Title: Structural, Electronic, Magnetic, and Thermal Properties of Pb2-xLaxCrO5

Date: Jul 20, 2011 01:50 PM

URL: http://pirsa.org/11070072

Abstract: Pb2CrO5 have received considerable interests due to their potentials applications in UV radiation measuring devices, visible and UV light photodetectors. In this research we are examining the structural, electronic, magnetic, and thermal properties of polycrystalline Pb2-xLaxCrO5. Samples have been prepared using a solid state solution technique. The temperature dependent magnetic measurements reveal a transition in the Pb2CrO5 and La doped samples near 300 K. To understand the possible origin of such transition, we measured thermal properties using Differential Scanning Calorimetry (DSC) technique. These results reveal an endothermic transition close to 285 K in the parent sample and in La doped sample. We have also measured the temperature dependent resistance in 300K-900K range.

Structural, electrical, magnetic, and thermal properties of Pb_{2-x}La_xCrO₅

Biljana Indovski

(Coauthors: M.P. Singh, F.S. Razavi)

Department of Physics, Brock University St Catharines ON L2S 3A1

ERC

Canada Foundation for Innovation

Fondation canadienne pour l'innovation

Pirsa: 11070072

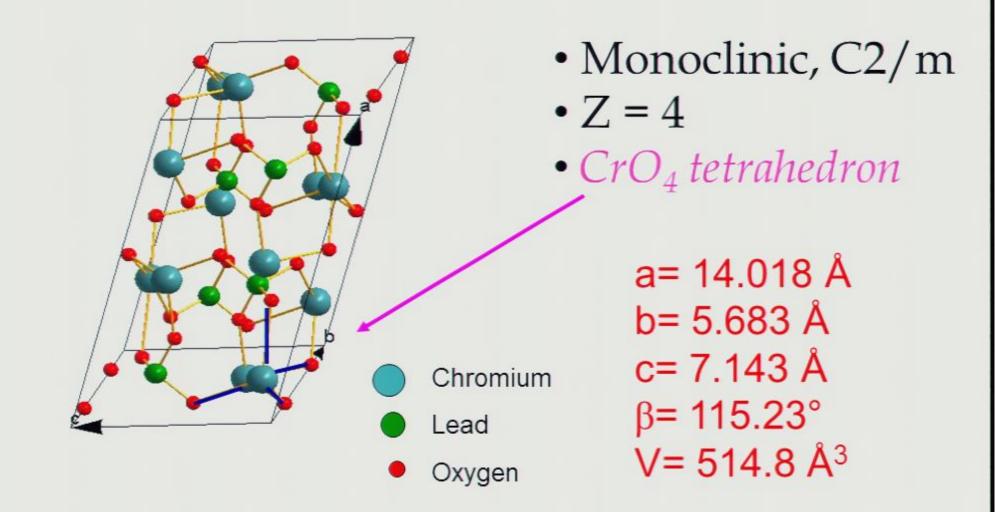
Outline

- Introduction
- Sample preparation
- Structural properties
- Electrical properties
- Magnetic properties
- Thermal properties
- Concluding remarks

Interest in Pb₂CrO₅

Optical properties

o Potential candidates as photo detectors and dosimeters


o Optical band gap $E_g = 2.3 - 2.4 \text{ eV}$

Toda et al, J. Appl. Phys. **57** (1985) 5325; *ibid* **38** (1985) 103; *ibid* **18** (1999) 689

Our motivation & objective

To study the impact of La-doping on the **magnetic** and **electrical** properties of Pb₂CrO₅.

Crystal structure

Pirsa: 11070072 Toda et al, J. Appl. Phys. 55, 2733 (1985)

Sample Preparation

Dissolved Cr(NO₃)₃·9H₂O

in distilled H₂O

Added PbO +La₂O₃ in appropriate amount

500°C for 24 hours

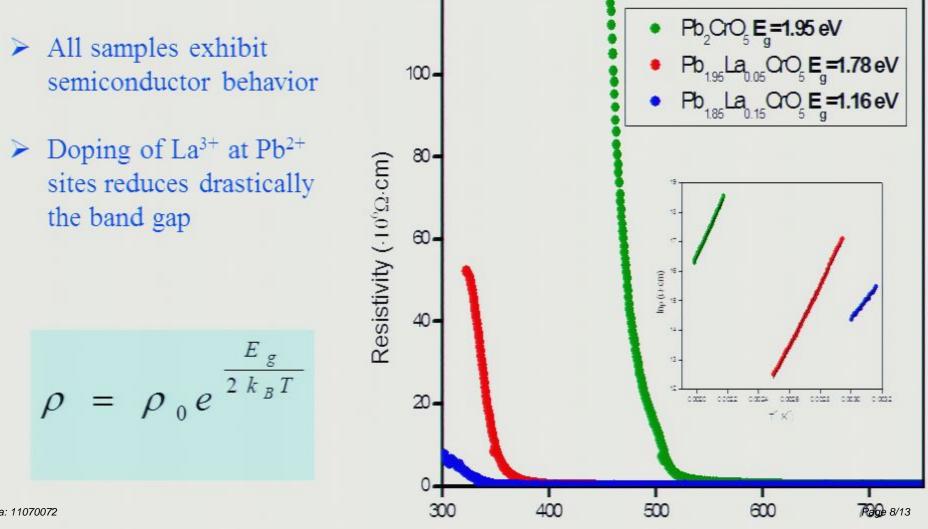
Press pellets

And final sintering at 650 °C for 72 hours

Pb_{2-x}La_xCrO₅

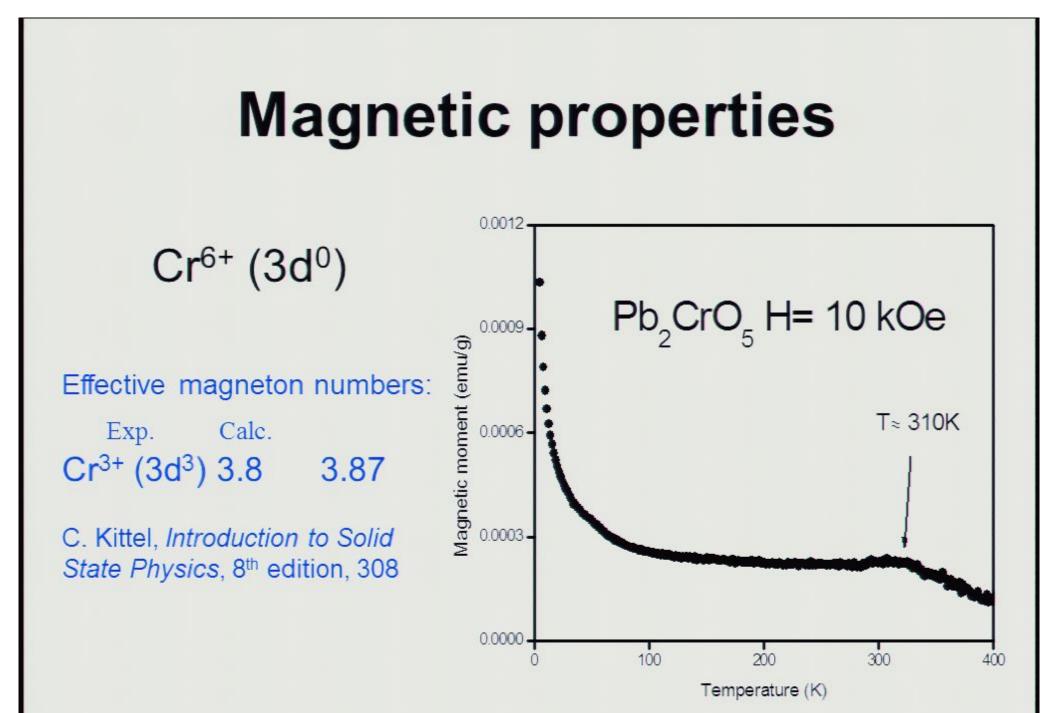
Structural properties

Cell			
param- eters	Pb ₂ CrO ₅	Pb _{1.85} La _{0.15} CrO ₅	
a (Å)	13.972	13.898	(1320) (132) (
b (Å)	5.675	5.775	
c (Å)	7.164	7.172	¹²⁰⁰⁰ Pb_{1.85}La_{0.15}CrO₅
β (°)	115.278	114.638	(11) (20) (21) (21) (21) (21) (21) (21) (210) (210) (210) (210) (210) (210) (210) (210) (210) (211) (21
V (Å ³)	513.68	523.16	$\frac{1}{1000}$ 1

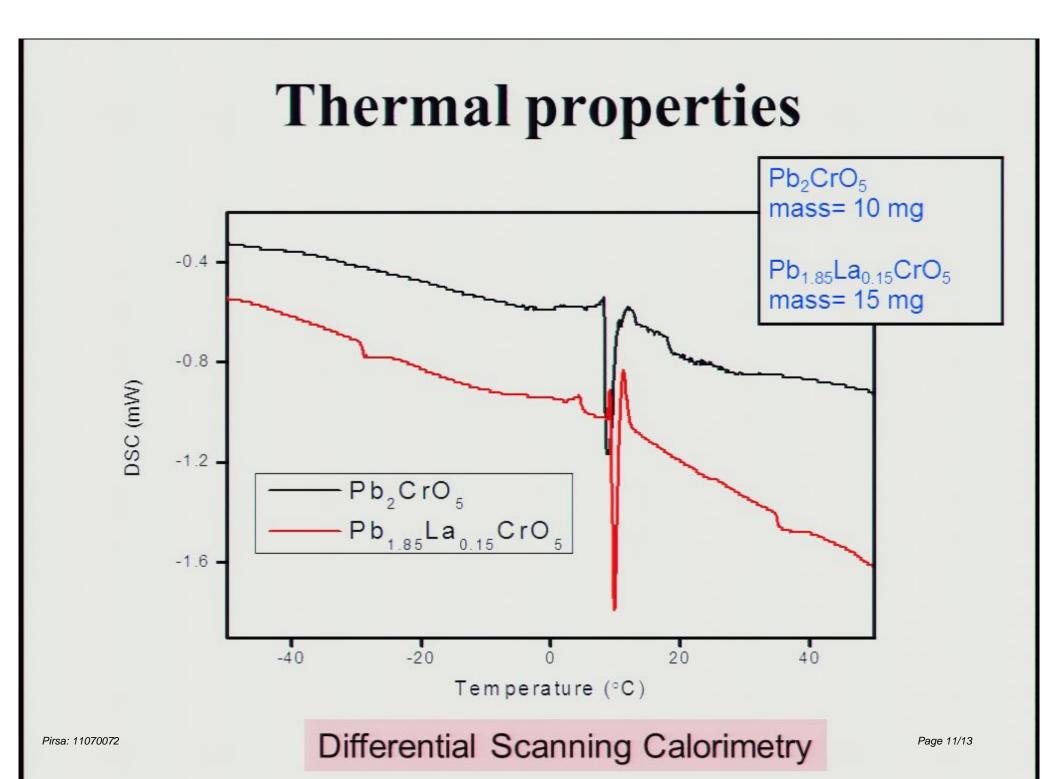

20 (degree)

50 Page 7/13

Temperature dependence electrical properties


Doping with La³⁺ at Pb²⁺ sites causes excess of electrons

120


Temperature (K)

Pirsa: 11070072

Magnetic properties La³⁺ doping leads to a change in the oxidation state of $Cr^{6+}(3d^0) \longrightarrow Cr^{3+}(3d^3)$ 0.0032 0.021 0.018 T= 5K Pb_{1.95}La_{0.05}CrO₅H=2kOe (B) III 0.0028 -Mars in agree kalon. Magnetic moment (emu/g) Magnetic moment (emu/g) 0.012 0.0024 T≈ 287K T≈ 290K agnetic fleg (Ce 0.0020

0.0016 Pb₁₈₅La₀₁₅CrO₅ H= 10 kOe 0.003 -0.0012 -250 50 300 200 Page 10/13 350 50 100 150 200 250 350 100 150 Pirsa: 11070072 Temperature (K) Temperature (K)

Concluding remarks

La doping

Modifies the structural parameters of Pb₂CrO₅
Causes a large reduction of the band gap
It induces a weak ferromagnetism

Further work is in progress to study the chemical nature of Cr

Thank you

Canada Foundation for Innovation

Fondation canadienne pour l'innovation

