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Superfluid-insulator transition
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The Superfluid-Insulator transition

Boson Hubbard model

Degrees of freedom: Bosons, b”, hopping between the

sites, j, of a lattice, with short-range repulsive interactions.

=—t2b -p,En +—E n.(n,—1)+-

=b'b.

f' ¥

[bj,bL] = 8
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Excitations of the insulator:

@ @

Particles ~ ¢
@ o

Holes ~

Density of particles = density of holes =
“relativistic” field theory for v:

—» u
S= [ drar (1.0 + T + (g - g0l + 1ol

M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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Quantum critical transport

Transport co-oefficients not determined
by collision rate, but by
universal constants of nature

Conductivity

'Universal constant O(1) |

(Q is the “charge” of one boson)
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CFT3 at 7>0

e Quantum =
critical
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Quantum critical transport

Describe charge transport using Boltzmann theory of in-

teracting bosons:
dv v

| —=
di 7

This gives a frequency (w) dependent conductivity

g0

= l—1wr

where 7. ~ h/(kgT) is the time between boson collisions.

Also, we have o(w — o0) = 0, associated with the den-
sity of states for particle-hole creation (the “optical con-

ductivity” ) in the CFT3.
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So far, we have described the quantum critical point using
the boson particle and hole excitations of the insulator.

(¥) #0 () =0

Superfluid Insulator

0 ———— >
9e g




However, we could equally well describe the conductivity
using the excitations of the superfluid, which are vortices.

(¥) #0 / () =0

Superfluid Insulator

9de g




However, we could equally well describe the conductivity
using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which
described by a (mirror/e.m.) “dual” CFT3 with an emer-
gent U(1) gauge field. Their T" > 0 dynamics can also be
described by a Boltzmann equation:

Conductivity = Resistivity of vortices

() #0 (%) =0

Superfluid Insulator

=y )
9o g
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Vector large N expansion for CFT3

2
o = Q—E E 2 — a universal function
h kgT

t«—O(N)

Relo(w)] \

—{ |« O(1/N)
=1 |
1 Fiw
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AdS/CFT correspondence
AdS4-Schwarzschild black-brane

L3
Pirsa: 11070047 Page 36/96




AdS/CFT correspondence
AdS4-Schwarzschild black-brane

A 2+1

dimensional

system at 1ts
quantum

critical point

Pirsa: 11070047 Page 37/96




AdS/CFT correspondence
AdS4-Schwarzschild black-brane
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dimensional
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critical point
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AdS/CFT correspondence
AdSs+-Schwarzschild black-brane

A Z2+]

dimensional

system at 1ts
quantum

critical point

Black-brane at
temperature of : Friction of quantum

2+ 1 dimensional E Cﬂhcah-h/ waves
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AdS4 theory of “nearly perfect fluids™

To leading order in a gradient expansion. charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity /electrodynamics on AdS4-Schwarzschild

SeEMm :/d \/—g [—F F“bJ
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AdS4 theory of “nearly perfect fluids™

To leading order in a gradient expansion. charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity /electrodynamics on AdS,;-Schwarzschild

Pi

We include all possible 4-derivative terms: after suitable field
redefinitions, the required theory has only one dimensionless
constant v (L is the radius of AdS,):

2

v
SEM = / d*z/— [—— wF* + ;2 CotcaEF

where Cyp.q 1s the Weyl curvature tensor.
Stability and causality constraints restrict |y| < 1/12.

||||| : 11070047 Page 41/96

EE 0N Bl B O EoXo. - F ¢ € F BEo..l. ¥ B.oCeao Y G NREEEEE Ot







AdS4 theory of strongly interacting “perfect fluids™

e The v > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations
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AdS4 theory of strongly interacting “perfect fluids”

15 -

=—
5 ==
Q"
1.0
| e The v < 0 result can be interpreted
0.5 | as the transport of vortex-like
| excitations
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Vector large N expansion for CFT3

—) ;2 — a universal function

Reo(w)] \
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Vector large N expansion for CFT 3

2
g = Q—Z E 2 — a universal function
h kgT

I« O(N)
Relo(w)] \

—{ |« O(1/N)
T >

\
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AdS/CFT correspondence
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AdS4 theory of “nearly perfect fluids”™

To leading order in a gradient expansion. charge transport in
an infinite set of strongly-interacting CF'T3s can be described by
Einstein-Maxwell gravity /electrodynamics on AdS,4-Schwarzschild

We include all possible 4-derivative terms: after suitable field
redefinitions, the required theory has only one dimensionless
constant vy (L is the radius of AdS,):

2

¥,
SEM = /d4:rv [—— % e LCabchabFCd

where Cyp.q 1s the Weyl curvature tensor.
Stability and causality constraints restrict |y| < 1/12.
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AdS4 theory of strongly interacting “perfect fluids”

h < 12
Q2"
1.0
= ' |® The v > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations
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AdS4 theory of strongly interacting “perfect fluids™

15 - =
. <« I
&«

1.0 E=4

e The v < 0 result can be interpreted
0.5 as the transport of vortex-like
| excitations
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AdS4 theory of strongly interacting “perfect fluids”

15 -

— 1
h =
Q"
1.0
0.5 e The v = 0 case is the exact result for the large N limit
of SU(N) gauge theory with N' = 8 supersymmetry (the
ABJM model). The w-independence is a consequence of
self-duality under particle-vortex duality (S-duality).
0.0 = =0 D s N
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AdS4 theory of strongly interacting “perfect fluids™

15 ==
A x P
G
1.0
= e Stability constraints on the effective
theory (|v| < 1/12) allow only a lim-
ited w-dependence in the conductivity
00 e
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Frequency dependency of integer quantum Hall effect

30

a) 50 mK | b) 470 mK |

20 - 1011 05 GHz

10 : M e

= U A

: & 11 6.5 GHz |

Little frequency =2 1r ]

dependence, g 10 1L |
and conductivity is . = |
close to self-dual s 4
value a5 =
10 -
0 i

0 2 4 6 8 1012140 2 4 6 8 10 12 14
B (Tesla) B (Tesla)
FIG. 3. Re{ox.) vs B at three frequencies and two tempera-
tures. Peaks are marked with Landau level index NV and spin.
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Compressible quantum matter

e Consider an infinite, continuum.
translationally-invariant quantum system
with a globally conserved U(1) charge O
(the “electron density”) in spatial dimen-
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Compressible quantum matter

e Consider an infinite, continuum.
translationally-invariant quantum system
with a globally conserved U(1) charge Q
(the “electron density”) in spatial dimen-
sion d > 1.

e Describe zero temperature phases where
(Q) varies smoothly as a function of u
(the “chemical potential”) which changes
the Hamiltonian, H, to H — u9Q.

Pirsa: 11070047




Compressible quantum matter

e Consider an infinite, continuum.,
translationally-invariant quantum system
with a globally conserved U(1) charge Q
(the “electron density”) in spatial dimen-
sion d > 1.

e Describe zero temperature phases where
(Q) varies smoothly as a function of u
(the “chemical potential”) which changes
the Hamiltonian, H, to H — u9Q.

Pirsa: 11070047




Turning on a chemical potential on a CFT

Massless Dirac fermions
(e.g. graphene)
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Turning on a chemical potential on a CFT

Compressible
phase is a
Fermi Liquid
with a
Fermi surface

Vo

Massless Dirac fermions
(e.g. graphene)
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Compressible quantum matter

Another compressible state is the solid
(or “Wigner crystal” or “stripe”™).
This state breaks translational symmetry.

© O O O




Compressible quantum matter

The only other familiar compressible
state is the superfluid.
This state breaks the global U(I)

symmetry associated with O

Pirsa: 11070047

Condensate of
fermion pairs




Compressible quantum matter

Conjecture: All compressible states which preserve
translational and global U(1) symmetries must have

FERMI SURFACES, but they are not necessarily

Ferm: Liquids.
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Compressible quantum matter

Congecture: All compressible states which preserve
translational and global U(1) symmetries must have

FERMI SURFACES, but they are not necessarily
Ferm: liquuids.

e Such states obey the Luttinger relation

Z geAe = (Q),
¢

where the £'th Fermi surface has fermionic quasiparticles with
global U(1) charge g, and encloses area Aj,.
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Compressible quantum matter

Conjecture: All compressible states which preserve
translational and global U(1) symmetries must have

FERMI SURFACES, but they are not necessarily
Ferm: Liquaids.

e Such states obey the Luttinger relation

Z geAe = (Q),
/

where the £'th Fermi surface has fermionic quasiparticles with
global U(1) charge gy and encloses area A;.

e Non-Fermi liquids have quasiparticles coupled to deconfined gauge
fields (or gapless bosonic modes at quantum critical points).
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Theory similar to the ABJM model in a chemical potential

e U(1l) gauge invariance and U(1) global symme-
try

e Fermions, f, and f_, carry U(1) gauge charges
+1, and global U(1) charge 1.

e Bosons, b, and b_, carry U(1) gauge charges
+1, and global U(1) charge 1.

e No supersymmetry

Pirsa: 11070047 Page 73/96

I Lhisiica amd € Sachhdarer 0ol 1A EIY)YD




Theory similar to the ABJM model in a chemical potential

i - 2
e — iy u] fo
2m
- . 2
= bi (0, —icA;) -l + €1 — y} b,
i me

| 2 3
+5 (b5b,)" — g1 (BLoLf_fo +HC)

The index o0 = +1
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Phases of AB]JM-like theories

<b-:> — 0 CAVAVAVAV)

( Fermi surface coupled to Abelian or non-Abelian gauge fields:

e Longitudinal gauge fluctuations are screened by the fermions.

e Transverse gauge fluctuations are unscreened, and Landau-damped.
They are IR fluctuations with dynamic critical exponent z > 1.

e Theory is strongly coupled in two spatial dimensions.

e “Non-Fermi liquid” broadening of the fermion quasiparticle pole.
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AdSs-Schwarzschild black-brane




AdSs-Reissner-Nordtrom black-brane

= [y [k (e 8) - rue
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AdSs-Reissner-Nordtrom black-brane

rAt T = 0, we obtain an extremal black-brane, with
a near-horizon (IR) metric of AdSs x R?

1= f—dt" 1 &

irsa: 1107I047 d52 — 6 ( .?‘2 ) — d.'I'2 -+ dyz
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Properties of AdS; X R?

This state appears stable in the presence of matter
fields (with large enough bulk mass). The single-particle
Green’s function of the boundary theory has the IR

(small w) limit
G (k. w) = A(E) + B(k)u™
where A(k), B(k), and v, are smooth functions of k.

For bosons. we require A(k) > 0 for stability.
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Properties of AdS; X R?

This state appears stable in the presence of matter
fields (with large enough bulk mass). The single-particle
Green’s function of the boundary theory has the IR
(small w) limit

G (k.w) = A(E) + B(E)w™
where A(k), B(k), and v; are smooth functions of k.

For bosons, we require A(k) > 0 for stability.

For fermions, if A(k) changes sign at a £k = kg, we
have a Fermi surface at k = kp. This Fermi surface is
non-Fermi liquid like.
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Interpretation of AdS:

v
A

CFT on graphene
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AdS4-Reissner-Nordtrom black-brane

Near-horizon AdS, X R2




Beyond AdS; X R2

1 6 1 )
& — /d4IV —g [‘2? (R+ Lz) == @“FabF ; - = Ematter:|

Sufficiently light matter undergoes Schwinger pair-creation,
back-reacts on the metric, the horizon may disappear,
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Beyond AdS; X R?2
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Sufficiently light matter undergoes Schwinger pair-creation,
back-reacts on the metric, the horizon may disappear,

and the charge density is delocalized in the bulk spacetime |




Conclusions

Quantum criticality and conformal field theories

@ New insights and solvable models for diffusion and
transport of strongly interacting systems near quantum critical
points

@ The description is far removed from, and complementary
to, that of the quantum Boltzmann equation which builds on
the quasiparticle/vortex picture.

Q@ Prospects for experimental tests of frequency-dependent,
non-linear, and non-equilibrium transport
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Conclusions

Compressible quantum matter

@ The Reissner-Nordstrém solution provides the simplest
holographic theory of a compressible state

Q@ The RN solutions has many problems: finite ground-state
entropy density, violation of Luttinger relation.

@ Condensation of a scalar leads to the holographic theory of
a superfluid. The IR metric has a Lifshitz form, indicating the
presence of neutral gapless excitations not found in a
superfluid.
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Conclusions

Compressible quantum matter

Q@ Fermion back-reaction leads to a Fermi liquid with many
Fermi surfaces which do obey the Luttinger relation.
However, the IR Lifshitz metric, and the very small Fermi
wavevectors appear to be unwanted artifacts.

@ Needed: a complete holographic theory of non-Fermi
liquids and “fractionalized” Fermi liquids, obeying the Luttinger
relations, to describe experiments on “strange metals”.
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Beyond AdS; X R2

e Account for the matter in a Thomas-Fermi approximation: the local chem-
ical potential determines the local density and pressure. using the equation
of state of a free Fermi gas: so determine the density, electric field. and
metric as a function of r. the “extra” dimension.

e Then compute the fermion Green’s function in the background. The bulk
equation for the fermion field leads to poles in Green’s function at many
E

-0 +V(r)]T=0
VvV k<ke

1r
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AdSs-Reissner-Nordtrom black-brane

Near-horizon AdS, X R2




Beyond AdS; X R2

ab
ﬁ 462 abF + Ematter
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Sufficiently light matter undergoes Schwinger pair-creation,
back-reacts on the metric, the horizon may disappear,
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AdS4-Reissner-Nordtrom black-brane

Near-horizon AdS,; X R?




