Title: MnSi Epitaxial Thin Films: Structure and Magnetic Properties

Date: Jul 20, 2011 02:40 PM

URL: http://pirsa.org/11070073

Abstract: Epitaxial MnSi grown on Si (111) offers new opportunities in the development of spin-dependent transport in helical magnets. Helical magnets are a class of noncollinear structures that have shown promise as a material for spin-dependent electron transport studies. The helical magnets are of particular interest in spintronics because in these magnets the electron spins spiral about a particular crystallographic direction, this property can allow for control over electron spin. Many interesting magnetic properties can be studied with the combination of thin-film heterostructures and helical magnets. Through use of x-ray diffraction, SQUID magnetometry and transmission electron microscopy, we have observed the structural and magnetic properties of crystalline MnSi thin-films to determine the effects of strain on the magnetic properties. As a result, we have found that epitaxially induced tensile strain results in an increase in the unit-cell volume, and that the atypical strain relaxation behaviour is correlated with a magnetic response. The talk will give a brief outline of the theory/techniques used, and the results gathered.

Pirsa: 11070073 Page 1/31

MnSi Epitaxial Thin Films

Structure and Magnetic properties

Overview

- Spintronics
 - What is it?
 - Use of helical magnets (MnSi) in spintronics.
- MnSi
 - Annealing Process
- Transmission Electron Microscopy (TEM)
 - Sample Preparation
 - What we did, what we were looking for, and what we found.
- Structural Observations
 - Chirality
 - Tensile Strain
- Magnetic Properties
 - Correlations with structural findings
- Conclusions

Background Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural
Observations
Chirality

Unit Cell Strain Results

Magnetic Properties T_c and volume strain

Conclu Page 3/31

T_c Correlation

Spintronics

- Manipulation of electron spin, with semiconductor and magnetic applications.
 - Opportunity for faster and lighter devices.
- Spintronics is used in the production of computer storage
 - Magnetoresistive Random Access Memory (MRAM).
- Spin Torque Transfer (STT) is the main method through which MRAM is achieved.
 - Helical magnets such as MnSi can be used to achieve STT.

Introduction

Spintroines MnSi

TFM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations Chirality Unit Cell

Strain

Results

Magnetic Properties

T_c and volume strain

T_c Correlation

Conclue Rage 14/31

Spintronics

- Manipulation of electron spin, with semiconductor and magnetic applications.
 - Opportunity for faster and lighter devices.
- Spintronics is used in the production of computer storage
 - Magnetoresistive Random Access Memory (MRAM).
- Spin Torque Transfer (STT) is the main method through which MRAM is achieved.
 - Helical magnets such as MnSi can be used to achieve STT.

- Solid phase Epitaxy (SPE)
 - Sample annealed under Ultra High Vacuum at 400° C until MnSi formation
 - a-Si protective cap is then applied

Mn

Introduction

Background

Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations Chirality

Unit Cell Strain Results

Magnetic Properties

T_c and volume train

T_c Correlation

Conclu Page 6/31

- Solid phase Epitaxy (SPE)
 - Sample annealed under Ultra High Vacuum at 400° C until MnSi formation
 - a-Si protective cap is then applied

MnSi

Background

Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations

Chirality Unit Cell Strain Results

Magnetic

Properties

T_c and volume strain

T_c Correlation

Conclus 1997/31

- Solid phase Epitaxy (SPE)
 - Sample annealed under Ultra High Vacuum at 400° C until MnSi formation
 - a-Si protective cap is then applied

a-Si cap

MnSi

Introduction

Background

Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations

Chirality Unit Cell Strain Results

Magnetic

Properties

T_c and volume train

T_c Correlation

Conclus 1991 8/31

Sample Preparation

~3 degrees

Pisa: 11070073

Introduction

Background Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations Chirality Unit Cell

Strain

Results

Magnetic

Properties T_c and volume

T_c Correlation

ConcluPage 9/31

Sample Preparation

Plan View Sample

~3 degrees

e-MnSi

Si Substrate

a - amorphous

e - epitaxial

Background Spintroines MnSi

TEM

Sample Prep Imaging

Diffraction Patterns

Chiral Zones

Structural

Observations

Chirality Unit Cell

Strain

Results

Magnetic

Properties

T_c and volume strain

T_c Correlation

Concl Page 10/31

Transmission Electron Microscopy (TEM)

Introduction

Background Spintroincs MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations Chirality

Chirality
Unit Cell
Strain
Results

Magnetic Properties

T_c and volume strain

T_c Correlation

Concleage 11/31

Imaging

Introduction

Background Spintroincs MnSi

TEM

Sample Prep **Imaging** Diffraction Patterns Chiral Zones

Structural

Observations

Chirality Unit Cell Strain Results

Magnetic Properties

T_c and volume strain

T_c Correlation

Concleage 12/31

Imaging

Bright-field image (use transmitted beam)

Introduction

Background Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations Chirality

Unit Cell Strain Results

Magnetic Properties T_c and volume strain

T_c Correlation

ConclPage 13/31

Imaging

Dark-field image (use diffracted beam)

Introduction

Background Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations Chirality

Chirality
Unit Cell
Strain
Results

Magnetic Properties

T_c and volume strain

T_c Correlation

Concleage 14/31

Diffraction patterns

Background Spintroincs MnSi

TEM

Sample Prep Imaging Diffraction

Patterns

Chiral Zones

Structural

Observations

Chirality Unit Cell

Strain

Results

Magnetic

Properties

T_c and volume strain

T_c Correlation

Concl Page 15/31

Diffraction patterns

Si (112)

Introduction

Background Spintroines MnSi

TEM

Sample Prep Imaging

Diffraction

Patterns

Chiral Zones

Structural

Observations

Chirality

Unit Cell

Strain

Results

Magnetic

Properties

T_c and volume

T_c Correlation

Concleage 16/31

Diffraction patterns

Si (112)

MnSi (221)

Introduction

Background Spintroincs MnSi

TEM

Sample Prep Imaging

Diffraction

Patterns

Chiral Zones

Structural

Observations

Chirality

Unit Cell Strain

Results

Magnetic

Properties

T_c and volume strain

T_c Correlation

Concl Page 17/31

Introduction

Background Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns

Chiral Zones

Structural
Observations
Chirality

Unit Cell Strain Results

Magnetic
Properties
To and volu

T_c and volume strain

T_c Correlation

Concleage 18/31

Introduction

Background Spintroincs MnSi

TEM

Sample Prep Imaging Diffraction Patterns

Chiral Zones

Structural Observations

Chirality Unit Cell Strain Results

Magnetic Properties

T_c and volume strain

T_c Correlation

Concl Page 19/31

Introduction

Background Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns

Chiral Zones

Structural
Observations
Chirality
Unit Cell
Strain
Results

Magnetic
Properties
T_c and volume
strain
T_c Correlation

Concl Page 20/31

Introduction

Background Spintroincs MnSi

TEM

Sample Prep Imaging Diffraction Patterns

Chiral Zones

Structural Observations

Chirality Unit Cell Strain Results

Magnetic Properties

T_c and volume strain

T_c Correlation

Concl Page 21/31

Chirality

Atomic structure

- R & L chirality leads to a helical magnet.
- See Grigoriev et. Al. PRB 81 012408

Introduction

Background Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural Observations

Chirality

Unit Cell Strain Results

Magnetic Properties

T_c and volume train

T_c Correlation

Concl Page 22/31

- MnSi-Cubic unit cell with a lattice parameter of 0.4558 nm
- Si-lattice parameter of 0.5430 nm
 - MnSi (111) layer rotated 30° w.r.t the substrate
 - 3.0% lattice mismatch results

Introduction

Background Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural Observations

Chirality Unit Cell Strain Results

Magnetic Properties

T_c and volume strain

T_c Correlation

Concl Page 23/31

MnSi Strain Measurements

- •[111] Zone Axis
 - MnSi [110] Innerring
 - •Si (202) & Mn (121) in 2nd ring
- Strain measured with double diffraction spots and Si (202) spots.

$$\varepsilon_{\parallel}(\%) = 3.0\% - 100\% \frac{\Delta g}{g_{ref}}$$

Introduction

Background Spintroines MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural Observations

Chirality Unit Cell Strain

Strain

Results

Magnetic Properties

T_c and volume train

T_c Correlation

Concleage 24/31

In-plane and Out-of-plane Tensile Strain vs. Thickness

- Top graph- TEM data gathered on in-plane strain.
- Bottom graph- Xray diffraction data gathered on the out-of-plane strain.
- Strange results < 7 nm (bottom graph).
 - Possible cause may be interstitial defects.

Introduction

Background Spintroines MnSi

TFM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural Observations

Chirality Unit Cell Strain Results

Magnetic Properties T_c and volume

T_c Correlation

Concleage 25/31

Elastic Constants Vs. Thickness

- Ratio is the compressibility (K) to the Shear elastic constant (C₄₄)
- The elastic constants are part of the strain tensor used to provide information on the strain in a material
 - (See Hooke's Law, or Kittel)

Introduction

Background Spintroines MnSi

TFM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural Observations

Chirality Unit Cell Strain Results

Magnetic Properties

T_c and volume train

To Correlation

Concl Page 26/31

Magnetic effects of Strain

- Measurements made with Superconducting Quantum Interference Device (SQuID)
- Tensile strain (green/red) is compared with measurements of bulk MnSi under compressive pressure (blue).
- Compressive strain decreases the Curie temperature (T_C), tensile strain should increase it.
 - < 10 nm doesn't match the curve.
 - Defects are affecting the data.
 - MnSi compensating by adding extra layers.

Introduction

Background Spintroines MnSi

TFM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural Observations

Chirality Unit Cell Strain Results

Magnetic Properties

T_c and volume strain

T_c Correlation

Concl Page 27/31

Strain Data/Curie Temperature Correlation

- Strong correlations between elastic constants and T_C.
- Indicates common origin.
 - Possibly from, interstitials.

Introduction

Background Spintroincs MnSi

TFM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations

Chirality Unit Cell Strain Results

Magnetic Properties

T_c and volume train

T_C Correlation

Concl Page 28/31

E. Karhu et al., Phys. Rev. B, **82**, 184417 (2010).

Strain Data/Curie Temperature Correlation

- Strong correlations between elastic constants and T_C.
- Indicates common origin.
 - Possibly from, interstitials.

Introduction

Background Spintroincs MnSi

TEM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural

Observations

Chirality Unit Cell Strain Results

Magnetic Properties

T_c and volume

T_C Correlation

Concl Page 29/31

E. Karhu et al., Phys. Rev. B, **82**, 184417 (2010).

Conclusions

- Strong correlations between the structure and magnetic properties of epitaxial MnSi thin films
- Epitaxially induced strain in MnSi causes a volume expansion in the MnSi
 - > 10 nm, the increase in cell volume is consistent with the increase in T_C.
- Lower film thickness departs from the expected behavior
 - The drop in T_C can not be explained by finite size.
- Interstitial defects could explain both observed changes

Introduction

Background Spintroines MnSi

TFM

Sample Prep Imaging Diffraction Patterns Chiral Zones

Structural Observations

Chirality Unit Cell Strain Results

Magnetic

Properties T_c and volume strain

T_c Correlation

Conclus 103 1031

Acknowledgments

- Michael Robertson
- Ted Monchesky, Eric Karhu, and Samer Kahwaji
 - Images Courtesy of Dr. Michael Robertson and Dr. Ted Monchesky
- Acadia Physics Department and the Acadia Centre for Microstructural Analysis
- NSERC USRA program
- PI, IQC and the organizers.
- You for Listening ©

