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Abstract: Our understanding of the physical world at the most fundamental level is based on two theories. quantum theory and genera relativity.
They are impressively successful but only when each is considered on its own. In situations where both play arole, we are reduced to puzzles and
absurdity. Hence the search for a quantum theory of gravity, the currently missing theory that will work sensibly in exactly these situations. To the
great frustration of researchersin this field, candidate quantum theories of gravity tend to produce more puzzles instead of answers. We shall take a
tour of some of the problems, focusing on the role of spacetime and causality. We will consider the possibility that spacetime did not always exist
but isinstead emergent and explore how one can create a spacetime from aworld with no notion of & quot;here& quot; and & quot;there& quot;.
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Quantum gravity=GR"+"QFT

General Relaovity and Quantum Feld Theory ulumately fail
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Quantum gravity seeks to reconcile general relativity and quantum theory




Quantum gravity=GR"+"QFT

General Relauvity and Quantum Freld Theory ulumately fail

= A
= -
- 4 . 2
o o
g .
o ==\ e
=52 FaYe¥el n
— — ﬂ_ .
4 4 4 r:-
: 7
|
More bad things

s nappen f we combine the two theores

Quantum gravity seeks to reconcile general relauvity and q




Quantum gravity=GR"+"QFT

General Relaovity and Quantum Feld Theory ulumartely fail
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Quantum gravity seeks to reconcile general relativity and quantum theory




Background Independence

¢ Marrer rells spaceume how to curve

and spaceume telis marter where to go
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The problem of time in quantum gravity

Only events
and their
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The problem of time in quantum gravity




Quantum gravity=GR"+"QFT

Scale of quantum gravity: Planck length = =

e at this scale the guantum effects of the gravitauona field become imporman

* at this scale we reach fundamental limits to space and ume Mmeasurements

Jpacetme memric

We need new physics at the Planck scale
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The Planck scale is not beyond reach

he need for new physics is not restricted to
* Constaints on Lorentz invanance violauon
ark energy and dark marter
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* The inflaton (Transplanckian signatures in inflagon
* The coincidence problem

Cal ransituon In MacrosCopic Systems

LA
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After all. we only know 5%

of the universe



Ve need a quantum theory ot gravit
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Background independence: principle in quantum gravity

Background Independence |

There should be no preferred ¢

=ometry in the formulation of the quantum theory of gravity

Quantum gravity is given by a quantum superposiucon of guantum geometries
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ence or quantum >PC cetimes

Ve

Spacetime = physical events
Physical events are Quantum
Quantum = superpositions

Superpositions of spacetimes?




f‘-
Cl

T !

N a
| o

W
(D

N
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Spacetime = physical events To make sense of a quantum
Physical events are Quantum superposition of spacetimes,
we must show that it is
possible to start from such a

superposition and find a nice
- —— regular spacetime (our

< }:J 7 world) as the most likely one.

Quantum = superpositions

Superpositions of spacetimes?
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|he science of quantum spacetimes
Spacetime = physical events To make sense of a quantum
Physical events are Quantum superposition of spacetimes,
Quantum = superpositions we must show that it is

possible to start from such a
superposition and find a nice

’ regular spacetime (our
F 4 world) as the most likely one.

Superpositions of spacetimes?

First we need
some tools...
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Curvature as a triangulation
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Make a model of spacetime

Curvature as a triangulation




Make a model o1

Triangulatic
reduce the
problem to
combinatoric
Count!

Curvature as a triangulation
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A stausucal model of quantum geometries.
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Are we most likely? It depends on time
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Are we most likely? It depends on time




Are we most likely? It depends on time

Time in general relativity:




Most likely
spacetime:

Dimension:




1 I. .
Are we most likely

Yes, if by “we” we mean v Convergent tractable
3+ 1 dimensions and v Well-behaved typical histories
smoo?hly varying in tfime. v Also when matter is added

i
v Correct dimension

v High-energy prediction: evidence for 2d

Requires a notion of time T ST TRERE G
which may disagree with J New universalivy class discovere
General Relativity.
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Yes, if by “we” we mean
3+ 1 dimensions and
smoothly varying in time.

Requires a notion of time
which may disagree with
General Relativity.
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Yes, if by “we” we mean
3+ 1 dimensions and
smoothly varying in time.

Requires a notion of time
which may disagree with

General Relativity.
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Is this the answer to the
problem of Quantum
Gravity?

We need more than smooth
geometry and the correct

dimension.

Verdict: Need to show that
apples fall in quantum
spacetimes
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Background independence: principle in quantum gravity

reedom in the fundamental theory

There are no geometric or gravitationa

Geometry is only a ciassical, emergent concept




EFmergent space(t

Emergence: the behavior of
the system has no
explanation in terms of its
constituent particles, but
instead of their collective
behavior and interactions.

The whole is more than its
parts.
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Emergence: the behavior of The paradigm: the Ising mode
the system has no

explanation in terms of its

constituent particles, but

instead of their collective

behavior and interactions.

The whole is more than its
parts. What is the Ising model for gravit

Emergent space: emergent
locality and order




What is space(time)?
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We currentdy assume an FRW
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We currendy assume an FRW geometry all the way to the Big Ban

Alternative scenario: VWWhat if geometry is not fundamenal?
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The dynamical lattice: lattice links as SPIPKE
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Model 1: Emergent space and matter
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Model 1: Emergent space and matter
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Emergent matter when space emerges.




Speed of light from local interactions
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Speed of light from local interactions

A Hamma. FM. |. Premont-5chwarz. S Severini. PRL 2
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Emergent locality is NOT a Planck scale effect
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Emergent locality is NOT a Planck scale effect

A Hamma. FM. |. Premont-Schwarz. S Severini. PRL 2

Evolving speed of light and the horizon problem
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Model illustrates the effect of a transition in the local structure: in principie an observable effect (not a Planck scale
effect).

Note: a phase transition in the speed of light can also reproduce the scale invariant CMB spectrum (Variable Speed o
Light cosmology)




Model 2: Interacting ma.tter—geometml;y;
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Model 2: Interacting matter—geomeﬂ

oyd.FM. Carawvelli. Severimi, Markstrom, PRI
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Model 2: A toy black hole




Model 2: A toy black hole
Hamma, Lioyd.FM™., Caravelli. Severini. Markstrom, PRI

es mMore bosans and the b

* The dense geomerry creare
* Eventually the “black hole” evaporates (faster as it gets smaller
no singularity): matter entangied with remnant geomeur)

* Unitary evolution, mixed radiation




Model 2: A toy black hole

Hamma. Lloyd FM. Caraveili. Severini. Markstrom. PR/

Probability of light escaping - .

* The dense geomertry creates more boscons and the bosons make more links (cf graviauonal collapse
* Eventually the “black hole” evaporates (faster as it gets smaller

* Unitary evolution,. mixed radiation (no Eif"g'_.:ﬂ.f"f_‘f marrer -:_ﬂ.l:ar'g‘!er: will remnant ;:‘:ECF"'E'.‘_."?

Can make all this very prease: particles obeying this Hamiltonian see an effective curved geametry.
Construct experimental realizations of such models in the lab? (Analogue models of gravity).




Background Independence: a guiding

principle in quantum gravity, but how?

ormulation of the quantum theory of gravity
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There are no geometric or g degrees of freedom in the fundamental theory.

Geometry is only a classical. emergent concept R -




From quantum to gravity?
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From quantum to gravity? o MR
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From quantum to gravity?

A Hamma FM NIP(20I1 1), 101

Analogue modeis of gravity (simulating Jravity):
If it looks like a duck, walks like a duck and quaciks like a duck, can we call it a duck?

If it looks like a duck. and quacks liks a duck, we have at least to consider the possibility that we have a
small aguatie bird of the family anatidas on our hands. Douglas Adams




Space does not exist

-

We only know 5% of our worid. It will - Caution: Must not raise more problems

take a miracie to explain the other 95% that we solve!

without major change.

My bet: the major change is that space is

not fundamenaal. - Good news: More observatonal data
on the way, and we have models to test

Can make models of emergent space and
test them.
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The dynamical lattice: lattice inksasspins

Promorte link to a quantum degree of freedom
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Model 1: Emergent space and matter

i -
,_--"";T-""'-_h ]
&=L T a -
:‘: w__"--.E’_._1|l :“ \ ‘ L 3 L J »
e s |

T Tl e F

:... "-:i'\-_r..__,:'f‘ |r- v - L - »
sl L i L 3

N

‘:“n‘. ".-




.
Fmercaent snacaceltime
S
We currentdy assume an FRW geometry all the way to the Big Bang
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Background independence: principle in quantum gravity

Background Independence |I:

There are no geometric ¢

ZLriC Or gravitatonal aegre

freedom in the fundamenal theory

Geometry is only a classical. emergent concept.




