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Edge modes, zero modes and conserved
charges in parafermion chains

IGST 11
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As wise men said...

It has become quite commonplace for concepts to move up and
back between statistical physics and field theory.

Pirsa: 11080023 Page 3/89



This paper is concerned with elaborating an example from
statistical physics which might perhaps illuminate in a simple
context some ideas which have been employed in particle
physics. In particular, we study some fields which appear (at
least) superficially similar to those describing (fractionally)
charged particles and topological excitations like 't Hooft

monopaoles...
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Where you may have heard of paratermions:
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Where you may have heard of paratermions:

» They provide an elegant description of integrable 7, invariant
integrable lattice models (e.g. the critical 3-state Potts model)
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Where you may have heard of paratermions:

* They provide an elegant description of integrable 7, invariant
integrable lattice models (e.g. the critical 3-state Potis model)

* Thecritical points are described by conformal field theories with
important properties.

non-abelian part of SU(2)-invariant models, W-algebras
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Where you may have heard of parafermions:

* They provide an elegant description of integrable 7, invariant
integrable lattice models (e.g. the critical 3-state Potts model)

* The critical points are described by conformal field theories with
important properties.

non-abelian part of SU(2)-invariant models, W-algebras

* Correlators in these CFTs are used to construct the Read-Rezayi
wavefunctions for the fractional quantum Hall effect.
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CFTs and the FQHE both play a central role in the
search for systems with topological order.
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CFTs and the FQHE both play a central role in the
search for systems with topological order.

Systems with topological order in 2+1 dimensions
typically have anyonic/fractionalized/spin-charge
separated excitations.

These quasiparticles can even have non-abelian

braiding. The braiding/fusing rules of the anyons are
those of a 2d RCFT.
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CFTs and the FQHE both play a central role in the
search for systems with topological order.

Systems with topological order in 2+1 dimensions
typically have anyonic/fractionalized/spin-charge
separated excitations.

These quasiparticles can even have non-abelian

braiding. The braiding/fusing rules of the anyons are
those of a 2d RCFT.

A familiar example is Chern-Simons theorv.
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_attice models are fundamental to both condensed
matter physics and to integrable systems.

Maybe it would be a good idea to go back and see if the
original lattice parafermions of Fradkin and Kadanoff
have something to do with topological order...

I"ll describe interacting lattice models with edge modes
that are not perturbations of free fermions. This is
progress toward a Z.N -invariant interacting
generalization of the Kitaev honeycomb model.
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Outline

» Edge/zero modes in the Majorana chain

* Edge/zero modes in the 3-state (chiral) Potts
chain using parafermions
an unusual form of integrability

* Coupling chains to make 2d Z gauge theories

generalizing the Kitaev honeycomb model



How to fermionize the quantum Ising chain

H=) [fff + Jo5 071 |
j !

fiip rarm interaction

Critical point is when -/ = /, ordered phaseis-/ > /.
Zo symmetry operator is flipping all spins:
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Jordan-Wigner transformation
in terms of Majorana fermions

. . L2 xT e e x
WJ—Uj”Uz‘- XJ_JjIIJi

Ui, ¥j} ={xi-xs} =205, {¥i,x;} =0

string

/Lo symmetry measures even or odd number of fermions:

(1) =11 o7 = I1.(ivjx;)
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The Hamiltonian in terms of fermions
* with free boundary conditions:

A..-—""'M /\ﬂ/\ﬂ Aﬂ’\ﬁ% A\
@O @O [ @) @0 @O @O @O

N N-1
H=if ) vixj+iJ ) xs¥sm
§=1 =1
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How to fermionize the quantum Ising chain

B | [f;’f +Joso5 1|
j !

flip term interaction

Critical pointis when -/ = /, ordered phaseis-/ > /.

Z2 symmetry operator is flipping all spins:

&
-
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Jordan-Wigner transformation
in terms of Majorana fermions

w.?_o-jllo-ir XJ—UjIIUz'
<] \ 1<)
ET.I"fF"g/

(i, ¥5} ={xi,xj} =203,  {¥i x5} =0

Zso symmetry measures even or odd number of fermions:

(_1_)F :Hj o) = Hj(i'Uij)

irsa: 11080023 Page 20/89



The Hamiltonian in terms of fermions
* with free boundary conditions:

/\ﬂ /\ﬂ/\ﬂ Aﬂ/\ﬂ/\f'\ A\
@O @O @O L & oC [ @ 8O

N N-—-1
o= z,fz Vi X5+ it Z XJWi+1
= =1
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The Hamiltonian in terms of fermions

* with free boundary conditions:

A.--"""*--. Aﬂ/\ﬂ Aﬂ/\ﬂ/\/'\ A\
@O @O @O @O @O Lo Lo

N N-—-1
H=if Y ¢ +id Y it
= j=1

* with periodic boundary conditions on the fermions:

2 L _®) L @) [ @] @O [ @) @O

—

i\'.'-
H:EZ L[5 g + I xitjinal
=

A catch: when written in terms of spins, this is twisted by —(Pag_ez;lﬁ;)F



Extreme limits:

* .J=0 (disordered in spin language):

° o S o SN . TR . “SEERE . TR . S . N o
@ @C @& @& e e« o o©
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The Hamiltonian in terms of fermions

* with free boundary conditions:

AN_—~""N\_—~ N _—~_N_—~N_—~ N —"

@O @O @O '3 @O L O @O
aquJ\J—{-z]Z XjWi+1
_ =

* with periodic boundary conditions on the fermions:

@O0 . @O @O @O @0 @O

—

H=i) [foixi+Ixivin]

7=1

~Agatch: when written in terms of spins, this is twisted by —(_ z;lﬁ;)f'



Extreme limits:

» -J=0 (disordered in spin language):

i o . B . S, TR .
@ @G @& @& @O @O o«© o©
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Extreme limits:

» .J=0 (disordered in spin language):

Y AN, Gy GaBN. | EN Yy WN N
@ @e&OC @& @& @O @O e oC

* /=0 (ordered in spin language):

T T R T R N
@O @O @O @O [ @] @O @O @O

The fermions on the edges, v and y - do not appear
in H when /=0. They commute with H!
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Gapless edge modes = topological order

 When /=0, the operators 7 and /,map one ground
“N
state to the other — they form an exact zero mode.

e The topological order persists for all /<-J, even
though for finite V, the two states split in energy.

* Can identify topological order (or lack thereof) for
Hamiltonians of arbitrary fermion bilinears.



What about periodic boundary conditions?
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What about periodic boundary conditions?

F
Simple way for 1d: can show it dependson(—1) of
ground state.
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What about periodic boundary conditions?

F
Simple way for 1d: can show it dependson (—1) of
ground state.

Ev

(D

n fancier way: compute sign of Pfaffian.
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What about periodic boundary conditions?

_ : , F
Simple way for 1d: can show it dependson (—1) of
ground state.

‘en fancier way: compute sign of Pfaffian.

\V

(T

(D

Heuristic wav: with translation invariance, k=0 and k=r
fermion operators are raising/lowering operators:

[H.Z(Ii-j- T {b)(::l}‘}] = (AE)Z(”-) ::i\u)(::l)j
J

with &E:--f-FJ :

Qne of these is the “zero” mode — at the critical point,,

i+t civac an avart dacanaravy hatweoan the #wwna cactAare
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The 3-state (chiral) Potts model

The quantum chain version of the 3-state Potts model:

H=— Z [f(*rJ —I—'{) + J(cfjcfjH —I—h.c.)}

j ! !

fiip term potential
0O 1 0 1 0 0
r={0 0 1}. o= |0 */3 0
1 0 0 0 0 ” B i
* =6 =1 T =1, o =o'
>
sssssssssssss o = 2™ /3 51




Define parafermions just like fermions:

In a 2d classical theory, they're the product of order
and disorder operators. In the quantum chain,

Yj — 0 I I Tz, X3 — 7503 T3
i <J 1 <]

c & 9 xr 1 3
W =x"=1#=94" xi=y

Instead of anticommutators, for7 <j and a= 7 or

RN — 627’”/30@-@@-
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The Hamiltonian in terms of parafermions:

Nt NN NN LN
O] @O eC @O L8 @O @O

T

A\ :ffuj)(J _’_XEU.J] o :.]{U‘J_L](J' ‘l“(_jl‘f‘_}—l]

Parafermions are not like free fermions — they cube to 1.
This isn’t even integrable unless -/=/.
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Define parafermions just like fermions:

In a 2d classical theory, they're the product of order
and disorder operators. In the quantum chain,

l,;?j:O'jIITg. )(j:TjO'jlng
1<] t<J

' =x =1 ¥ =" x=x

Instead of anticommutators, for7 <j and = 7 or

aia; = e*™/3a;a;
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The Hamiltonian in terms of parafermions:

i e T TV i Ty W P T i @ i S
O] @O @O @O @O @O @O

e R o R TS g T .

Parafermions are not like free fermions — they cube to 1.
This isn’t even integrable unless -/=/.
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Define parafermions just like fermions:

In a 2d classical theory, they're the product of order
and disorder operators. In the quantum chain,

vi=oi |l xi=moi]]n

i<j <]

?_,’3 = )(3 — 1. W = LT ¥ = XT

(R

Instead of anticommutators, for7 <j and a= 7 or y,

aia; = e*™/3a;a;
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The 3-state (chiral) Potts model

The quantum chain version of the 3-state Potts model:

H=-— Z [f(TJ —I—'r;) + J(O’j@'j_{_l —I—h.c.)}

j ! f

flip term potential
0O 1 0 1 0 | 0
T =30 06 11,  — 18 Eﬂr?j /3
1 0 0 0 0 e
P =0"=1 T =4, o =0
s
sssssssssssss o = ™31




The Hamiltonian in terms of parafermions:

NI~ NN D
9 @O @O @O @O @O @O

A\ :f[Lf“;\j ‘i‘X;h“j) S :J{u*_’f_lp(j +x§U'j_1j1

Parafermions are not like free fermions — they cube to 1.

This isn’t even integrable unless -/=f
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The Hamiltonian in terms of parafermions:

PN NN NN N
@O @O eC @O @O @O @O

A\ :f(u*j-_)u ‘I‘XEL"J‘} i :J('U*;_l)('_j -{-)(EU"_;‘—H

Parafermions are not like free fermions — they cube to 1.
This isn’t even integrable unless -/= /.

However, when f=0, there are edge modes!

Bl T e e R R N W
L _®) @O L _®) L@ @O @O @O @0
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Does the zero mode remain for/ > f > 0?

Take periodic boundary conditions on parafermions.
Canwefinda't sothat|[H. ‘P |=(1E)'P?

¥ =Y [aj¥+Bixil

J
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Does the zero mode remain for/ > f > 0?

Take periodic boundary conditions on parafermions.
Canwefinda't sothat|H VW |=(1E)'FP?

U= [ojej+Bixi]

J

The answer is yes only if the couplings obey an
Interesting constraint!
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1

Generalize to the chiral Potis mod

i T _ id_ T ... o e A Vale
A= f(e*"?U; x; +e "X 1;5) —~ =J(e"Y; x5 +e x4
Then there is an exact “zero” mode Y if the couplings obey:

fcos(30) = .J cos(36)

This is strong evidence that non-abelian topological
order exists for all /< -/ in this interacting system.
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Does the zero mode remain for/ > f > 0?

Take periodic boundary conditions on parafermions.
Canwefinda't sothat|[H. VW |=(1E)'P?

¥ =Y [aj¥+Gixi]

J

The answer is yes only if the couplings obey an
interesting constraint!
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!
®
]
D

Generalize to the chiral Pott

'f_-‘_,- ‘;_ — = : s Exi ';‘ y 2 3
N—F e Uix;+e * \ij’) =g, — e Ui 1 X5t € XV +1)

Then there is an exact “zero” mode Y if the couplings obey:

fcos(39) = .J cos(30)

This is strong evidence that non-abelian topological
order exists for all /< -/ in this interacting system.
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fcos(30) = .J cos(36)
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Generalize to the chiral Potts model:

o _ —3 D T = . lf} .-;- . ; ¥ .
Uix; +e \(_}-L-j} . — J{e U 1 X5t € \(jf_/}__l]

1@

A= f(e
Then there is an exact “zero” mode Y if the couplings obey:

fcos(30) = .J cos(36)

This is strong evidence that non-abelian topological
order exists for all /< -/ in this interacting system.
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fcos(30) = .J cos(36)
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fcos(3¢) = .J cos(36)

This calculation is the world’s easiest way of finding

=

the couplings of the integrable chiral Potts model.

t]f
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fcos(30) = .J cos(36)

This calculation is the world’s easiest way of finding
the couplings of the inte P

;:"" e chiral U< '*'*"'*-1_.5
diitcT L

—
—
-y e e e

Hf'i

The “superintegrable” line #=¢=7/6 (halfway between
ferro and antiferromagnet) is very special.

Here the “zero” mode occurs for any value of fand -/.
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The integrable chiral Potts model is quite peculiar. The
Boltzmann weights of the 2d classical analog are
parametrized by higher genus Riemann surfaces instead
of theta functions. They satisfy a generalized Yang-
Baxter equation with no difference property.

Along the superintegrable line the model a direct way of

This algebra can be rewritten in a more intuitive fashion.
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Wark in a basis where 7 is diagonal and & is not, and then
rewrite in terms of the usual spin-1 matrices, e.g.

0 1 0 _
o=[0 0 1] =S5"+(S)?
1 0 0

I'hen split the Hamiltonian into terms that conserve the U(1)
symmetry generated by S“and those violating it by +3 or -3:

D (rjoraé™ +he) = B+ B + B

j | i : ) —
termssuch as 5?(55_)?_5_161“ /6
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fcos(30) = .J cos(30)

This calculation is the world’s easiest way of finding
the couplings of the integrable chiral Potts model.

The “superintegrable” line #=¢p=x/6 (halfway between
ferro and antiferromagnet) is very special.

Here the “zero” mode occurs for any value of f and -/.
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The integrable chiral Potts model is quite peculiar. The
Boltzmann weights of the 2d classical analog are
parametrized by higher genus Riemann surfaces instead
of theta functions. They satisfy a generalized Yang-
Baxter equation with no difference property.

Along the superintegrable line the model a direct way of

This algebra can be rewritten in a more intuitive fashion.
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Wark in a basis where 7 is diagonal and & is not, and then
rewrite in terms of the usual spin-1 matrices, e.g.

0 1 0
o=10 0 1} =SV 4(S5Y)
1 0 0

['hen split the Hamiltonian into terms that conserve the U(1)
symmetry generated by S“and those violating it by +3 or -3:

D (rjoraé™/® +he) = B+ Bl + B

/ | —\ ! T/
termssuch as S?(Sf_)?_i_lez.“fﬁ
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Label the rest of the Hamiltonian as

) (me™®+7le" ") =B}, Bg =Bp =0

J

J
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Work in a basis where 7 is diagonal and & is not, and then
rewrite in terms of the usual spin-1 matrices, e.g.

0 1 0 _
g— i L =515}
1 0 0

['hen split the Hamiltonian into terms that conserve the U(1)
symmetry generated by S*and those violating it by +3 or -3:

E (J;Jj+1em/6 + he.) = g Bir + B
- f
J 5 . 4
terms such as 5?:: (5;_)?_5_161"”6
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Label the rest of the Hamiltonian as

g (r;e'™® 1+ 7le ™% =By, By =By =

J

J
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Label the rest of the Hamiltonian as

. r . — ==
> (me S el =By Bf =By =

J

J
The remaining elements of the Onsager algebra are defined
via the commutators

:::B(l)._. V5 =% s B;IZ_I_l +B-" 4
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Label the rest of the Hamiltonian as

) - o E =
E (TJELTT_;"(S T‘;E L‘/ﬁ) EBg . BO :BO :0

The remaining elements of the Onsager algebra are defined
via the commutators

BT, B,]=B%,, +B%_
:::B?. B;;] — n—l—l —|—Bn_ 1

Then the Onsager algebra is remarkably beautiful:

[Br_’r; Bn,_] = Bg—i—-m, e Bg—m,

+IBE B =R + B .
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Label the rest of the Hamiltonian as

7T/ T " s s
E;(TJEEWS T,e /®y=By, Bg =By =0
g

The remaining elements of the Onsager algebra are defined
via the commutators

BT, B;]=B%., +B%_
:::B(l)* B;;] — n;—l—l _i—Bn_ 1

Then the Onsager algebra is remarkably beautiful:

[Br_rt Bn,_] e Brg—{—m, + Bg—rn

+[BEX B =BF , +B:
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Using this makes it easy to find the infinite number
of conserved charges commuting with the Hamiltonian

H=aB)+ 3B +~(B; +By)

Moare interesting stuff happens. The »=0 case can be
solved via the standard Bethe ansatz, with the Bethe
equations those of the XXZ chain at a special point.

Hidden susy!?! Presumably related to the hidden susy
in XXZ/XYZ, which changes the number of sites by 1.
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Using this makes it easy to find the infinite number
of conserved charges commuting with the Hamiltonian

H=aB)+ 8BY+~(By + B;)

More interesting stuff happens. The »=0 case can be
solved via the standard Bethe ansatz, with the Bethe
equations those of the XXZ chain at a special point.

Hidden susy!?! Presumably related to the hidden susy
in XXZ/XYZ, which changes the number of sites by 1.
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Topological order in 2d

The Ising/Majorana chain has an elegant generalization
to 2d via the Kitaev honeycomb model.

This is a spin model that can be mapped to free
fermions coupled to a background gauge field.



Using this makes it easy to find the infinite number
of conserved charges commuting with the Hamiltonian

H =aB{+ 6BY+~(By + B;)

More interesting stuff happens. The »=0 case can be
solved via the standard Bethe ansatz, with the Bethe
equations those of the XXZ chain at a special point.

Hidden susy!?! Presumably related to the hidden susy
in XXZ/XYZ, which changes the number of sites by 1.
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Topological order in 2d

The Ising/Majorana chain has an elegant generalization
to 2d via the Kitaev honeycomb model.

This is a spin model that can be mapped to free
fermions coupled to a background gauge field.



Topological order in 2d

The Ising/Majorana chain has an elegant generalization
to 2d via the Kitaev honeycomb model.

This is a spin model that can be mapped to free
fermions coupled to a background gauge field.

I’ll describe the analog for parafermions.



View the 2d model as coupled 1d chains

The quantum YZ chain

- z - y Y

irsa: 11080023

. I R AP R A N A . DO "N, W
@ @ e @ e e e

t+1
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View the 2d model as coupled 1d chains

The quantum YZ chain

I PP R T . P N SN0y
© @ ® © © © © ©

—~ =t X1 — =1ytixis1
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View the 2d model as coupled 1d chains

The quantum YZ chain

P e, SRR e, WS e "N Sl W Sl W i WS e
© ®© © ® © © © ©

e =g ) b — =t ytiXita

is comprised of two commuting Hamiltonians:

o > " Ny S
@ @eC @O @& @& @& oo oo

P i = i >
- €0 @O @O @O @O0 @O @O @O

irsa: 11080023 S - R " - Page 72/89



{( L) :Z [Jjj 1(.71} _'_JEJOHJ }j — {Z I:ij_li'jj = S

Pi

IIIII

Consider one of these Hamiltonians:

: 11080023

B, N = il e > il
@ @O @& @O @& @O @©© oo

J ]

Just like the edge modes, the fermions .
and & do not appear! )

25 X 25 +1

They commute with each individual term in HY
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Now couple chains together into a honeycomb lattice:

8
8
8
/8
\8
8
8
8

8
8
8
'8
8
8
8
8

8
8
8
8
\a
8
8
8
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Now couple chains together into a honeycomb lattice:

B — Z vwxx + Z vUx + va

irsa: 11080023 Page 75/89



Now couple chains together into a honeycomb lattice:

8
8
\8
8
o
8
'8
8

H = Z vuxx + wa £ va
ot
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Now couple chains together into a honeycomb lattice:

i — ZUUU( + Zux -+ qu
V= Za‘ra‘r + Zayay + ZO' o~
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Each fermion bilinear 1 commutes with each term in H.

irsa: 11080023 Page 79/89



Each fermion bilinear I commutes with each term in H.
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Each fermion bilinear I commutes with each term in H.

The Zo gauge flux is the product I I — cFatolcF ol "
around a hexagon.
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The flux through each plaquette can be chosen
individually, and is not dynamical.

Thus the Kitaev honeycomb model is simply free
fermions coupled to a background 7, gauge field.

A magnetic field destroys the solvability, but causes
non-abelian topological order.

On the Fisher lattice, non-abelian topological order
occurs without the magnetic field.
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So what about parafermions?

The same trick yields a “YZ” Hamiltonian that
doesn’t involve half the parafermions:

P i il T . W i adiie O oo WG
Lo @O (O] @O O @O @O o)

il — (Tigi)-i-ﬂ—i—l —+ h.c.

Page 83/89



€@ €0: @0 :e0: 60 e0: @0 :eo:

‘@0’ @0/ /€0 @0/ €0 @0/ €% :€0;

-

' __ __ __ 3 T DN
:@0; @0 €0/ €0 360 €0 €0 @0

Z{T;O’k:*l +h.c.

T o (10)
The Zs gauge fluxis = around a hexagon.

T o (10)
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Questions

* The handwaving arguments for topological order work for
parafermions. Presumably non-abelian?

* |s there a formula for the parafermions generalizing the
Pfaffian/Chern number for fermions?

* |f so, will this result go “up” to statistical mechanics?
* |s there a connection to 2+1d integrable models?
* Should work for all 77,,; , what about {(1)?

ooV N@t’s with the Onsager algebra? page s
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Consider one of these Hamiltonians:

P g, il = i i
0 @O @& @O &0 @O e«© oo

i ]_ - i
gll) — E [gjj 103 ——0'3_}0'3} 11 =/ E [xgj—ﬂ‘zj T U2 X 2 +1
3 J

Just like the edge modes, the fermions 7
and 7, do not appear! i

They commute with each individual term in H'Y.
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Using this makes it easy to find the infinite number
of conserved charges commuting with the Hamiltonian

H =aB)+ 3B +~(B; + By)

More interesting stuff happens. The »=0 case can be
solved via the standard Bethe ansatz, with the Bethe
equations those of the XXZ chain at a special point.

Hidden susy!?! Presumably related to the hidden susy
in XXZ/XYZ, which changes the number of sites by 1.
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Label the rest of the Hamiltonian as

: / + 3T — zoe
Y (mje'™®+1ie ™6 =B), By =B =0
9

The remaining elements of the Onsager algebra are defined
via the commutators

:B+r B ] Bn—i—l +Br?—
:::B(l)‘ B;] B;'L—l—l —|—Bn: 1

Then the Onsager algebra is remarkably beautiful:

[B;rzl— Bn_] == Bn+rn ;& Bo—m

. BO] =3 . IO T | e
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