#### Title: Theory of Heavy-Hole Spin Echoes

#### Date: Jul 20, 2011 01:30 PM

URL: http://pirsa.org/11070070

Abstract: Heavy-hole spin states have been proposed as a robust qubit candidate. Nevertheless, the coupling of the hole spins to nuclei in the surrounding medium likely limits hole-spin coherence and has, until very recently, been overlooked. We describe the spin decoherence of a heavy-hole in a semiconductor quantum dot, subject to spin echo pulses. We do so both analytically and numerically for an experimentally realistic number (10<sup>4</sup>) of nuclear spins. Including the (previously neglected) nuclear Zeeman term in the Hamiltonian, we observe novel effects uniquely characterizing the decoherence mechanisms under study. In particular, we find a nontrivial dependence of the decay on the applied magnetic field, as well as novel predictions for motional narrowing and envelope modulation, which could significantly extend the hole-spin memory time in near-future experiments.

# Theory of Hole Spin Echoes

Xiaoya Judy Wang Bill Coish McGill University

Pirsa: 11070070 Québec 😫 😫





# **Qubit Candidates**



Quantum dot



#### Superconducting qubit





lon trap



NV center in diamond



Optical lattice Page 3/18

# Decoherence



$$(\mid 0\rangle + \mid 1\rangle) \longrightarrow (Env.) \xrightarrow{\forall \mid 0\rangle} | 0\rangle$$

- Interactions with the environment cause decoherence of quantum states
- Hole spin (qubit) interacts with nuclear spins (environment)





- Precession due to coupling  $\sim \sum_k I_k^z S^z = h^z S^z$
- $\delta \omega$  due to random orientations of nuclear spins Page 4/18



- Fluctuations in  $\omega$  cause decoherence
- Simple example: averaging precession at 5 different frequencies





Ζ

Х

> v

# Spin Echo



Reverses decoherence due to static fluctuations in  $\omega$ !

### Hole spins in Quantum Dots

- Heavy-hole confined to a quasi-2D quantum dot
- Hyperfine interaction is Ising  $(I_z S_z)$  for holes instead of Heisenberg  $(I \cdot S)$  for electrons
- Hyperfine interaction main source of decoherence for electron spin qubit
- Possibly more coherent than electron spin











#### Results



- \* Numerical solution in solid blue line
- \* Short-time approximation in dotted red line:  $\langle S_x(t) \rangle \cong \frac{1}{2} e^{-(t/\tau)^4}$
- \* Decay time  $\tau \sim (N/B^2)^{1/4} \sim 1/\sqrt{B}$
- B field induces nuclear spin precession

Pirsa: 11070070 Dynamic fluctuations are not reversed by spin echoes, leading to decoherence

### Decoherence

- Fluctuations in  $\omega$  cause decoherence
- Simple example: averaging precession at 5 different frequencies





Ζ

Х

> v

#### Results



- \* Numerical solution in solid blue line
- \* Short-time approximation in dotted red line:  $\langle S_x(t) \rangle \cong \frac{1}{2} e^{-(t/\tau)^4}$
- \* Decay time  $\tau \sim (N/B^2)^{1/4} \sim 1/\sqrt{B}$
- B field induces nuclear spin precession

Pirsa: 11070070 Dynamic fluctuations are not reversed by spin echoes, leading to decoherence





time (ns)

#### Results





- Large B approximation in pale blue dotted line
- \* Approximation valid for  $B > \frac{A}{\gamma N}$

\* Amplitude of oscillations  $\sim \frac{A}{B\sqrt{N}}$ 

$$A = \sum_{k=1}^{N} A_k$$

Page 16/18

### **Results** explained

- \* For  $B \ll \frac{A}{\gamma N}$ , raising B increases the amplitude of dynamic fluctuations  $\Rightarrow$  shorter coherence time
- \* For  $B > \frac{A}{\gamma N}$ , nuclear spins precess very fast, so longitudinal fluctuations are "averaged out" (motional averaging)
- \* Coherence times can be extended through motional averaging



### Conclusions

- \* Observe echo envelope modulation and motional averaging
- Include hole Zeeman term in Hamiltonian: more realistic situation but same qualitative physics
- Hole spins potentially better qubits than electron spins