LI @ W (W — any space) and Ty to find all linear solutions of
Roo{x —y)Row(x)Row(y) = Row(y)Row(x)Roo(x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transier matrices

@ For the singlet in gi(p) we define (Row, = R,)

O,(7) = Trau|DR,Z) QRZ) D ... R R(7)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

Pirsa: 11080028 Page 93/315

Tomass f okxowsks | Humboidt University) Je482011



Spin chain in the fundamental representation

@ Take [ 1 ® LI ® W (W — any space) and try to find all inear solutions of
Roolx — vIRowix)Rowly) = Rowl(y)Rowlx)Ro7lx — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

Op(Z) = Tran DR,Z) ARHZ) D ... I RYZ)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain mn the fundamental representation

@ Take [ 1 @ 1 @ W (W —any space) and try to find all linear solutions of
R:_:l__f{.' —9 }R:_LV{I]R:_W" V) = R:_ﬁ;{l}-‘ .}R:‘L{,«TE I}R:‘:LI —¥)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)
0,(z2) = Trau |DR(Z) @RyZ) D ... @ R,(27)]

£ Iy

@ Belong to the same family of commuting operators: |Q,(z),T(Z)| =0
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Spin chain in the fundamental representation

@ Take [ 1 ® [ @ W (W —any space) and try to find all linear solutions of
Ro—(x — y)Rowlx)Rowly) = Rowl(y)Rowl(x)Roolx — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gl(p) we define (Row, = R,)

G — B DR} SRR ... @ B {7}

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take (1 ® [ ® W (W — any space) and try to find all inear solutions of
Roo{x — y)Row(x)Rowl(y) = Rowl(y)Row(x)Roolx —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

@ Belong to the same family of commmuting operators: [Q,(z).T(Z)] =0
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Spin chain in the fundamental representation

@ Take [ | @ [1 @ W (W — any space) and try to find all inear solutions of
Ro—{x — y)Row(x)Rowly) = Rowly)Row(x)Roo(x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

0,(7) = Tra D R(Z) R Rp(Z) D . .. @ R(7)]
@ Belong to the same family of commuting operators: [Q,(z), T ( g
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Spin chain in the fundamental representation

@ Take L1 @ LI @ W (W — any space) and try to find all linear solutions of
Roo{x — y)Rowix)Rowly) = Rowly)Row(x)Roolx —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

Op(2) = Traw D R,(Z) R RY(Z) D ... @ Ry(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z)] =0
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@ Take [ 1 ® [ ® W (W — any space) and try to find all linear solutions of

Roo{x —y)Row(x)Row(y) = Rowl(y)Row(x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)
O,(2) = Trau |DR(2) @ RYZ) D ... @ Ry{2)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

Ro+{x — y)Row(x)Rowly) = Row(y)Rowl(x)Roo(x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

O,(2) = Trau DRz} @ Ry(2) @ ... @ Ry(7)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 @ 1 @ W (W —any space) and ry to find all inear selutions of
Ro—(x —y)Rowl(x)Rowl(y) = Rowly)Row(x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

0,(2) = T |DR,(2) @ RZ) D ... @ Ry(2)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take (1 @ I ® W (W — any space) and try to find all linear solutions of
Rof{x— y l‘R:_WiI_]R:_ wiV) — Rz_wt_}-' IR1 wl ,’CJR::ENI ==

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet m gl(p) we define (Row, = R,,)
Ou(2) = Traa D R(Z) RR,{(2) @ - .. @ Ry(2)]

e

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ I @ 1 ® W (W —any space) and oy to find all inear solations of
Ro{x — y)Row(x)Rowly) = Rowl(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

£ Y]

@ Belong to the same family of commuting operators: |Q,(z),T(Z)| =0
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Spin chain i the fundamental representation

@ Take L1 @ 1 ® W (W — any space) and try to find all linear solutions of

Ro—{x — y)Row(x)Row(y) = Rowly)Rowlx)Ro—{x —¥)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

™ £ % —l A ” { ~} |
QD“: — Trcmx = R_f?‘-.“u_f < Rﬁ?i“J :: - NN R.ﬂ"‘"'_

@ Belong to the same family of commmuting operators: [Q,(z),.T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 @ 1 ® W (W —any space) and ry to find all linear solutions of
Roo{x —y)Row(x)Rowl(y) = Row(y)Row(x)Roof{x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillater algebra representation

@ For p — n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O,(2) — Trau |DR,Z) QRYZ} D ... RRL{Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 ® LI ® W (W — any space) and try to find all linmear solutions of
R o{x — y)Ro wlx)Row(y) = Rwly)Row(x)Royof{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillater algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

Pirsa: 11080028 Page 107/315
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Spin chain in the fundamental representation

@ Take [ | @ [ @ W (W — any space) and try to find all inear solations of
Ro+ix — v)Rowlx)Rowly) = Rowly)Rowlx)Roo(x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

Y e .o s e oo = £\
pr-._.. E— Tr,;;g_r L R_px-.._,' L Rg‘._uj S Rpt-._._

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take L1 ® 1 @ W (W — any space) and try to find all inear solutions of
Roof{x —y)Row(x)Rowly) = Rowl(y)Row(x)Roo{x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillater algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

Wil P i h _.' g s e, |
Op(2) = Traux D Rp{zZ) A Rp(2) D ... D RR(Z)]

@ Belong to the same family of commuting operators: [Q,(z),.T(Z')] =0
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Spin chain in the fundamental representation

@ Take ({1 @ 1 @ W (W —any space) and ry to find all linear selutions of
Ro—(x — y)Rowl{x)Rowly) = Rowly)Rowl{x)Roo(x — yv)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

T | ., i Fo.: £ — " ]
Qp"- -::: — Trlflﬂ.f _—-—-'" Rﬂ‘. -~ ":,./ R__:?ll.*n ;Il x.:\.r"'. - - . "L.-r" .'D"l. e

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 ® [ ® W (W — any space) and try to find all inear solutions of
Ro—{x —y)Row(x)Rowl(y) = Row(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi{p) we define (Row, = R,)

Op(z) — Trax D R,(zZ) A RYZ) D ... B Rp(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take L1 ® [1 @ W (W — any space) and try to find all inear solations of
Roofx — v)Rowl(x)Rowl(y) = Rowly)Rowl{x)Roolx — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

T R, T | " L R Fokl
Qp'l:_, — Trd“-x | A Rg;l.-u; Vel R:}‘[.-uj LY - - - Rp‘ “~ /|

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take (1 @ 1 @ W (W —any space) and ry to find all linear solutions of
Roo{x — y)Row{x)Rowly) = Rowly)Row{x)Roolx —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)
07} = T [DRy(Z) @ Rp(2) @ - . - @ Rp{Z)]

i

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take (1 @ [ @ W (W —any space) and try to find all linear seolutions of
Ro-{x — v)Rowl{x)Rowly) = Row(y) Rowl{x)Roo{x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

Op(7) = Traux D Rp(Z) QRp(Z) D - .- @ Rp(Z)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take ({1 @ 1 ® W (W —any space) and ry to find all inear solutions of
Roo{x —y)Row(x)Rowly) = Rowl(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

O:(2) — Bau |DR,(Z) @R)Z) D -.. QR

@ Belong to the same family of commuting operators: [Q,(z).T(z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 ® [ @ W (W — any space) and try to find all inear solutions of
Ro(x — y)Row(x)Rowly) = Rowly)Rowilx)Ro{x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (R0 w, = R,)

o ™ Eunk T F Y = e, £ %1
QP | . P — Trd&t __.I‘ R-E? 'L r - ." f_:-:_/ R-g i F- }II .-_': v - = f_f_- Rpt . | 1

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 @ L1 @ W (W —any space) and ry to find all linear solutions of
Ro{x — v)IROowlx)Row(y) = Rowl( V) Rowl{x)Roo(lx — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transier matrices

@ For the singlet in gi(p) we define (Row, = R,)

O,(7) — Tiau |DRZ) R D ... RRZ)

@ Belong to the same family of commuting operators: [Q,(z).7T(Z')] =0

Pirsa: 11080028 Page 117/315
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Spin chain in the fundamental representation

@ Take [ 1 ® [ ® W (W — any space) and try to find all linear solations of
Roo{x — y)Row(x)Rowly) = Row(y)Row(x)Roolx —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)
Q.'?.-- _TI}HH- oY RE?"'“-_:: E‘;R:}'i:J :T < Rpt-.:_

@ Belong to the same family of commmuting operators: [Q,(z),T(Z')] =0
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Spin chain in the fundamental representation

@ Take (1 @ 1 @ W (W — any space) and try to find all linear seolutions of
Ro{x — y)Row(x)Rowly) = Row(y)Row(x)Roolx —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

0,(2) = T |DR{Z) @ RZ) R -.. R Ry(3Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take (1 @ 1 ® W (W —any space) and ry to find all linear seolutions of
Roo(x —y)Ro w(x)Ro.wly) = Row(y)Row(x)Roo(x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O5(2) = Trau | DR,HZ) RRHZ) D ... ARL(Z)

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ | ® [ @ W (W — any space) and try to find all inear solations of
Ro—(x — ¥)Row(x)Row(y) = Rowl(y)Rowl(x)Roolx —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

T T I | o o e R, ]
Qi;r‘r-: — Trmr L Rp'l.-.,: < R:‘;imll & e D RD" 53

@ Belong to the same family of commuting operators: (Q,(z),T(Z)| =0
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Spin chain in the fundamental representation

@ Take [1 ® [ ® W (W — any space) and try to find all linear solations of

Roflx — vVIRow(x)Rowly) = Rowly)Row(x)Roolx — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O,(2) — Bau |DRyZ) QR D ... RR,(Z)

£ I

@ Belong to the same family of commuting operators: |Q,(z),T(Z)| =0
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Spin chain i the fundamental representation

@ Take [ 1 ® LI ® W (W — any space) and try to find all linear solations of
Roo{x — y)Row(x)Row(y) = Rowl(y)Rowl(x)Roolx —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi{p) we define (Row, = R,)

Op(2) — Tram D Ry(Z) R Rp(T) D - .- @ Ry(2)|

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0
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Spin chain i the fundamental representation

@ Take [ | @ 1 @ W (W — any space) and try to find all inear solutions of
Roofx — vy)IRow(x)Rowly) = Rowly)Rowl(x)Roolx — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (R0 w, = R,)

O,(7) — Tiau |DR,Z) QRZ) R -.- DR

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take L1 ® L1 @ W (W —any space) and try to find all inear solutions of
Ro—~(x — y)Row(x)Rowl{y) = Row(y)Row(x)Roo{x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

Q7)) = Tiga | DRZ) @ R(7) @ ... @ Rp(2)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take L1 ® [ ® W (W — any space) and try to find all linear solations of
Roo(x — y)Row(x)Rowly) = Row(y)Row(x)Roolx —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

™ £ % < i, ..~ — £ %]
Q!?l-:l — Trmt St R._i]“l.-u_..; < Ef?lll-\.J Y o v o & Rp‘x ) |

@ Belong to the same family of commuting operators: [Q,(z), T g =
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Spin chain in the fundamental representation

@ Take (1 ® LI ® W (W — any space) and try to find all inear solutions of
R:_:ll,‘t." — V) R:_L{; (X ]R:’_ wiy) — R:Wl} 'lR:_W! x 'ZR:‘:LI — Y]

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

0,(z2) = T |DR,(2) @RZ) D ... R R,(Z)]

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 @ L1 @ W (W —any space) and try to find all inear solutions of
Ro{x — y)Row(x)Rowly) = Row(y)Row(x)Roolx —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

0:(2) — Tau |DR,Z) QRZ) D ... R,T)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 @ 1 @ W (W —any space) and ry to find all linear selutions of
Ro—~(x —y)Rowi(x)Rowl(y) = Rowly)Rowl({x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

e

Op(z7) — Trau D R,(zZ) RRY(Z) D ... D Rp(z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 @ [ ® W (W — any space) and try to find all inear solations of
Rooix — y)Rowl(x)Rowl(y) = Rowly) Rowlx)Roolx — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillater algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

ng: == Trggr - Rg'l.-. _,: ,_- R_g.- ll.-::l :_,L = = = a_‘ RD" Z)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 ® [ ® W (W — any space) and try to find aill inear solations of
Roo{x —y)Row(x)Row(y) = Rowl(y)Row(x)Roolx —y)

& W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

0,7 — Tiaa |DR(Z) RRZ) R -.. R{Z)|

@ Belong to the same family of commuting operators: [Q,(z),T(Z)] =0
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Spin chain in the fundamental representation

@ Take [ | @ [1 @ W (W — any space) and try to find all inear solations of
Ro{x —y)Row(x)Rowl(y) = Rowly)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
Ou(7) = B [BRZ) @R D - .- @ R

Fyx 7

@ Belong to the same family of commuting operators: |Q,(z),T(Z)| =0
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Spin chain i the fundamental representation

@ Take [ 1 ® [ @ W (W — any space) and try to find all inear solations of
Ro—{x — y)Row(x)Rowl(y) = Rowly)Row(x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillater algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

(7)) = Tiau D Ry(Z) RR(Z) D ... @ Ry(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ | @ [1 @ W (W — any space) and try to find all inear solutions of
Roo{x —y)Row(x)Rowly) = Row(y)Row(x)Roofx — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

0,(7) = Trau |DR,(2Z) @R(Z) D ... @ Ry{(2Z)|
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
Pirsa: 11080028 Page 134/315
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Spin chain in the fundamental representation

@ Take L1 ® [ @ W (W — any space) and try to find all inear solutions of
Roo{x —y)Row(x)Rowly) = Rowly)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

O,(2) = Tram DRz} SR, Q... RR(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ | ® [ @ W (W — any space) and try to find aill inear solations of
Roof{x — y)Row(x)Rowly) = Rowl(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

& For the singlet in gi(p) we define (Row, = R,)

@ Belong to the same family of commuting operators: |Q,(z), el —6
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Spin chain i the fundamental representation

@ Take [ 1 ® [ @ W (W — any space) and try to find all inear solations of
Roofx — y)Row(x)Row(y) = Rowly)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

@ Belong to the same family of commuting operators: [Q,(z).T(Z)] =0

Pirsa: 11080028 Page 137/315
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Spin chain in the fundamental representation

@ Take [ 1 ® LI @ W (W — any space) and try to find all linear solations of

Ro{x — yv)Rowl(x)Rowly) = Rowl({y) Rwl{x)Roo{x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet n gi(p) we define (Row, = R,)

0,(7) = T |DR(Z) @RZ) D ... @ Ry(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ | ® 1 ® W (W — any space) and try to find all inear solutions of
Rolx — v)IRowix)Rowly) = Rowly)Rwl{x)Roolx — v)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

Qn{:_f = Tram _: R_D"::; o2 R_.i?i.::j D ... RP“::.

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 ® 1 ® W (W — any space) and try to find all inear solations of
Rox —yv)Row(x)Rowly) = Rowl(y)Rowi(x) R0 ={x — ¥)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O,(2) — Trau |DR,Z) QRYZ) D .. - @RI

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ 1 @ [ @ W (W — any space) and try to find all inear solutions of
Roo{x — y)Row(x)Rowl(y) = Row(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi{p) we define (RO w, = R,)

Op({2) — Tau |DRZ) QRYHZ D - .. D R(Z)|

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
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Spin chain in the fundamental representation

@ Take [ | ® [ @ W (W — any space) and try to find all inear solutions of
Ro(x —y)Row(x)Rowly) = Row(y)Row(x)Roolx — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < mn) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R),)
O5(2) = Trau |DR){2) QR () R ... @ R,(27)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take L I ® 1 ® W (W —any space) and try to find all inear solutions of
Roo{x —y)Row(x)Rowly) = Row(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)
0.(7) = Tiga [DR{Z) @ Ry(Z) @ .. - @ R(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take L1 ® L1 ® W (W — any space) and try to find all linear solutions of
Roo{x —y)Row(x)Row(y) = Row(y)Row(x)Roofx — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)
Op(z) = Tran D Ry(Z) @ Rp(z) @ - .- @ Ry(7)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — (| different wavs of fixine | mx gl{z)
E Q-ope () different ways of fixing gi(p) in g

Pirsa: 11080028 : Page 144/315

Tomass  okowskns ( Hombeidt Universatv} 08082011



Spin chain in the fundamental representation

@ Take L1 ® LI ® W (W —any space) and try to find all inear solutions of
R:.:‘-.I == }R:.W{_I]R:_Wl Y] — R:’_W{,}’ flR.:LWE,‘E;R:-:iI — V)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gl(p) we define (Row, = R,)
(7)) = Tran [DR(Z) @ Rp(7) D - . . @ Rp(2)]

@ Belong to the same family of commuting operators: [Q,(z), it —6

@ Even more Q-operators — [’E) different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take L1 ® [ ® W (W — any space) and try to find all linear solutions of
Roo(x — y)Row(x)Rowly) = Rowly)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)

O.(7) — Ban DR,z R Rp(Z) @ -.. R Ry{7)]

@ Belong to the same family of commuting operators: |Q,(z), ()] =0

@ Even more Q-operators — l’;j different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take (1 ® 1 @ W (W —any space) and try to find all linear solutions of
R0 (x — y)Row(x)Row(y) = Row(y)Row(x)Roo(x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)

Op(7) = g DR,(Z) QRLZ) D ... B RHZ)

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take L1 ® [ ® W (W — any space) and try to find all linear solutions of
R o{x — y)Row(x)Rowly) = Rowly)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

—_— ) i N P e §
Qﬂ'l: — Trd“-x L Rﬂiﬂu; e Rﬂlq.]‘l Vo SR S .'Ut-" J |

. & \ 3

@ Belong to the same family of commuting operators: (Q,(z),T(Z')| =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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@ Take {1 @1 ® W (W —any space) and try to find all linear seolutions of

Rooix — v)Rowl(x)Rowly) = Rowly) Rowl(x)Roo{x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p — n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

@ Belong to the same family of commuting operators: [Q,(z).T(Z)| =0

@ Even more Q-operators — | ;} different ways of fixing gi(p) m gi(n)
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Spin chain in the fundamental representation

@ Take (1 ® 1 ® W (W —any space) and try to find all inear solutions of
Roo{x — y)Row(x)Row(y) = Row(y)Row(x)Roo(x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

G(7) = Tiga DRz} @ Rp(7) @ ... @ Ry(7)]
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
@ Even more Q-operators — (| ‘1 different ways of fixing gi(p) m gi(z)
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Spin chain in the fundamental representation

@ Take L1 @ L1 ® W (W — any space) and ry to find all linear solutions of
Rofx — v)Rowi{x)Rowl(y) = Rowly)Rowl(x)Ro.7{x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

O.(7) = T |DBR(Z) SR @ -.

LA

\*
-
M.

)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')| =0

@ Even more Q-operators — | ;j different ways ot fixing gi(p) m gi(n)
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Spin chain in the fundamental representation

@ Take (1 ® 1 ® W (W — any space) and try to find all linear solations of
R +{x — y)Rowlx)Rowly) = Rowl(y)Row(x)Roo{x — v)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p — n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
0o(2) = T | DR,(Z) @ Ry(Z) D --- @ R(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — | g} different ways of fixing gi(p) m gi(n)
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Spin chain i the fundamental representation

@ Take [ 1 R 1 ® W (W —any space) and try to find all inear solutions of
Ro(x —y)Row(x)Row(y) = Row(y)Row(x)Roo{x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)
(2} = T DRz @Ry D - .. @ R,(J)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take L1 ® 1 ® W (W — any space) and try to find all linear solutions of
R:_:l_l‘ === :‘-R:’_W{_.‘C]R:_Wr}' ] — R:_W{_}' \IR:_Wr.IZR:‘:[_I —¥

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R),)

th:, —— Trgux _: pr-zl :C:.» RQI:J :.-'_{ < Rp\-u.'_
@ Belong to the same family of commmuting operators: [Q,(z).T(Z')] =0
¢ Even more Q-operators — | J different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ 1 ® [1 @ W (W — any space) and try to find all inear solutions of
Rolx — v)IRowix)Rowly) = RowlV)Rowl{x)Roolx — v)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)

0,(7) = Traa |DR{Z) R(Z) D ... @ Ry(27)]

@ Belong to the same family of commuting operators: [Q,(z), T ( 2} —@

@ Even more Q-operators — |;) different ways of fixing gi(p) m gi(n)

Pirsa: 11080028 Page 155/315

fomasz  okowsia ( Humboidt Universatv) 09082011



Spin chain mm the fundamental representation

@ Take [ | ® [ ® W (W — any space) and try to find all inear solutions of
Ro—~(x — y)Row(x)Rowly) = Rowl(y)Rowl{x)Ro=lx —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)
0,(z) = Trax |DR)(Z) @ RyZ) D ... R Ry(7)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take | @ 1 @ W (W —any space) and oy to find all linear solutions of
Ro-{x — v)Rowlx)Rowly) = Row(y)Rowlx)Roo(x — v)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p — n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,,)
Op(7) = Traa |DRyZ) RRp(2) @ - .. @ Ry(7)]

@ Belong to the same family of commmuting operators: [Q,(z),T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take {1 @ 1 ® W (W —any space) and oy to find all linear solutions of
R:‘:L_I — :i-R:_W{_I]R:_W' Py — R:_W{_}' _}R:_H,ru,’c.‘R:_:t'_I — V)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

pr-: — Tr,g_at o Rgta ) E Rgl:ﬂ ::\ - X Rpx & )|
@ Belong to the same family of commuting operators: [Q,(z),T(Z)] =0
@ Even more Q-operators — ( ) different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take (L1 ® LI ® W (W — any space) and try to find all linear solutions of
Ro{x — v)Rowlx)Rowly) = Rowly)Rowlx)Ro1({x — y¥)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

0,(2) = Trau |DR,{Z) @ Ry2Z) @ -.. @ Ry(Z)]
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(#)
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Spin chain in the fundamental representation

@ Take [ {1 @ 1 @ W (W — any space) and try to find all inear solations of
Ro—(x —y)Row(x)Rowly) = Row(y)Row(x)Roof{x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p — n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)
07 = Fran DRz} @ Ry{(Z) R - - - @ Ry{)]

@ Belong to the same family of commuting operators: [Q,(z),.T(Z')] =0

¢ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain mn the fundamental representation

@ Take [ 1 ® I ® W (W — any space) and try to find all linear solations of
Roof{x — y)Row(x)Row(y) = Row(y)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
0,(7) = T |DRZ) @RYZ) D -.. R Ry(27)]

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0

@ Even more Q-operators — ( ) different ways of fixing gi(p) m gl(=)
E p ’gjdrf f fixing gi(p i
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Spin chain in the fundamental representation

@ Take (1 ® I ® W (W — any space) and try to find all linear seolations of
Roolx — y)Rowix)Rowl(y) = Rowly)Row(x)Roofx — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (R0 w, = R,)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ | @ [ @ W (W — any space) and try to find all inear soluations of
Rof{x — y)Row(x)Rowly) = Rowl(y)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
0,(7) = T |DR2) @ R(Z) D ... @ Ry{(27)]

@ Belong to the same family of commuting operators: |Q,(z), T ( g =

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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@ Take L1 ® LI ® W (W — any space) and try to find all linear seolutions of

Roo{x — v)Row(x)Rowly) = Row(y)Rowl{x)Ro-f{x — y)

@ W can be the representation space of the tensor product of any gi(p)

(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

Qp\.::l — Trdur __._..r’ Rﬂ‘l« _j ,___,, R:?L.:J f:: <) Rp\, a3

@ Belong to the same family of commuting operators: [Q,(z).T(Z')| =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take L1 ® 1 @ W (W — any space) and try to find all inear solutions of
Roo{x — y)Row(x)Rowly) = Rowly)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)

0:(2) — Taun |DRZ) QRYZ) D - .- R R(T)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi{n)
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Spin chain in the fundamental representation

@ Take [ 1 @ 1 ® W (W —any space) and try to find all linear seolutions of
Roof{x —y)Row(x)Ro.w(y) = Row(y)Row(x)Roofx —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)

f Bid .Y = A < F.%
Q_px-:: — Trm:c — R_p'-_ Ll S R_{;i_«. ]l Y - e D Rpt &

@ Belong to the same family of commuting operators: [Q,(z), T(Z)] =0

@ Even more Q-operators — |;:} different ways of fixing gi(p) m gi(n)
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Spin chain in the fundamental representation

@ Take (1 ® LI ® W (W — any space) and try to find all linear solutions of
Roo{x —y)Row(x)Row(y) = Row(y)Row(x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)
Op(7) = Traa |DRy(2) @ Rp(2) @ -- - @ Ry(Z)]

@ Belong to the same family of commuting operators: |Q,(z), T( 2 —0

@ Even more Q-operators — [f;’ ) different ways of fixing gi(p) in gi(n)
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@ Take [ 1 ® [ @ W (W — any space) and try to find all inear solations of

Ro—~(x — y)Rowi(x)Rowly) = Rowly)Row(x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O(2) — Tau |DR,(Z) RRZ) XD --- BRI

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
@ Even more Q-operators — (") different ways of fixing gi(p) in gi(#n)

o/
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Spin chain in the fundamental representation

@ Take L I @ 1 ® W (W — any space) and oy to find all linear solutions of
Ro{x — v)Rowilx)Rowly) = Rowly)Rowl{x)Roo1({x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

0,(2) = Trau |[DRy(Z) @ RZ) D ... @ Ry(2)]
@ Belong to the same family of commuting operators: [Q,(z).T(Z')| =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take (1 @ 1 @ W (W — any space) and oy to find all linear solutions of
Roo{x — y)Ro.w(x)Rowly) = Row(y)Row(x)Roo(x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)
O0.(7) = Trae |DR(Z) @RyZ) D ... R, Z)|

@ Belong to the same family of commuting operators: [Q,(z).T(Z')| =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ 1 @ L1 ® W (W —any space) and try to find all linear solutions of

Ro—(x — y)Row{x)Rowl(y) = Rowly)Rowl{x)Ro—{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)
0,(z7) = Tt |DR,(2) @ Ry(Z) D ... R,{7)]

@ Belong to the same family of commuting operators: |Q,(z), T( =4

@ Even more Q-operators — () different ways of fixing gi(p) in gi(#)
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Spin chain in the fundamental representation

@ Take [ 1 @ 1 @ W (W — any space) and try to find all linear solutions of
Rr—{x — ¥V }R:_W{IJR:_W% V) = R:_W{}' | R we I?R:_:{_I — )
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi{p) we define (Row, = R,)
0,(7) = T |DR(Z) @R(Z) D ... R Ry{(27)]

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0

@ Even more Q-operators — ( ;] different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ {1 @ 1 @ W (W —any space) and ry to find all inear solutions of
Roflx — v)IRowix)Rowl(y) = Rowly)Rowl{x)Roo(x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

(7)) = Trau DRz} @R @ -. - @ R}
@ Belong to the same family of commuting operators: [Q,(z).T(Z')| =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ I @ 1 @ W (W — any space) and try to find all inear solutions of
Roo{x —y)Row(x)Ro.w(y) = Row(y)Row(x)Roof{x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O,(7) = T |DRZ) @ RYZ) D ... @ Ry(2Z)
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — |“;j different ways of fixing gi(p) m gi(n)
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Spin chain in the fundamental representation

@ Take (1 ® [ ® W (W — any space) and try to find all linear solations of
R:.:i_—r === } FR:_W‘LY_]R:_WW:\: F — R:W‘{} _]R:_H,rl _{'R::t__‘;_' — .1,_' )

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

O,(7) = Trga | DR,(Z) @R VD - .- RR(Z)]
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0
@ Even more Q-operators — | W different ways ot fixing gi(p) mn gi(n)
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Spin chain in the fundamental representation

@ Take L I @ 1 ® W (W — any space) and try to find all inear solutions of
Roo{x — y)Row(x)Row(y) = Row(y)Row(x)Roo{x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

0,(2) = Trau [DR,(2) @ Ry(Z) @ R R,(7)]
@ Belong to the same family of commuting operators: [Q,(z),T(Z)] =0
@ Even more Q-operators — (. \u different ways of fixing gl(p) in gi(n)

Pirsa: 11080028 Page 176/315
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@ Take (1 @ 1 ® W (W —any space) and ry to find all linear solutions of

Roo{x — y)Row(x)Row(y) = Row(y)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

0,(2) — Tiau |DRYZ) RRHZ) D ... @ R,{2Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

= { IE) - g ol S % = \
@ Even more Q-operators — | _D) different ways of fixmg gi(p) n gl{n)
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Spin chain in the fundamental representation

@ Take [ 1 ® [ @ W (W — any space) and try to find all inear solutions of
Ro{x — y)Row(x)Rowly) = Rowl(y)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi{p) we define (Row, = R,)
O:(2) — Bau |DR,Z) SR D ... R RT)|

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ 1 ® [ ® W (W —any space) and try to find all linear solutions of
Ro—(x —y)Row(x)Row(y) = Row(y)Row(x)Roo(x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p — n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

(7)) — Traa D RH(Z) @ Rp(2) @ ... @ Ry(Z)]
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ | ® [ ® W (W — any space) and try to find all linear solutions of
Roo{x — y)Row(x)Rowly) = Row(y)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi{p) we define (Row, = R,)
0,(7) = T |DR(Z) @RZ) D ... S Ry(2)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

¢ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 180/315
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Spin chain in the fundamental representation

@ Take (1 ® (I ® W (W — any space) and try to find all linear solations of
Roo{x —y)Row(x)Row(y) = Row(y)Row(x)Roofx — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O.(7) = Trau |DR,(Z) S R,(2) R ... @ Ry{7)

@ Belong to the same family of commuting operators: |Q,(z), T ( g et

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ {1 @1 ® W (W —any space) and try to find all inear seolutions of
Roo{x —y)Ro.w(x)Row(y) = Row(y)Row(x)Roo(x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi{p) we define (Row, = R,)
0,(7) = T |DR,(2) RRZ) D ... Q@ Ry{(27)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — | ;j different ways of fixing gi(p) mn gi{n)
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Spin chain mn the fundamental representation

@ Take [ 1 ® LI ® W (W — any space) and try to find all inear solutions of
R:_:i x— }'.‘R:_W{,‘C_]R:_WI V) = R:_Wi}' :IR:_I.{;:I:R:‘:[;C —¥]
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R))
0,(7) = Trau |DR(Z) RZ) D ... Q Ry{(27)]

@ Belong to the same family of commuting operators: iQp; 22 Tt —6

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take (1 ® I ® W (W — any space) and try to find all linear solations of
Rofx — v)IRow(x)Rowl(y) = Rowly)Rowl{x)Ro7{x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

2(Z) — D D RH(Z) S RL(2Z) D ... @ Rp(Z))
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take L1 ® [ ® W (W — any space) and try to find all inear solutions of
Roolx — v)IRowl(x)Rowly) = Rowly) Row(x) R0 {x — v)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)

Qp tz) = E, [ R__g{:__‘: 7 R;, (71 R ... R Rp;:j_

@ Belong to the same family of commmuting operators: [Q,(z),T(Z)] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take LI @ 1 @ W (W — any space) and oy to find all linear solations of
Roo{x —y)Row(x)Ro.w(y) = Row(y)Row(x)Roolx —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transier matrices
@ For the singlet in gi(p) we define (Row, = R,)
0,(2) = Traa |DR(2) @RLZ) D ... @ Ry(2)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ 1 ® 1 @ W (W — any space) and try to find all linear solutions of
Roofx —y)Row(x)Rowl(y) = Rowly)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)
0,(7) = Tau [DR(Z) @ Rp(z2) @ - .. @ Ry(2)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 187/315
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Spin chain in the fundamental representation

@ Take L1 @ 1 @ W (W —any space) and oy to find all linear solutions of
Roo{x — y)Row(x)Rowly) = Row(y)Ro.w(x)Roo(x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)
O,(7) = T |DRZ) @R,Z) D -.. @ Ry(2)]

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(z)

Pirsa: 11080028 Page 188/315
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Spin chain in the fundamental representation

@ Take (1 @ I @ W (W —any space) and try to find all linear solutions of
Roo{x —y)Row(x)Row(y) = Row(y)Row(x)Roof{x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 189/315
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Spin chain in the fundamental representation

@ Take [ 1 ® [ @ W (W — any space) and try to find all inear solutions of
RZ.:'.I —P -?R:'_LV{_IJRj_Wf}' P = R:’_W{,}' :fIR:_WnI?R:_:[I —¥]

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

0.(7) = Tipa [DR{Z) @ R(2) R - .- @ R{Z)]
@ Belong to the same family of commuting operators: [Q,(z).T(Z')| =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(#n)
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Spin chain in the fundamental representation

@ Take L1 ® LI ® W (W — any space) and try to find all linear solations of
Roo{x —y)Row(x)Row(y) = Rowly)Row(x)Roo{x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
Q.,:?;-:f- — TI'LIH.I : Rg::; X Rg(:ll L ... RE:H:

@ Belong to the same family of commuting operators: |Q,(z), T z =0

@ Even more Q-operators — | ’;) different ways of fixing gi(p) m gi{z)
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Spin chain in the fundamental representation

@ Take (1 ® [0 ® W (W — any space) and try to find all inear solutions of
R:_:i.__af == }R:’_T@'{,I ]R:W"} == R:ﬁr'i} le:’_ﬁ,ﬂ -E;R:_:t_.'f — _"l..f

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation

@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,,)

@ Belong to the same fammly of cc}mrnuting operators: [Q,(z),T(Z)] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 192/315
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Spin chain in the fundamental representation

@ Take [ 1 ® [ @ W (W — any space) and try to find all inear selations of
Ro=(x — y)Row(x)Rowl(y) = Row(y)Row(x)Roof{x — )
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
Op(7) = Trau |DRy(Z) RRY(2) D - .. @ Ry(Z)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 193/315
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Spin chain in the fundamental representation

@ Take L1 @ 1 @ W (W —any space) and try to find all linear solutions of
Ro—{x — }'_f—‘R:’_Wix]R:’_W!}“ = R:_Wt_}' }R:_r,vt,r:R::t'_x —
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)
0,(7) = Trgu | DR,(Z) @R(Z) D - - . R R,(Z)]

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ | ® [ @ W (W — any space) and try to find all inear solations of
Rrr+{x — ); '.‘R:_LV"L_I]R:_Wi ¥ = R:_Wi}' )R wilx)R11ix — ¥)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

0,(7) = Tigu [DR(Z) RR(Z) R ... R R(Z)]
@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0
@ Even more Q-operators — (7} different ways of fixing gi(p) in gi(n)
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@ Take [ 1 ® LI ® W (W —any space) and try to find all inear solutions of

R-—~(x — y)Rowi(x)Row(y) = Rowly)Rowl{x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)
Op(2) = Trau DRz} RR,(Z) R ... D R

@ Belong to the same famly of commuting operators: _'_Qpi z), F(z\}} —0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take L1 @ 1 ® W (W — any space) and try to find all inear solutions of
Roo{x — y)Row(x)Ro.wly) = Rowly)Row(x)Roo(x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet n gi(p) we define (Row, = R,)

O:(2) — Do |DRyZ) QRHZ) X --- @ R,(Z)

@ Belong to the same family of commuting operators: [Q,(z),T(Z)] =0

@ Even more Q-operators — [’;) different ways ot fixing gi(p) m gi{n)
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@ Take [ 1 @ [ @ W (W — any space) and try to find all inear solutions of

Ro—=(x — y)Row(x)Rowl(y) = Rowly)Row(x)Roo{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)
0,(2) = Traa |DR{Z) @ R,(2) D ... @ Ry(2)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

- (M 3¢ : -~ - £ ° £
@ Even more Q-operators — ‘-._g) different ways ot fixing gi(p) m gi{n)
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Spin chain in the fundamental representation

@ Take (1 @ [ @ W (W — any space) and try to find all linear selations of
Ro{x — y)Row(x)Rowly) = Row(y)Row(x)Roof{x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
Op(7) = T DRz @ Rp(7) @ - .- @ Ry(7)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Qp <

Pirsa: 11080028

@ Take (1 ® 1 ® W (W — any space) and try to find all linear solations of

Ro{x — y)Row(x)Rowl(y) = Row(y)Ro.w(x)Roofx — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

} — Fan {DR)IZ) @ Ry(2) @ ... 3 R{7Z)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Page 200/315
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Spin chain in the fundamental representation

@ Take (1R 1 ® W (W — any space) and try to find all linear solations of

Roof{x — y)Row(x)Row(y) = Row(y)Ro.w(x)Roo(x — )

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

Op(7) = Traw D Rp(Z) R Rp(2) D ... @ Rp(2)
@ Belong to the same family of commuting operators: [Q,(z),.T(Z')] =0
@ Even more Q-operators — | ) different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take LI ® L1 @ W (W — any space) and try to find all linear solutions of
Ro{x —y)Row(x)Row(y) = Row(y)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
&tz — B, D RZD)BRZ)RD... R p;_:;_'

@ Belong to the same family of commuting operators: |Q,(z), i) —6

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take (1 ® LI ® W (W — any space) and try to find all linear solutions of
Ro—(x — y)Row(x)Rowl(y) = Row(y)Rowlx)Roo{x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)

O:(2) — Tiau |DRyZ) R D ... RR,{Z)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 : Page 203/315
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Spin chain in the fundamental representation

@ Take [ | ® [ @ W (W — any space) and try to find all inear solations of
Roflx — v)IRowlx)Rowl(y) = Rowl(y)Row(x)Roolx — v)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
0,(7) = T |DRZ) RRZ) D ... @ Ry{(2)]

@ Belong to the same family of commuting operators: |Q,(z), T(Z)] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 204/315
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Spin chain in the fundamental representation

@ Take (1 ® (I ® W (W — any space) and try to find all limear solations of
Roolx — v)Rowlx)Rowly) = Row(y) Rowl{x)Roo({x — v)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)

Qpi_:;'; — R _: Rﬁ[:} X R_:,ﬂ':ij X ... KpZ)

@ Belong to the same family of commuting operators: |Q,(z), T 2T} —@

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 205/315
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Spin chain in the fundamental representation

@ Take (1 ® I ® W (W — any space) and try to find all linear solations of
Roo{x — y)Row(x)Rowly) = Rowly)Row(x)Roo(x —y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi{p) we define (Row, = R,)
0,(2) = Trau |DR(Z) @ RZ) D ... @ R,(Z)]

@ Belong to the same family of commuting operators: |Q,(z), (L) —0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 206/315
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Spin chain in the fundamental representation

@ Take L1 ® [1 @ W (W — any space) and try to find all inear solutions of
Ro{x — y)Rowl(x)Row(y) = Row(y)Row(x)Roo(x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R),)
0,(2) = T |DR(Z) @ RyZ) R ... @ R,(7)]

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

- f It -~ sl £ % * \
@ Even more Q-operators — | p:l, different ways ot fixing gi(p) m gi(n)
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Spin chain in the fundamental representation

@ Take (1 ® [ 1 @ W (W —any space) and try to find all inear solutions of
Roo{x —y)Row(x)Rowl(y) = Row(y)Row(x)Roof(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)
0,(2) = Trau |DRZ) @ RyZ) D ... @ Ry(7)]

@ Belong to the same family of commuting operators: |Q,(z), T ( 25—

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 208/315
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Spin chain in the fundamental representation

@ Take (1 @ [ ® W (W —any space) and try to find all linear seolutions of
Rofx — v)IRow(x)Rowl(y) = Rowly)Rowlx)Ro1(x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillateor algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

0,(2) = Traa | DRZ) R,Z) D ... @ R,(7)]
@ Belong to the same family of commmuting operators: [Q,(z).T(Z')] =0
@ Even more Q-operators — ( ) different ways ot fixmg gi(p) m gi{z)

Pirsa: 11080028 Page 209/315
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Spin chain in the fundamental representation

Rooflx — vV)IRowlx)Rowly) = Rowl(y)Rowl{x)Roo(x — v)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

@ Belong to the same family of commuting operators: [Q,(z),.T(z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 210/315
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@ Take LI @ 1 ® W (W —any space) and oy to find all inear solutions of

Ro{x — vy)Rowl(x)Ro wly) = Rowl{y)Rowl{x)Roo1{x — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)
(7)) = Trgu |DR,(2) @ Ry(2) R ... @ R

& Belong to the same family of commuting operators: [Q,(z),T(Z')] =0

. [ . i £} ° ~
@ Even more Q-operators — ( E} different ways of fixing gi(p) m gi{n)

Pirsa: 11080028 : Page 211/315
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Spin chain in the fundamental representation

@ Take | ® 1 @ W (W —any space) and try to find all linear solutions of
R::i xX— _‘L'}‘R:_W{IJR:W@'? = R:‘W{_}' '!R:_;LTE,’C;R:_:EI —=—
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

Qﬂn: — Trqu_r — Rg\u;‘ X Rgi::l a - - - _h p\-..-_
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 - Page 212/315
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Spin chain in the fundamental representation

@ Take [ | ® [ @ W (W — any space) and oy to find all inear solutions of
Roo{x — y)Row(x)Ro,w(y) = Row(y)Row(x)Roo(x —y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R))

—

Q;}'i:f = Tra.f.u: — R:ﬂ«.’ Rp ) ... B KplZ)
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

& Even more Q-operators — L;} different ways of fixing gi(p) m gi(n)

Pirsa: 11080028 - Page 213/315
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Spin chain in the fundamental representation

@ Take I ® 1 ® W (W —any space) and try to find all inear solutions of
Ro+(x — y)Rowlx)Rowl(y) = Rowl(y) Rowl(x)Roolx — y)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R,)

@ Belong to the same family of commuting operators: 'Qp{ 72 TN —6

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)
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Spin chain in the fundamental representation

@ Take [ 1 @ [1 @ W (W — any space) and try to find all inear solations of
Ro(x — y)Row(x)Row(y) = Row(y)Ro.w(x)Roof{x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singiet in gi(p) we define (Row, = R,)

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 215/315
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Spin chain in the fundamental representation

@ Take [ ® [ @ W (W — any space) and try to find all inear solutions of

Ro-{x — y)Rowlx)Rowl(y) = Rowly)Rowl{x)Roo(x — yv)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi{p) we define (Row, = R,)

0,(z7) = Trau |DRZ) @RZ) D ... @ Ry(2)]
@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 . Page 216/315
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Spin chain in the fundamental representation

@ Take L1 ® LI ® W (W — any space) and try to find all inear solations of
Ro—{x — )R wl{x)Rowly) = Rowl(y)Row(x)Ro1(ix — ¥v)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,)

QU": — Tra&r L Rgt-.. 1_"‘; Rgl::l :j - = _: Rp\ :_

@ Belong to the same family of commuting operators: [Q,(z),T(Z')] =0

@ Even more Q-operators — ["; ) different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 : Page 217/315
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Spin chain in the fundamental representation

@ Take ({1 @ 1 ® W (W —any space) and try to find all linear solations of
Ro-{x — v)Row(x)Rowly) = Row(y)Rowlx)Roo{x — yv)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices
@ For the singlet in gi(p) we define (Row, = R,,)
Q_p*.-:,l — Trgut _: Rg\: J_f, Rg(:l| > I s - ngi:.'_.

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 218/315
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Spin chain in the fundamental representation

@ Take LI @ 1 @ W (W — any space) and try to find all inear solutions of
Ro—(x — y)Row(x)Row(y) = Ro.w(y)Rowl(x)Roo(x — y)
@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singiet in gi(p) we define (Row, = R),)

@ Belong to the same family of commuting operators: 'Qp;, 2 Tt —6
¢ Even more Q-operators — () different ways of fixing gi(p) in gi(n)

Pirsa: 11080028 Page 219/315
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Spin chain in the fundamental representation

@ Take L1 ® [ @ W (W — any space) and try to find all inear solutions of
Roolx — y)Row(x)Rowly) = Rowl(y) Rowl(x)Roolx — )

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an escillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gi(p) we define (Row, = R,)

O:(2) — Trau | DR,(Z) RZ) R -.- RR,(Z)

@ Belong to the same family of commuting operators: |Q,(z), Tt —G

. [T\ 43 r - %1 (7)1 {72)
@ Even more Q-operators — |,\p} different ways ot fixing gi(p) m gi(n)
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@ We can find R-matrices from the Yang-Baxter equation

Riz(x — ¥ 'Rus.‘f‘R:g;}‘ | — Ro3 QIFL‘I,]RL}L_-‘C'}RE[‘I — ¥

@ YBE is a defiming relation for Yangian — every solution of the YBE

gives a representation of Yangian

Pirsa: 11080028 Page 221/315
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Quantum Inverse Scattering Method

e ——

@ Transfer matrices (U is for convergence) j_‘H_H, H_ 1%
|
Ta.u.r‘-. = — Trﬂu_r : R{ILLI{:J X R.-_zuhr*;-:.' X . 2 Raru:ii-u;_

@ From the transfer matrix with auxihary=quantum we can extract local

conserved charges

0 — )
d

H = ZlogT(7)]
dz =2

@ Transfer matrices form a fammly of commuting operators

T{(), T(Z)] = [F(2),H] =6

@ ubganSier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomasz fokowsia ( Humboidt University) 09082011




Juantum Inverse Scattering Method

e ——

@ Transfer matrices (D) is for convergence) :_“__}_},H_H‘l_{_}_L

@ From the transfer matrix with auxihary=quantum we can extract local

conserved charges

U = T(z.)
d

H = —logT(z)
d:: O"’ ' L—Ix

@ Transfer matrices form a family of commuting operators

Bz}, E{z )| =Kz, I =4

r@ ubganSier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomase Fakowsic ( Humboidt Unversaty) 09082011 5/18



Juantum Inverse Scattering Method

- T —

@ Transfer matrices (D) is for convergence) :_ﬂ\__H,I,J_H{‘["L
Tazu_::'-. -:: —_— Trﬂﬂ.‘f : Rﬂuﬂ.:j : Rﬂw: *;::—1 : X RJILT-"L*

@ From the transier matrix with auxihary=quantum we can extract local
conserved charges

u § 2]
— (Ze)

d
H = —logT(2)
d_O

@ Transfer matrices form a family of commuting operators

N

T(2), T(d)] =[F(z),H] =0

r@ubganSier matrices diagonalized with use of the Algebraic Bethe Ansatz

0o082011




Juantum Inverse Scattering Method

e T

@ Transfer matrices (D is for convergence) 2 ‘P'H'l' H H_H_ s
T
T;u.r <F — Tl—iu:c is RiII.LIi _,] X Raw:{:f D . L Razu:"t-u;_

@ From the transfer matrix with auxihary=quantum we can extract local

conserved charges

Lr — Tr:t )
d
= logT(zZ)|
&z =z

@ Transfer matrices form a family of commuting operators

T(z), E(z )] = [T(z),H] =06

r@ ubgRniSter matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomase Fakowsic ( Humboidt Universaty)

09082011



Quantum Inverse Scattering Method

- ——

@ Transfer matrices (D is for convergence) : “_I_},HH H_H_ i
=R | iy 0, WP £ ) < > £ %]
Tuur'. af — Trﬂux o Rﬂu_x: W)} &K RGH.IK_-:.- & - Rﬂu_t it.-w'_

@ From the transfer matrix with auxihary=quantum we can extract local

conserved charges

8 = Et)
d

H = —lo=Ti
d:: s \ FT—=%

@ Transfer matrices form a family of commuting operators

T(2), T(Z)] = [T(2),H]l =0

-@ nopganster matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomass | okowsic { Humboidt Universitv) 09082011 5/18



Juantum Inverse Scattering Method

- T —

¢ Transfer matriees (DD is for convergence) . ‘~"H">HH‘}“;
ToalZ) — Ban D Run(Z) @ Rgal) @ - .. @ Ranll)

@ From the transfer matrix with auxiliary=quantum we can extract local

conserved charges

&Z = Ets]
d

B — —loEFis)
d:: s . Tk

@ Transfer matrices form a family of commuting operators

rid wobpRnsSter matrices diagonalized with use of the Algebraic Bethe Ansatz
09082011 5/18




Juantum Inverse Scattering Method

- T —

@ Transfer matrices (I is for convergence) ._'_‘l__}‘HHH_!__;
Tazu:'-.:-' = Trﬁut — Ramﬂ.:] X Rdmr;;:-' > SR R{ILLI (Z)

@ From the transfer matrix with auxiliary=quantum we can extract local
conserved charges

U = T(z)
e )

d
H = —logT(z)
d:: 0"-' F—Tk

@ Transfer matrices form a family of commuting operators

T, T =[T(o, B =

r@ubgRnSier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomasz fokowsio { Homboidt Universaty) 09082011 5/18




Quantum Inverse Scattering Method

e i

@ Transfer matrices (D is for convergence)

. ia: N\ £ o e
Tf_:ur'- o) — Tl—mu: L Rﬂu_x:l\mJ < Raw:xm.' & - - Rﬂu:c \

@ From the transfer matrix with auxiliary=quantum we can extract local

conserved charges

i = kbt
d

H = —logT(z)|
dz 08 £ 1 s

@ Transfer matrices form a family of commuting operators

(D). T) =Tz, B —a

r@ ubgRnSier matrices diagonalized with use of the Algebraic Bethe Ansatz

lomasz fokowsic ( Humboidt Umversity) 09082011



Juantum Inverse Scattering Method

. T —

@ Transfer matrices (D) is for convergence) __‘H_H"»HH‘l_'__
Tc:u,r"-.:-' = Trﬁﬂ_'{ : Rﬂur";.:.] X R{qux:: >« S Rauﬂ:

@ From the transfer matrix with auxiliary=quantum we can extract local

conserved charges

U = I(z.)
d _

H — —laETFt)
d:: s \ F—7k

@ Transfer matrices form a family of commuting operators

P EZ ) =E . I —4

-@nopganster matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomase Fokowsks ( Homboidt Universaty) 09082011 5/18



Quantum Inverse Scattering Method

- — —

@ Transfer matrices (D is for convergence) :"\""HHH-F'~';
Ta;.l:u:i T — R : e k:j R RuxlZ) R . b3 Rﬂfﬂ:'tw.a_

@ From the transfer matrix with auxihary=quantum we can extract local

conserved charges

= (Ze)
d

H — —loETt
d: e gl =y -

@ Transfer matrices form a fammly of commuting operators

(=), 2z )] =Tz}, H] —@

@ ubgansier matrices diagonalized with use of the Algebraic Bethe Ansatz

09082011



Quantum Inverse Scattering Method

e il i

@ Transfer matrices (D is for convergence) £ ‘~_ _H, ’» % + { ‘H_l_ i
- = TN |. -r.' o N — e Ay s ]
Zl:m:n-: F — Trﬂu_r o thwrk-uJ < Ruzuc ) & e DY Rﬂuti-. .J_

@ From the transfer matrix with auxiliary=quantum we can extract local

conserved charges

U = 1I\z.)
d

H = —logT(z)
d: - Tk

@ Transfer matrices form a family of commuting operators

T(z), T{Z)] = [T(2),H] =0

r@ ubgBnSier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomasz fokowsia ( Homboidt Umversity) 09082011




Quantum Inverse Scattering Method

- o

@ Transfer matrices (D is for convergence) 4 "H,HH‘!‘i_~__
Tuux‘- e — Traur s Ra.r,u: ) D Rau,rﬁ:_-:-! ... R{HL‘E{-:.::

@ From the transfer matrix with auxihhary=quantum we can extract local

conserved charges

LT — rd

-
H — —loeTiz
= 15

@ Transfer matrices form a family of commuting operators

3 # i .-".,' = T, Y, T =
o Rz )l =itz H =6

r@udbgBniSter matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomasr f akowsio ( Humboidt Unmiversity) 09082011 5/18



Juantum Inverse Scattering Method

@ Transfer matrices (D) is for convergence) ‘~ H,HJ{ H_H :
TLILL : = Tr—-ilh‘..‘l' _: Rfﬂ.ﬂf il-:J “:-:f RGLL‘I‘;* j & R_IHI :
@ From the transfer matrix with auxiliary=quantum we can extract local
conserved charges
g = T" ¥
E — [00 I'(z)|
d:: e

@ Transfer matrices form a family of commuting operators

T(2), T(Z)] =[T(z),H] =0

r@ubgRnsier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomass fokowsks ( Humboidt Universitv) 09082011



Quantum Inverse Scattering Method

- T

@ Transfer matrices (I is for convergence) - *_i_},HHH_l_(_,

@ From the transfer matrix with auxiliary=quantum we can extract local
conserved charges

- 7 \
7 = =)
— | Laie )

d
H = —logT(z7)
d:: O"—' F—7%

@ Transfer matrices form a fammly of commuting operators

(). T(2) = o). .1 —6

r@ ubgRniSter matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomasz ukowska (| Humbeidt Universatv) 09082011 5/18



Juantum Inverse Scattering Method

- T

@ Transfer matrices (U is for convergence) “i"HHH‘i‘}- =
Faux(Z) = Traux | D Raux(Z) @ Raue(2) @ - .- @ Raux(Z)|

@ From the transier matrix with auxiliary=quantum we can extract local

conserved charges

U e -:z_:,'t,'
d
H — —loETi
d:: O"—' | f F—k

@ Transfer matrices form a family of commuting operators

T(z), T(Z)] = [T(2),H] =0

@ ubgRnSier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomass ¥ pkowski ( Humboidt Umverssty)

09082011



Quantum Inverse Scattering Method

- T —

@ Transfer matrices (D is for convergence) ,_’_‘H_H r J( l { H_}_;
o Z) = T : Raw\Z) RRG(Z) R ... @ Rgx(Z

@ From the transfer matrix with auxiliary=quantum we can extract local

conserved charges

2 = Rl
d

H = —logT(z)|
d:: - . Tk

@ Transfer matrices form a family of commuting operators

[P ER) — ko), 1 —d

r@ubganSier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tormmase akowsio ( Homboidt Universaty) 09082011 5/18



Quantum Inverse Scattering Method

. -

2 e b
@ Transfer matrices (D is for convergence) : ‘~_|_H,HHH" .
Tam:'.:..- — Trﬁf.ﬂ.‘ : Rﬂuﬂ:j 2 Ruz:_ri;:.-' R .. & Rau:ci:s

@ From the transfer matrix with auxihary=quantum we can extract local

conserved charges

g — =
d

H — —loeTiz
d:: E —oXx

@ Transfer matrices form a fammly of commuting operators

T(2).T(Z)] = [T(2).H] =0

@ ubgRnsSier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomass  okowsika { Humboidt Universitv) 0eg082011 5/18




Quantum Inverse Scattering Method

- i

@ Transfer matrices (D is for convergence) : ‘H_H,HH +H'l
T;;m:‘-. = — Tr{lﬂ_f : R{I};Lﬂ-:.J X Razu:*;_-:: & . & Rﬂu_t';.-

@ From the transfer matrix with auxiliary=quantum we can extract local

conserved charges

¥ — o)
- j—_zonrl-wh::f

@ Transfer matrices form a famly of commuting operators

). E ) —E(o) I —4

@ opganster matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomasz fokowskn ( Homboidt Universaty) 09082011



Quantum Inverse Scattering Method

— T —

@ Transfer matrices (D) is for convergence) -

= Bia: £ £ % i < /
Tgm: <) — Trﬂw: s Rau_tjauj e Ruuxu_m. &Y - e - & Rau:c \ <

@ From the transfer matrix with auxihiary=quantum we can extract local

conserved charges

= )
d

H = —loeT(z)
d:: = | T

@ Transfer matrices form a fammly of commuting operators

r@ubgRnSter matrices diagonalized with use of the Algebraic Bethe Ansatz

09082011 S/18



Juantum Inverse Scattering Method

e T

@ Transfer matrices (D is for convergence) - ‘H_},HH H‘H_;
L el Z) = T | U Rgpe(Z) @ Rl Z) @ - - - @ Raux(Z)|

@ From the transfer matrix with auxiliary=quantum we can extract local

conserved charges

0 = R
d

H — —lweTis
d: et I T—%

@ Transfer matrices form a family of commuting operators

T(2).T(z)] = [T(2).H] =0

@ nopgansier matrices diagonalized with use of the Algebraic Bethe Ansatz

fomasz ¥ nkowsia (Huomboidt Umiversity ) 09082011 5/18



Juantum Inverse Scattering Method

e i

@ Transfer matrices (D is for convergence) ‘H_ 33
|

Ptz — ., : i l;-:\_J DRz} 8 .. & Rﬂm:i:”
@ From the transfer matrix with auxiliary=quantum we can extract local
conserved charges
5 —— .’::T.:
H = —logT(z)
@ Transfer matrices form a family of commuting operators

.76 —iE), i —a

@ ubgRnsSier matrices diagonalized with use of the Algebraic Bethe Ansatz

09082011 5/18




Quantum Inverse Scattering Method

- T —

@ Transfer matrices (D is for convergence) “\"!’H’HH"'!”
—l IR £ % F % e i £ )
z_z.w:‘-. “f — Trﬂmr A RtILL'E \Z} & Rgmﬁ_.ﬁ,, & - - R,Hu.{ Z)

@ From the transfer matrix with auxiliary=quantum we can extract local
conserved charges

0 = s
— b i J

d
H — —lo=ft:)
d:: 0"" —ix

@ Transfer matrices form a fammly of commuting operators

T, T =), B —a

r@ nopgansier matrices diagonalized with use of the Algebraic Bethe Aansatz

09082011 5/18




Juantum Inverse Scattering Method

- T

@ Transfer matrices (D) is for convergence) ‘\

Rk} — B Rtz G Rl 7)) 5 . . . B R

@ From the transfer matrix with auxihiary=quantum we can extract local

conserved charges

Lr — T::#r
d
H = ZlogT(2)
dz =z

@ Transfer matrices form a family of commuting operators

T(2).T(Z)] = [T(2).H] =0

r@ubgRnSier matrices diagonalized with use of the Algebraic Bethe Ansatz

Tommasr ¥ okowsia ( Hombeidt Unmversity) 09082011



Juantum Inverse Scattering Method

- T —

@ Transfer matrices (D) is for convergence) :"\"H'HHH'(-:'
=, i D, SN =X < /
I_II.LE \e) — Trﬁﬂx o RﬁILLT.' (<) & Ruux V) & Ruuﬂ <)

@ From the transfer matrix with auxihary=quantum we can extract local

conserved charges

U = T(z)
d
H = ZlogT(7)]
dz =z

@ Transfer matrices form a family of commuting operators

Tz B ) — [Flo) H —A

r@ubgRnSier matrices diagonalized with use of the Algebraic Bethe Ansatz

09082011




Juantum Inverse Scattering Method

= .

@ Transfer matrices (U is for convergence) : ‘~,

- | — R -'—-...“ [ — o T £ e I ....l' ]
Tdu:c ) — Trﬂ.w: L Rﬂzuc \Z} & R AU\ &) < - = R{IH_‘l'ii-u .f'_

@ From the transfer matrix with auxiliary=quantum we can extract local

conserved charges

U = 1Ilz.)
d

H = —losT(z
dg = =~ ==

@ Transfer matrices form a family of commuting operators

T(2). E(Z)] =K H —0

ri@ ubgBnSTer matrices diagonalized with use of the Algebraic Bethe Ansatz

fomasz Fokowsio ( Humboidt Umversity) 09082011 T



Quantum Inverse Scattering Method

e ——

@ Transfer matrices (D is for convergence) 4 ‘~__H r % * H_H_ 3
Taur‘- TF — Tl—jwc e Rﬂu_ﬂ Z) X Rmﬂ:} S . 2 Rr_u.u:i*

@ From the transfer matrix with auxihary=quantum we can extract local

conserved charges

U = T(z)
d

H = —logT(z)
d:: 0"—' T— T

@ Transfer matrices form a family of commuting operators

T(o), F(Z)] = [T —a

-@ opganster matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomasz Fakowsks ( Humboidt Universaty ) 09082011




Quantum Inverse Scattering Method

. T

@ Transfer matrices (D is for convergence) “ | HHHH_} R

£ % _ Bim . £ o} SN F % o — F-%]
‘Tﬁu_tt &) — Tl-ﬂw: S R{:wc (<) & RHJ‘.'L‘EH_'-: s A R{Izu'"lw:'_

@ From the transfer matrix with auxiliary=quantum we can extract local
conserved charges

U (z.)
J C— | e

d
H = —logT(z7)]
d: e F—T%

@ Transfer matrices form a family of commuting operators

). Ft)] =Ko, B —0

@ ubgRnSter matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomass fokowskn ( Humboidt Universatv) 08082011 5/18



Juantum Inverse Scattering Method

. T —

@ Transfer matrices ([ is for convergence) . ‘~__H, } }L HH_(_L
I\ Z) = T |D Rae(7) @ RauxlZ) @ - .. @ Rage(7)

@ From the transier matrix with auxiliary=quantum we can extract local

conserved charges

U = Tiz,)
d

H = —logT(z)]
d: = F—a%

@ Transfer matrices form a family of commuting operators

T(z),. T(Z)] =[Fo, . H] =0

r@udbgBnSTer matrices diagonalized with use of the Algebraic Bethe Ansatz

Tomass f okowsko (| Humboldt Universaty) 09082011 5/18



Quantum Inverse Scattering Method

— - T

@ Transfer matrices (D) is for convergence) :”\'i-H*HH‘!";
Ta;uxt.:f = Trauu: L szu_‘cL:J X Rduh:f L...& Ram:(:

@ From the transier matrix with auxihary=quantum we can extract local

conserved charges

I — logT(z)|

@ Transfer matrices form a family of commuting operators

T(2).T(Z)] = [T(2).H] =0

-@ nopganster matrices diagonalized with use of the Algebraic Bethe Ansatz

lomase Fakowsikn ( Humboidt Unmversaty) 09082011 5/18



@ We can find R-matrices from the Yang-Baxter equation

Riz(x — y)Ri13(x)Rx(y) = R3(y)Ri3(x)Ri2(x — y)

|
A o

@ YBE is a defining relation for Yangian — every solution of the YBE
gives a representation of Yangian

@ Example [ [ R [LIR® L[]
Ri>(z) =z + Py

Pirsa: 11080028 Page 251/315
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Spin chain in the fundamental representation

@ Take (1 @ 1 @ W (W —any space) and try to find all linear seolutions of

Ro—{x — ) )R wix) R wl V) = R:—_Wt}' IR wl{x )Ry 1{x — V)

@ W can be the representation space of the tensor product of any gi(p)
(p < n) representation and an oscillator algebra representation
@ For p = n we have previous solutions — transfer matrices

@ For the singlet in gl(p) we define (Row, = R,)

@ Belong to the same family of commuting operators: [Q,(z).T(Z')] =0

@ Even more Q-operators — | ;) different ways of fixing gi(p) m gi(z)

Pirsa: 11080028 Page 252/315
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@ Solve YBE for L1 @ LI ® A —leads to R~ (quadratic)

i,

R alz) = ze; + €ii 9 Jji

Pirsa: 11080028 Page 253/315
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@ Solve YBEfor L1 @ LI ® A —leads to R~ x (quadratic)

<

Roa(Z) = zei +€; D

@ Solve YBEfor L1 @ A @ W, —leads to R w, (linear)

p

C(z+Ar) _Gg¢ r=k..., p
Raw,(z) = e H N -x+p_j{;;a. Jea :

L ]
—x

Pirsa: 11080028 Page 254/315
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Spin chain in any representation

@ Solve YBEfor L1 @ LI ® A —leads to R~ 5 (quadratic)
Roa(z) =zei +€; D J;

@ Solve YBEfor L1® A @ W, —leads to R w, (linear)

D

Raw.(2) = %5 H 1“: — @S i—FE ___. p
| e e i j=p+1.....n

This is a plug-in formula expressing R-matrices for Q-operators i terms of

gi(7) generators in the quantum space

Pirsa: 11080028 Page 255/315
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@ Solve YBE for L1 @ LI ® A —leads to R~ (quadratic)

R:.Ai;f — 2 € T €5 & Jji

@ Solve YBEfor (1@ A @ W, —leads to Rj w, (linear)

2 . .
£% . s L'(z+ Ag) a9 e P
R“_'L. Trl‘-:r L4t — € i ]-__J e J -

LT P —K) j=p+1.....,nm

K—1

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(n) generators in the quantum space

@ Works for:
$ Compact representations.
3 NON-COMPpAct representations,
@ conjecture: works also for non-hws representations

Pirsa: 11080028 Page 256/315
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@ Solve YBE for L1 @ LI ® A —leads to R~ (quadratic)

Roalzg) —zes +e; R ;i

@ Solve YBE for (L1 @ A @ W, —leads to R w, (linear)

p

Raw,(2) = %5 I I L(z+ A oS ;
N Wy ____:]._i‘:—-—p__}c'] J;:
x—1}

gi(z) generators in the quantum space

@ Works for:
3 compact representations.
3 NON-COmpact representations.,
@ conjecture: works also for non-hws representations

Pirsa: 11080028

This is a plug-in formula expressing R-matrices for Q-operators in terms of

Page 257/315
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@ Solve YBE for L1 ® L1 ® A —leads to R ) (quadratic)

Roalz) =zei +€; @ Jj
@ Solve YBEfor (1 @ A @ W, —leads to Ry w, (linear)

oy ‘I:? r.: _._1‘_!.= :| = o E.' — I- .....
Raw,(2) = €™ I I —————_¢& F¥, p
| {;L]._:_.T.f_p—k’_] ey

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(n) generators in the gquantum space
@ Works for:

¢ COmpact representations.

3 NON-COmpAact representations.

3 conjecture: works also for non-hws representations

Pirsa: 11080028 Page 258/315
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@ Solve YBE for L1 ® L1 ® A —leads to R 5 (quadratic)

.

R:.-\L::ﬁ —Ze€; —e5 D Jj

17

@ Solve YBE for (1 @ A @ W, —leads to Ry w, (linear)

p

gt r': N B ;"17 ' o ; = I_ .....
RA_W;.:; — &% H — = - - 3; 3 { P
'_ 1 L\t P —k) j=p+1,...., 7

'\::.L

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(z) generators in the quantum space
@ Works for:
& compact representations.
3 NON-COmMpact representations,
3 conjecture: works also for non-hws representations

Pirsa: 11080028 Page 259/315
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Spin chain in any representation

@ Solve YBE for (1 @ [1® A —leads to R s (quadratic)
Rooal(z) = zei +€; @ Jj

@ Solve YBEfor L1 ® A @ W, —leads to Ry w, (linear)

D

T St ]-_'I": S .{:'1' ; - 1 - E — }_ .....
R.LW__;;_:; — o H = . J{b - J__s._ | P
W SR F—ptk . n

This is a plug-in formula expressing R-matrices for Q-operators m terms of

gl(z) generators mn the quantum space

@ Works for:
$ Ccompact representations.
3 NON-COmMPpAact representations.,
3 conjecture: works also for non-hws representations

Pirsa: 11080028 Page 260/315
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@ Solve YBE for L1 @ LI ® A —leads to R~ 5 (quadratic)

Roa(z) = zeq +€; D Jj

@ Solve YBEfor L1 ® A @ W, —leads to Ry w, (linear)

p

| Qi ]._ Z =

“.—.L

r=1,...,p
F=ptk ...n

Rl
L

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(7) generators m the quantum space

@ Works for:
& compact representations.
3 NON-COmpact representations,
@ conjecture: works also for non-hws representations

Pirsa: 11080028 Page 261/315
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@ Solve YBE for L1 @ LI ® A —leads to R~ (quadratic)

Roa(z) =zeis +€; DI

@ Solve YBE for L1 ® A ® W, —leads to Rj w, (linear)

p

e ]-_':.._"_; - ot g I: I_. .
Rj_r,lr'_;;:f —_— e"'r-b.’ H — A _e aS; t P
| {;if._:+p—k1 j=p+1,....n

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(n) generators in the quantum space

@ Works for:
¢ COompact representations.,
3 NON-COmpact representations.,
@ conjecture: works also for non-hws representations

Pirsa: 11080028 Page 262/315
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Spin chain in any representation

@ Solve YBE for L1 @ LI ® A —leads to R (quadratic)
Roialz) =z +e5 R J;
@ Solve YBEfor L1 @ A @ W, —leads to Ry w, (linear)
A a;S; T T(z+40 oS t=1,....p
Raw,(z) = e ;E[L].—‘;p—k 3 R

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(n) generators mn the guantum space

@ Works for:
& COmpact representations.
3 NON-COmpact representations,
3 comnjecture: works also for non-hws representations

Pirsa: 11080028 Page 263/315
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Spin chain in any representation

@ Solve YBE for LI @ LI ® A —leads to R~ (quadratic)

i,

Roalz) =zei + e @5

@ Solve YBEfor L1 ® A @ W, — leads to R w, (linear)

[,

i F'(z+ Az) i == s
R“L_LFW : o c’:’u'b" H 2 A e ,:._.5.‘ P
e L tPp—k) j=p+1,...,n

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(n) generators in the quantum space

@ Works for:
@ compact representations.
3 NON-COMmMPpact representations.,
@ conjecture: works also for non-hws representations

Pirsa: 11080028 Page 264/315
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Spin chain in any representation

@ Solve YBE for L1 ® LI @ A —leads to R~ (quadratic)
Riialz) =zei +€; @ Jji

@ Solve YBEfor L1 @ A @ W, —leads to Rj w, (linear)

p

g C(z+A4A:) _z¢ =k . .
Raw.(2) = %5 H - Ar o ES P
| A;:i]'—;':ﬂ'_p_k’] =" o - n

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(n) generators mn the quantum space

@ Works for:

$ COmpact representations.

@ NON-CoOmpact representations.,

a conjecture: works also for non-hws representations
.9 What are the operators A’

Page 265/315
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@ Solve YBE for L1 @ LI ® A —leads to R~ (quadratic)

Roalz) =ze: +€ @ Jj

@ Solve YBE for L1 @ A @ W, —leads to R w, (linear)

2]

e Fl(z1+ Az ) i =0
Raw,(2) = H T (= %}ca e, 1 g
T R S j=p+1.....n

K—1

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(7) generators in the quantum space

@ Works for:
3 compact representations.
3 NON-COmpact representations.,
@ conjecture: works also for non-hws representations
@ What are the operators A’

Page 266/315
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Spin chain in any representation

@ Solve YBEfor L1 @ LI ® A —leads to R~ 5 (quadratic)

Roalz) =zes +€; 245

@ Solve YBE for (1 @ A @ W, —leads to Ry w, (linear)

)

7 SF ]-_': + Az ) gl E — I_. W=
R‘LW}'.:I — o5 H —_ X —e ,1__5_. ‘ P
| =il s j=p+1,....n

—

This 1s a plug-in formula expressing R-matrices for Q-operators in terms of

gi(7) generators i the quantum space

@ Works for:
3 compact representations.
3 NON-Compact representations,
& conjecture: works also for non-hws representations
@ What are the operators Az’

Page 267/315
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Spin chain in any representation

@ Solve YBE for L1 @ LI ® A —leads to R 5 (quadratic)
Ralz) =zei +e; @ J;

@ Solve YBE for L1 @ A @ W, —leads to R, w, (linear)

p

o i I'(z k) _,—;_ & I —1..... p
R.LW} V<) — e . zS;
| IIF—+p zh F=p+k

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(7) generators mn the quantum space

@ Works for:
¢ compact representations.
3 NON-COmpact representations,
@ conjecture: works also for non-hws representations
@ What are the operators A’

Page 268/315
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Spin chain in any representation

@ Solve YBE for L1 @ LI ® A —leads to R~ x (quadratic)
Roalz) —zes +e @ F;

@ Solve YBE for (1@ A @ W, —leads to Rj w, (linear)

2,

Ct r:; 1% ;! - =k ii — I_. il il
R‘E_L{f; :J == ELI',_, H ]-__I _. . _}J( ~ e J.,S : - P
W R F=ptrk.. 4

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gl(z) generators m the quantum space

@ Works for:

@ compact representations.

¢ NON-COmMPpact representations.,

3 conjecture: works also for non-hws representations
@ What are the operators A’

Page 269/315
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@ Solve YBE for L1 @ LI ® A —leads to R~ (quadratic)

Roialz) —zes +e; @ F;

@ Solve YBEfor [ 1@ A @ W, — leads to Ry w, (linear)

p

gt ]-—l:: 1 25]) 1 - I = }_ .....
Raw, (=% [ =8 4% e
| Lz+p—k) j=p+1. ..., 7

k—1

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi( ) generators in the guantum space

@ Works for:

3 compact representations.

¢ NON-COMPpAact representations.,

3 conjecture: works also for non-hws representations
@ What are the operators A’

Page 270/315
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@ Solve YBE for L1 @ LI ® A — leads to R~ (quadratic)

--\_

Rialz) =z +€ @ Jj

@ Solve YBEfor [ 1@ A @ W, — leads to R w, (linear)

)

i ]._':, + Ag) g Z = I_ .....
RNL W, LR .E;’LI"J.; H : —_ = .*\. 3 ,I.S ‘ P
| e L+ Pp—k) =L -

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(7) generators m the quantum space

@ Works for:
3 compact representations.
3 NON-COMPpACt representations.
s conjecture: works also for non-hws representations

@ What are the operators Ag?

Page 271/315
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Spin chain in any representation

@ Solve YBE for L1 @ LI ® A —leads to R~ (quadratic)
Rialz) = zei +€; @ Jj

@ Solve YBEfor L1 ® A @ W, — leads to R w, (linear)

D

- ]-_'-:_'_.: - - 1 - ! = I_.. =
RA--T'V; -:..' — E,‘LI"E.’ ]:[ : _}Jx. e _Ij t p
| {;if-._:*p—/m Fsanneng 1

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(7) generators mn the gquantum space
@ Works for:

3 compact representations.

3 NON-COMmMpAaCct representations.

3 comjecture: works also for non-hws representations
.2 What are the operators A’

Page 272/315
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Spin chain in any representation

@ Solve YBE for L1 @ LI ® A —leads to R~ (quadratic)

Roa(z) =zei +€; @ ;i

@ Solve YBE for L1 ® A ® W, —leads to Ra w, (linear)

p , .
: a5t - ke | ;_"11_{ —,_I‘,S_' £ — I_ ..... p
Raw (s} — €% I I ,, - e
=% | FI=ptk....n

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(7n) generators mn the quantum space

@ Works for:

$ compact representations.

3 NON-COmpact representations.,

@ conjecture: works also for non-hws representations
@ What are the operators A’

Page 273/315
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@ What are the A;”
3 a pnori, compilicated functions of Casimur operators
oG—55...8
given by
= 4 I \ =
oo M | 255 ) 4
/_.ri .- \ -J‘__h — —1-} y.
=1 =k
Pirsa: 11080028 Page 274/315
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@ What are the A;”

@ a prori. compiicated functions of Casimur operators
S o

given by

! (1 \u
a=2 1 {1-5—5)4
=L =K -
s however, they are simply shifted gi(p) weights of the decomposition of

the gi{ n) represemtation with respect to the gi(p) subalgebra!

Pirsa: 11080028 Page 275/315
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@ What are the A;”

3 a pmori. complicated functions of Casimur operators
&g=%'%...8

given by

p / 1 \
s = | Al
s Z ]_':[ ( 1 4 — Ay __.-‘I %

» however, they are simply shifted gi(p) weights of the decomposition of

the gi{ n) represemtation with respect to the gi(p) subalgebra!

An example: gi(2) in gi(3)

— | — —
— . £FY , il T
Pirsa: 11&)028 2 L 3 _': l— L7 2
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xample: spin s = —5 spin chain
@ Basis of spin s = —f representation: |M) = (a)"(0).al0) =0

lomase Fokowsks (Humbeoidt University) 09082011



cample: spin s = —% spin chain

@ Basis of spin s = —+ representation: (M) = (a)”|0).al0) =0

@ For length L = | all Q-operators are diagonal

Oplz) = 1
P

®
™
]
=
f-.l
|
|

Page 278/315
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ample: spin s = —3 spin chain

@ Basis of spin s = —+ representation: |M) = (a)"|0),al0) =0

@ For length L = | all Q-operators are diagonal

Qplz) = 1

&

Lad

—M -z —

Oi:{z) = Tolz) = —

@ Q;isapolynomial inzforall M > 0

Page 279/315
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cample: spin s = —% spin chain

@ Basis of spin s = — representation: |M) = (a)*|0),al0) =0

@ For length L = | all Q-operators are diagonal

Qalz) = 1
M-+—z—1/2)!-F {—hw.—.-lff:—;%—:—l e
Qi(z, M) = =
z—1/2)!
—M +z—-3/2)2F, (M+ 1, M+1;M—7z+3/2; — |
Oz, M) = — :

@ Q;isapolynomial mzforall M > 0
@ (7 is a very complicated meromorphic function with an infinite number

Page 280/315
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Analytic properties of Q-functions

@ Hasse diagram for s > 0 — compact case

F'f i "Fa =
L L L7 Ll \ I,

e

- /F ‘\ .
polynomal polynomal
1

Pirsa: 11080028 Page 281/315

09082011 13/ 18




@ Hasse diagram for s > 0 — compact case

—_

'l A T S T
L LT ".L‘

|

- /I ‘\\ N
polynomal polynomal
1
@ Hasse diagram for s = —1/2 —non-compact case
polynomal non-polynomial

S

Pirsa: 11080028 Page 282/315
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Analytic properties of Q-functions

@ Hasse diagram for s > 0 —compact case

3o
- /f o ‘\ .
polynomal polynomal
1
@ Hasse diagram for s = —1/2 — non-compact case
polynommal non-polynomial

@ For su(2.2/4) we have 2° different Q-operators with various analytic

properties - some of them are polynomials and some are very

s @@IMPlicated meromorphic functions page 263315
Tomass fukowsikl (| Humboidt University) 0908 2011




Anybody seen the Hammitoman?

@ We know Bethe equations for all representations for all (super)algebras:

.. 1 e nested Bethe ansatz for "all” closed spm chains™ — Belliard, Ragoucy <oos)

Pirsa: 11080028 Page 284/315
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cample: spin s = —% spin chamn

@ Basis of spin s = —+ representation: |M) = (a)™(0).al0) =0

@ For length L = 1 all Q-operators are diagonal

Oslz) = 1

|
~

|

|
e
-3
-}_
ﬁ
=

|
Y
=

|
-
=~

|
[

|
Y]
J

@ Q) is apolynomial im zforall M > 0O

Page 285/315
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@ What are the A;”

2 a pnori. complicated functions of Casimiur operators
a=SiSE... 8

given by

,.r'f 1 f.
=3 H(1-3=2 )4

; 5 \ L RN LEF F
=L =K ) :

@ however. they are simply shifted gi(p) weights of the decomposition of

the gi{ n) representation with respect to the gi(p) subalgebra!

—2 >, E_E § (1 %, =
i
= i E_ | E= ]
Pirsa: 11&)028 —7 2 " 3 . 1 v 2 Page 286/315
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@ Solve YBE for LI @ LI ® A —leads to R~ (quadratic)

Roa(z) =zei +€; R I

@ Solve YBE for L1 @ A @ W, —leads to R w, (linear)

G o I'(z+ Az) g 1 T
Raw (2) = e;r.j.- ]:[ 3 K/ s ,15 P
'_ Liz+p—K&) j=p+1,....n

—T
Ae—1

This is a plug-in formula expressing R-matrices for Q-operators in terms of

gi(7) generators in the quantum space

@ Works for:
@ COompact representations.
3 NON-COMPpAaCt representations.,
2 conjecture: works also for non-hws representations

2. What are the operators Az’

Page 287/315
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Spin chain in any representation (II)

@ What are the A;”

2 a pnori. compilicated functions of Casimir operators
G—Sr...%

given by

{
{ :ZHU_ w_a )"
=1 =k °

Pirsa: 11080028
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@ What are the A;?

2 a pmori. compilicated functions of Casimir operators
Ga—. .9

given by

||
.-“'- [M]~

2 however. they are simply Shifted gi( ) weights of the decomposition of

the gi{ n) representation with respect to the gi(p) subalgebra!

Pirsa: 11080028 Page 289/315
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@ What are the A;?

3 a poori. complicated functions of Casimir operators
g-—Sr.. .2

given by

Pirsa: 11080028

Page 290/315

0o082011

I1/18




xample: spin s = —5 spin chain
@ Basis of spin s = —":— representation: |M) = (a)”]0).al0) =0

09082011




@ Hasse diagram for s > 0 —compact case

—

Ny =
|y v

S

- /"‘ ‘\\‘ -
polynomal polynomal
1
@ Hasse diagram for s = —1/2 — non-compact case
polynomal non-polynomial

o S

Pirsa: 11080028 Page 292/315
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Anybody seen the Hammitoman?

@ We know Bethe equations for all representations for all (super)algebras:

.. 1 e nested Bethe ansatz for "all” closed spmn chains™ — Belliard, Ragoucy <oos)

Pirsa: 11080028 Page 293/315
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Anybody seen the Hamltonian?

@ We know Bethe eguations for all representations for all (super)algebras:

.. L e nested Bethe ansatz for "all” closed spm chains™ — Belliard, Ragoucy «<oes)

@ But what are we diagonalizing? — the Hamiltomian is known only for

i

some representations. e.g. gi(2):

Hiivy = —29(J; ;.1 + 1) + const

Pirsa: 11080028 Page 294/315
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Anybody seen the Hammitonmian?

@ We know Bethe eguations for all representations for all (super)algebras:

.. L e nested Bethe ansatz for "all” closed spm chains™ — Belliard. Ragoucy coes)

@ But what are we diagonalizing? — the Hammltoman is known only for

some representations, e.g. gi(2):
Hiirs = —29(lii1 + 1) + const

@ Similar situation in all loop N = 4 SYM — it was conjectured that the
solation 1s grven by the Y-system/TBA equations....

However. what 1s the Hamiltoman?

Pirsa: 11080028 Page 295/315
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What about R-matrices?

@ How to generalize the following formula from gi(2) to gi(n)?
Ra xl Fiz+Jd+1)
AAZ) — =
F(—=+d+1)
Pirsa: 11080028 Page 296/315
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What about R-matrices?

@ How to generalize the following formuia from gi(2) to gi(m)?

B i F(z+Jd+ 1)
ANMI — == = _

Ft—=+3-4-1
@ Using the relation

Page 297/315
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What about R-matrices?

@ How to generalize the followmng formula from gi(2) to gi(n)?
iz X 1-1)

RaalZ) =
@ Using the relation
EtoEll —) ———

@ We end up with
z+J+1)I(z—1) C(z+ A )T (z+A>)
Ra A(Z) = —
(ol (z+ 1) I'(mnl(z+1)
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What about R-matrices?

@ How to generalize the followmng formuia from gi(2) to gi(z)?

R | Flz 111
AA\Z) = =

]._ _.: F ik | ]_
@ Using the relation

@ We end up with

RaAD =TT+ D) TOrE+1
@ Conjecture:
R Pt - L'(z+ Ax)
@) = T ey
where A; are shifted weights of the decomposition of the tensor product
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What about R-matrices? (II)

@ Almost correct — works for the rectangular representations
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What about R-matrices?

@ How to generalize the followmg formuia from gi(2) to gi(z)?
Etz+-J31+1)

RaAlZ) =
It—==t+34+14
@ Using the relation
o T
Izl (1l —z) = ——
sin( 7wz

@ We end up with

_ (z+J+1DI(z—J) [(z+A4)[(z+ A>)
Rx AlZ) = . = _
e Yz} ¢z+1) I'(al(z+ 1)

@ Conjecture:
4

Rx A(z) = H L'(z 4+ Ag)

LL T (z+nm—Kk)
K—i
where A; are shifted weights of the decomposition of the tensor product
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What about R-matrices? (II)

g
. I'(z+ Ag)
R T = -

".
T g
e [

@ Almost correct — works for the rectangular representations
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What about R-matrices? (II)

@ Almost correct — works for the rectangular representations
@ For non-rectangular representations it gives only the ‘'symmetric part’ of

the R-matrix
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What about R-matrices? (II)

In /
R = \Z+A%)
@ =

k=1
@ Almost correct — works for the rectangular representations
@ For non-rectangular representations it gives only the 'symmetric part’ of
the R-matrix
@ This stems from the fact that for non-rectanguiar representations we have

multiplicities in the decompeosition of the tensor product
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What about R-matrices? (II)

i

e - (T + Ax)

=1

@ Almost correct — works for the rectangular representations

@ For non-rectangular representations it gives only the ‘'symmetric part’ of
the R-matrx

@ This stems from the fact that for non-rectangular representations we have
multiplicities in the decompeosition of the tensor product

@ The resulting Hamiltonian takes the form

1

BN
|
!

p(z. + Ax) +const(n, z.)
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@ We found a umiversal (we beheve) method for the construction of Baxter

Q-operators through the QISM
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Summary and Outlook

@ We found a umiversal (we belhieve) method for the construction of Baxter

Q-operators through the QISM

@ We opened a new chapter in the theory of representations of Yangians
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Summary and Outlook

@ We found a umversal (we belhieve) method for the construction of Baxter

Q-operators through the QISM
@ We opened a new chapter in the theory of representations of Yangians

@ In particular, this method can be applied to the one-loop spin chain of the

AdS/CFT correspondence
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Summary and Outlook

@ We found a umiversal (we believe) method for the construction of Baxter
Q-operators through the QISM

@ We opened a new chapter in the theory of representations of Yangians

@ In particular, this method can be applied to the one-loop spin chain of the
AdS/CFT correspondence

@ Next steps:

2 more loops — not nearest-neighbor spin chains
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Summary and Outlook

@ We found a umversal (we believe) method for the construction of Baxter

Q-operators through the QISM
@ We opened a new chapter in the theory of representations of Yangians

@ In particular, this method can be applied to the one-loop spin chain of the
AdS/CFT correspondence
@ Next steps:
¢ more loops — not nearest-neighbor spin chains

s wrapping — breakdown of the spin chain picture (?)
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Summary and Outlook

@ We found a umversal (we beheve) method for the construction of Baxter

Q-operators through the QISM
@ We opened a new chapter in the theory of representations of Yangians

@ In particular. this method can be applied to the one-loop spin chain of the
AdS/CFT correspondence
@ Next steps:
2 more loops — not nearest-neighbor spin chains
a wrapping — breakdown of the spin chain picture (?7)

@ understand analytic properties of all-loop Q-, T-, Y-functions
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Thank you!
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Summary and Outlook

@ We found a umiversal (we belhieve) method for the construction of Baxter

Q-operators through the QISM
@ We opened a new chapter in the theory of representations of Yangians

@ In particular. this method can be applied to the one-loop spin chain of the
AdS/CFT correspondence
@ Next steps:

2 more loops — not nearest-neighbor spin chains
s wrapping — breakdown of the spin chain picture (?)

@ understand analytic properties of all-loop Q-, T-, Y-functions
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