Title: Overview of the Challenges

Date: Jul 12, 2011 09:00 AM

URL: http://pirsa.org/11070044

Abstract:

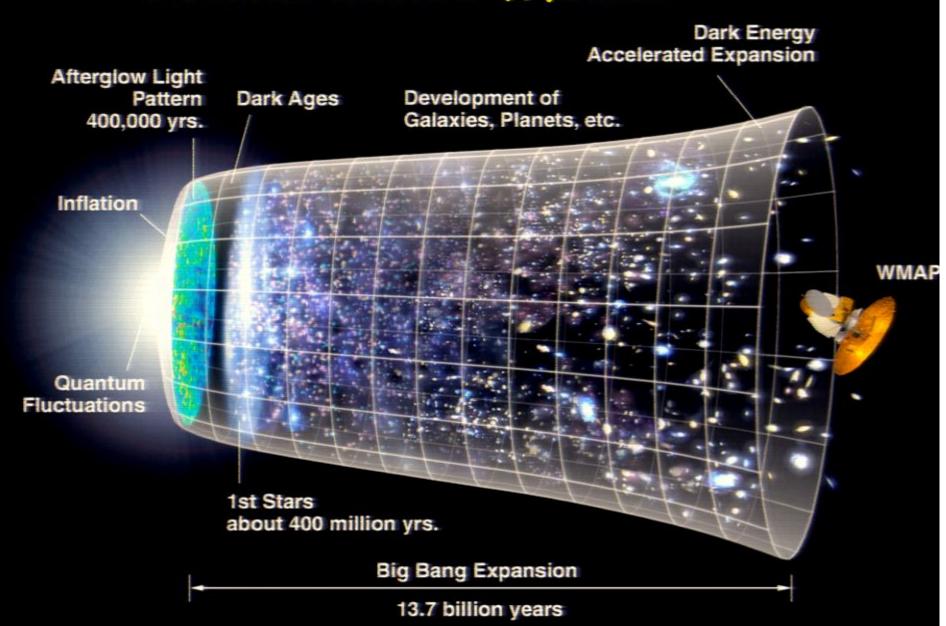
Pirsa: 11070044 Page 1/54

Challenges for Early Universe Cosmology

Neil Turok, Perimeter Institute

- * Concordance Model
- * Anthropics
- * Measures

Concordance Model



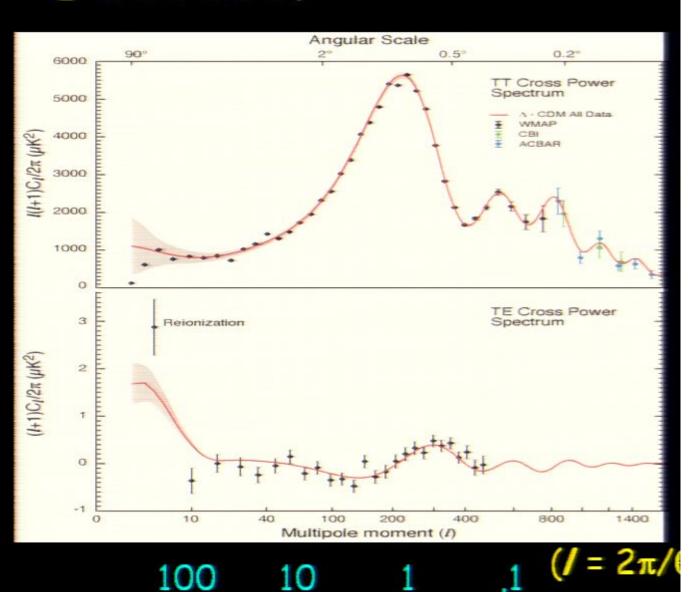
Success!

fluctuation level: temperature

Z'eldovich, Peebles+Yu 70's Bond+Efstathiou 80's

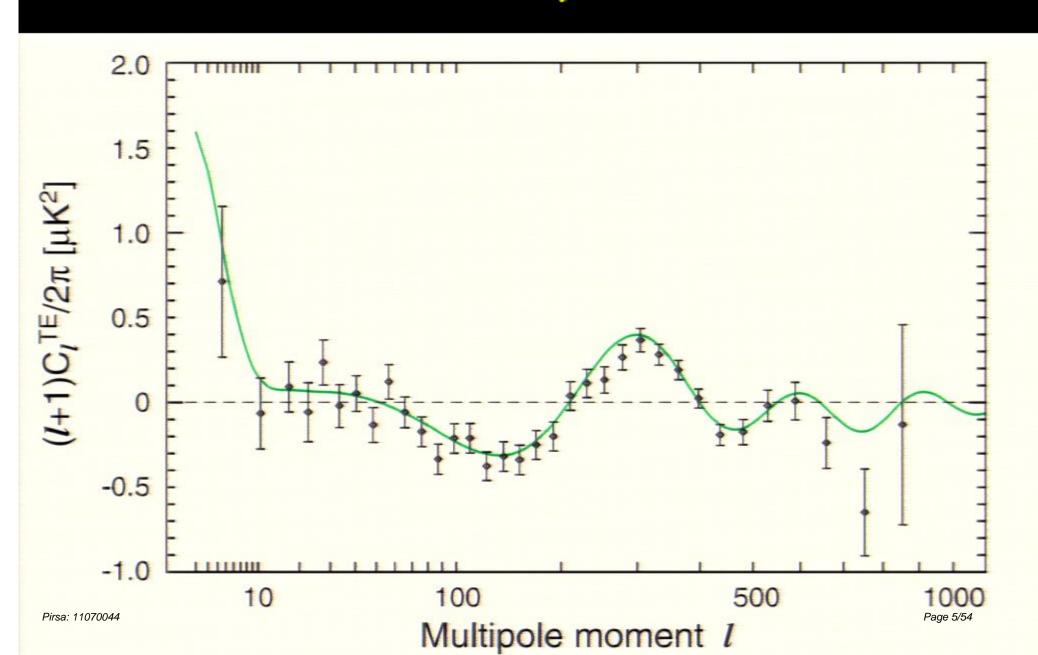
polarization

Coulson, Crittenden, NT94



Anale on Sky (Degrees)

WMAP 5 year TE



good evidence for ...

nearly flat FRW universe:

```
\Omega_{\Lambda}: \Omega_{CDM}: \Omega_{B}: \Omega_{v}: \Omega_{v} \sim 0.7: 0.25: 0.05: 0.003: 0.0003
```

primordial perturbations

- * linear
- * growing mode
- * nearly scale-invariant
- * nearly 'adiabatic'
- * nearly Gaussian

universe is: geometrically simple compositionally complex

inflation

Challenges for Inflation

- * initial conditions
- * fine-tuned potentials
- * \Lambda ~10^-120 : \Lambda_T ~10^-15
- * eternal inflation
 - "anything that can happen will happen: and it will happen an infinite number of times" A. Guth, 2002
- * landscape measure problem
- * reliance on anthropic arguments

Anthropics: the universe is the way it is because of a (gigantic) selection effect

why are we then not "close to extinction"?

why is the universe so geometrically simple?

- * very nearly flat
- * very nearly spatially homogeneous
- * the fluctuations are scale-invariant on scales much larger than galaxy scales

for anthropic arguments to become convincing, we need well-defined

- * measures
- * projections

The Measure Problem

What is the natural measure on the space of cosmological solutions?

What is the likelihood of a universe like ours, in a given physical model? eg inflation, cyclic,

Two key ingredients

- I: Penrose critique of inflation -Hamiltonian evolution almost never turns a generic state into a highly unusual state. Canonical measure is invariant.
- II: Counting of states in gravity can only be done in an asymptotic region where global properties of spacetime become sharp

In a specific setup, we shall construct a canonical measure and show a universe like ours is extremely unlikely in slow-roll inflationary models

- standard slow-roll inflation

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3}\rho_{\phi} - \frac{k}{a^{2}}; \quad \rho_{\phi} = \frac{1}{2}\dot{\phi}^{2} + V(\phi)$$

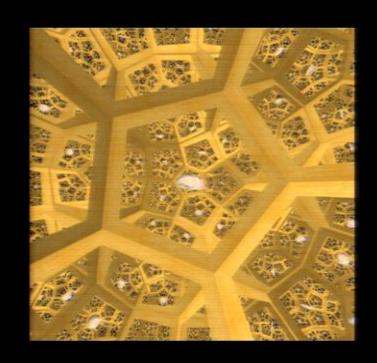
$$\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} = -V_{,\phi}$$

$$\Rightarrow \dot{H} = -\frac{1}{2}\dot{\phi}^{2} + \frac{k}{a^{2}}$$

- Hamiltonian and time reversal invariant

(focus on FRW spacetimes and assume $V(\phi)$ is monotonic away from its min)

Assume k=-1 (so a and H are monotonic), zero Λ , and compactify the spatial slices



- * a mathematical device to keep everything finite: the results do not depend on the compactification volume
- * (but in fact has been advocated as a very natural setup for chaotic inflation)

- standard slow-roll inflation

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3}\rho_{\phi} - \frac{k}{a^{2}}; \quad \rho_{\phi} = \frac{1}{2}\dot{\phi}^{2} + V(\phi)$$

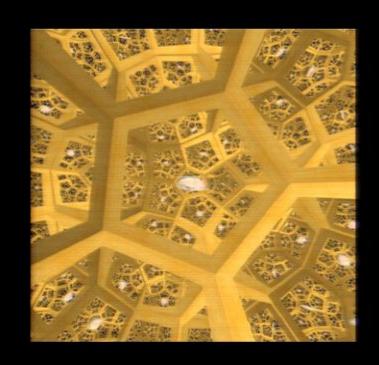
$$\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} = -V_{,\phi}$$

$$\Rightarrow \dot{H} = -\frac{1}{2}\dot{\phi}^{2} + \frac{k}{a^{2}}$$

- Hamiltonian and time reversal invariant

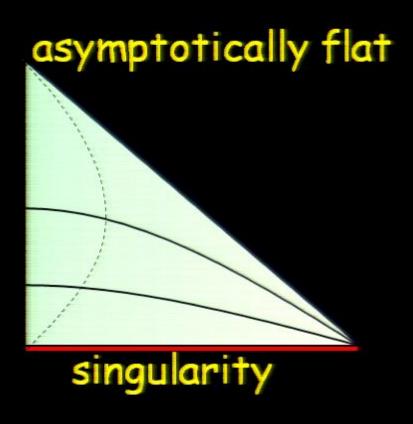
(focus on FRW spacetimes and assume $V(\phi)$ is monotonic away from its min)

Assume k=-1 (so a and H are monotonic), zero Λ , and compactify the spatial slices



- * a mathematical device to keep everything finite: the results do not depend on the compactification volume
- * (but in fact has been advocated as a very natural setup for chaotic inflation)

2-parameter family of solutions with an initial singularity:



- standard slow-roll inflation

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3}\rho_{\phi} - \frac{k}{a^{2}}; \quad \rho_{\phi} = \frac{1}{2}\dot{\phi}^{2} + V(\phi)$$

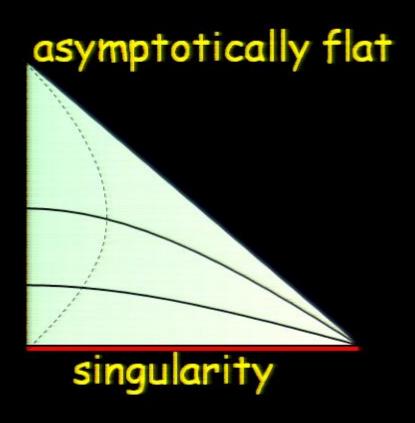
$$\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} = -V_{,\phi}$$

$$\Rightarrow \dot{H} = -\frac{1}{2}\dot{\phi}^{2} + \frac{k}{a^{2}}$$

- Hamiltonian and time reversal invariant

(focus on FRW spacetimes and assume $V(\phi)$ is monotonic away from its min)

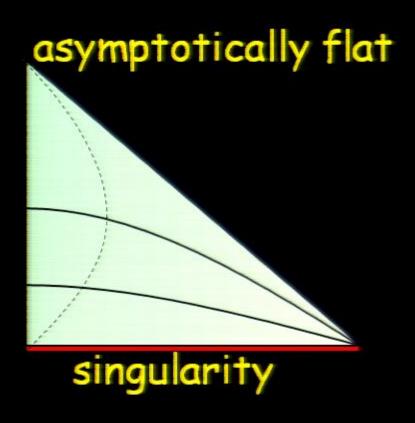
2-parameter family of solutions with an initial singularity:



Criteria for a Measure

- (i) Positive, normalisable
- (ii) Independent of slicing or coordinates on either space-time or field space
- (iii) Independent of ad hoc external structures eg cutoffs, comoving observers, "volume" factors.
- (iv) Natural extension of canonical quantum measure for fluctuations to the background (why use for one but not the other???)

2-parameter family of solutions with an initial singularity:



Criteria for a Measure

- (i) Positive, normalisable
- (ii) Independent of slicing or coordinates on either space-time or field space
- (iii) Independent of ad hoc external structures eg cutoffs, comoving observers, "volume" factors.
- (iv) Natural extension of canonical quantum measure for fluctuations to the background (why use for one but not the other???)

Canonical measure on space of solutions

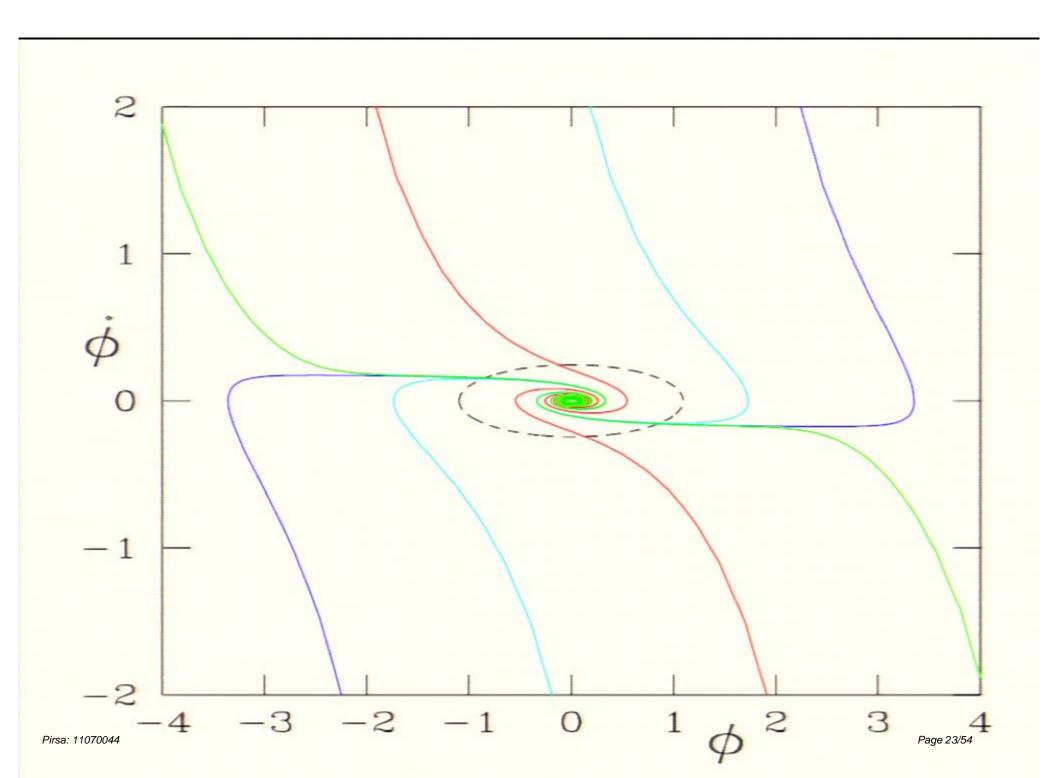
$$\omega_c = dp_a \wedge da + dp_{\phi} \wedge d\phi$$

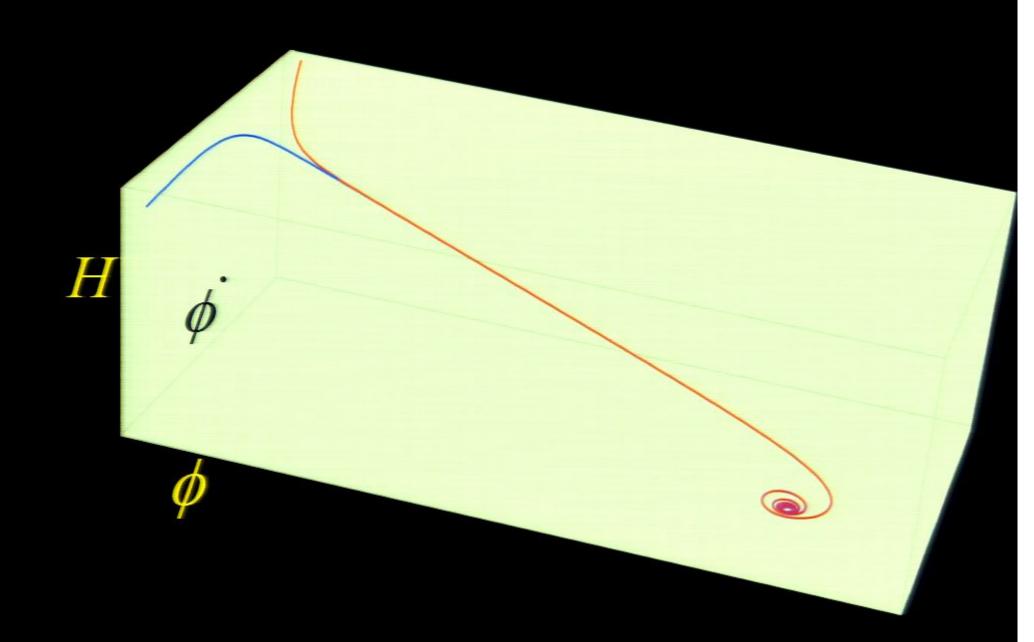
$$\int_{\Sigma} \omega_c \Big|_{H=0}$$

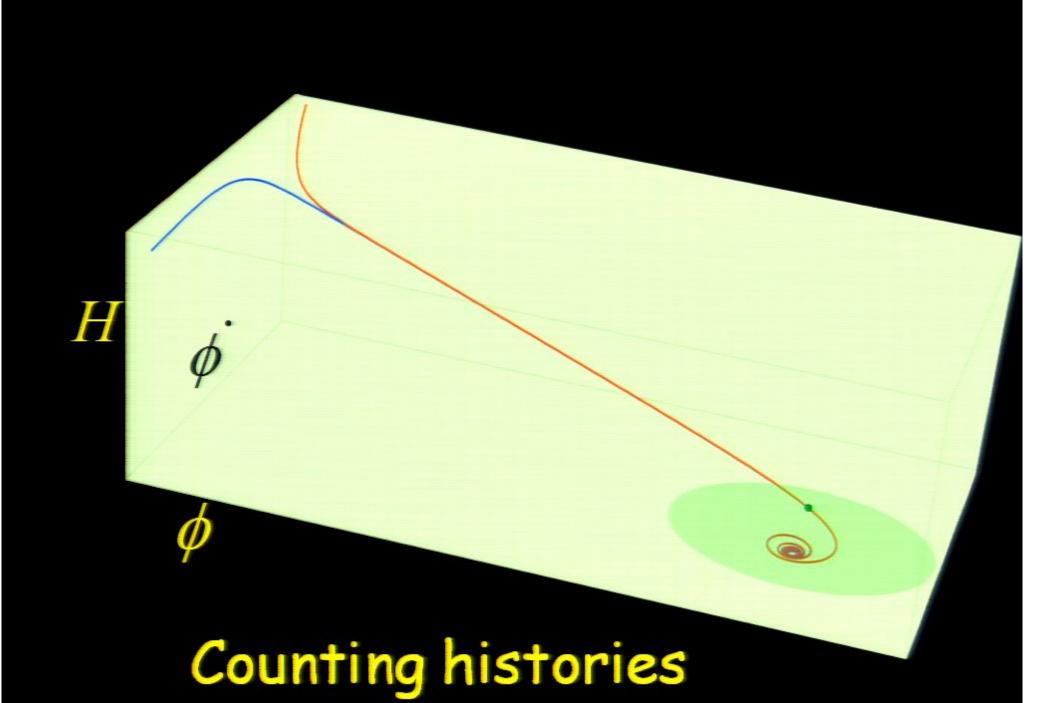
Liouville
Gibbons, Hawking, Stewar
Hawking, Page
Hollands Wald
Kofman, Linde, Mukhanov
Gibbons, NT
Carroll, Tan

with Σ pierced once by every trajectory e.g. a=const or H=const

Satisfies all of conditions (i)-(iv) except normalisability, because \sum is not compact (because \mathbb{H} isn't positive)







Flat space canonical (Gibbs) ensemble. Cannot just integrate over Liouville: instead, we maximise entropy $S = -\sum p_i \ln p_i$

subject to
$$E = \sum p_i E_i$$
 (assuming E_i b.b.)

Note: in information theory approach, max ent principle is very general, can even be applied to non-equilibrium situations (see e.g. papers of E.T. Jaynes)

But in GR, $\mathbb{H}=0$ on all physical states, so cannot constrain its expectation value

What do we do?

In k=-1, zero Λ cosmologies, matter density is diluted away at large a -> gravity becomes negligible, expansion becomes adiabatic

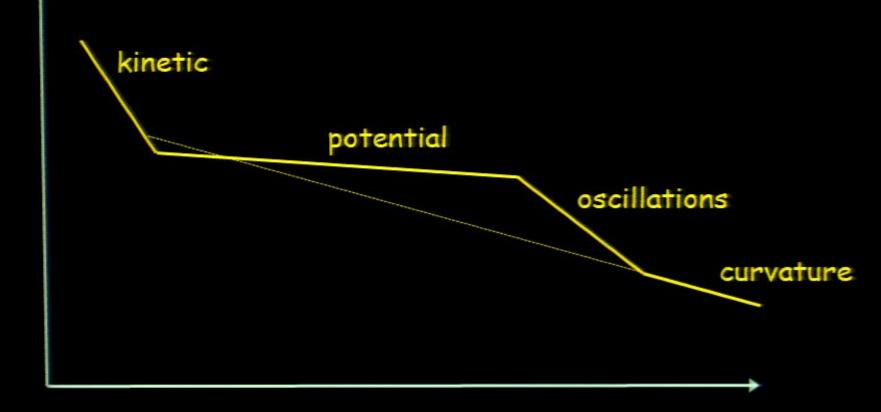
-> entropy reduces to that of the matter (inc grav waves), and is an adiabatic invariant

Every trajectory ends up on an adiabat curve $S_m(E_m,a)$ = const

Natural to label an ensemble of spacetimes by the asymptotic entropy $S=S_m$

generic open FRW cosmology

Lnpt



Ln a

Ε Page In k=-1, zero Λ cosmologies, matter density is diluted away at large a -> gravity becomes negligible, expansion becomes adiabatic

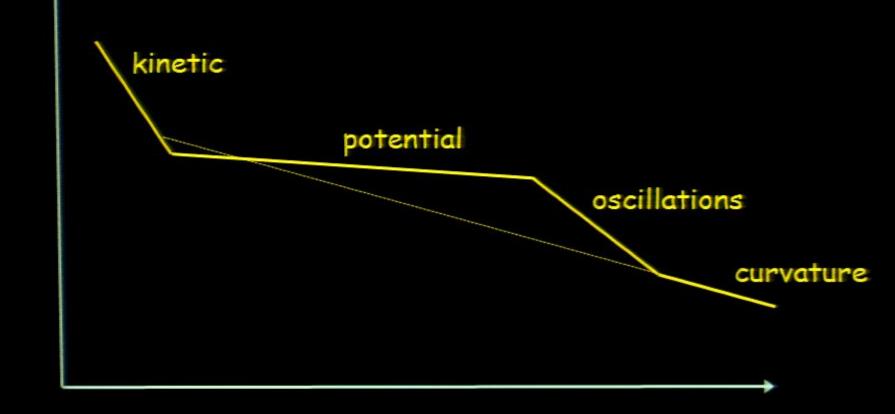
-> entropy reduces to that of the matter (inc grav waves), and is an adiabatic invariant

Every trajectory ends up on an adiabat curve $S_m(E_m,a)$ = const

Natural to label an ensemble of spacetimes by the asymptotic entropy $S=S_m$

generic open FRW cosmology

Lnpt



Ln a

In k=-1, zero Λ cosmologies, matter density is diluted away at large a -> gravity becomes negligible, expansion becomes adiabatic

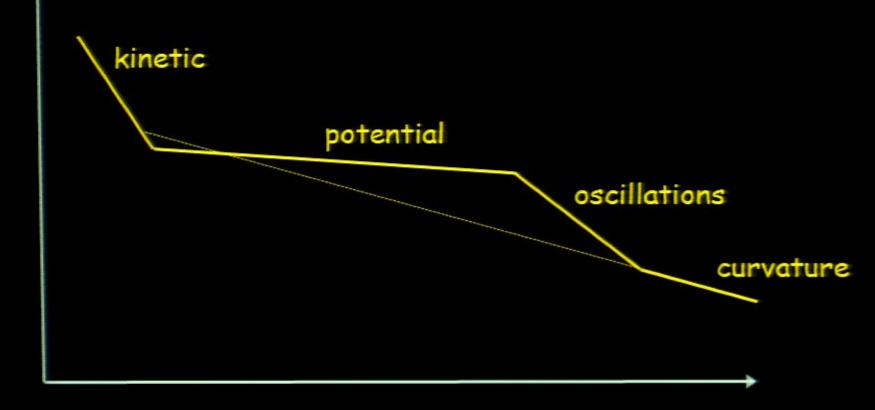
-> entropy reduces to that of the matter (inc grav waves), and is an adiabatic invariant

Every trajectory ends up on an adiabat curve $S_m(E_m,a)$ = const

Natural to label an ensemble of spacetimes by the asymptotic entropy $S=S_m$

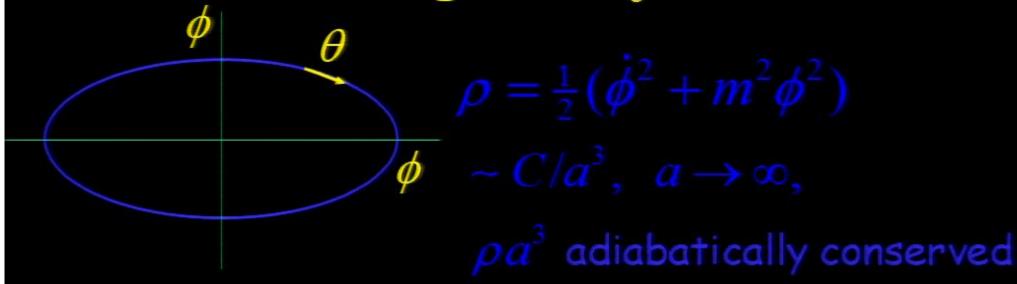
generic open FRW cosmology

Lnpt



Ln a

$$a = const slicing$$
 $\omega_c = a^3 d\dot{\phi} d\phi$

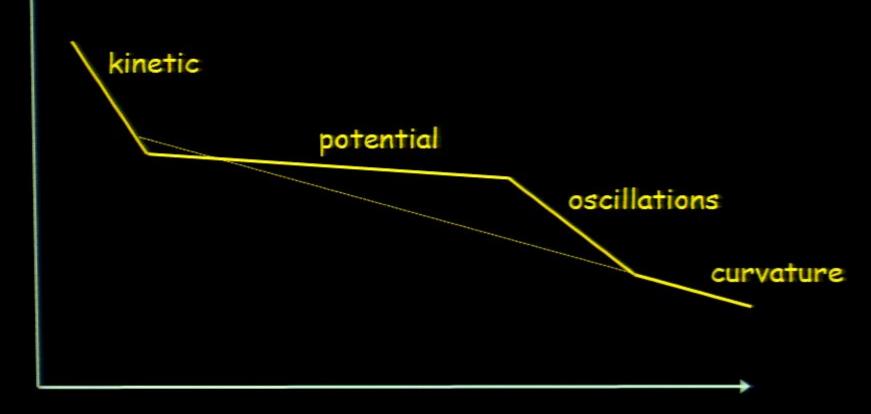


$$ds^{2} = \frac{da^{2}}{1 + 8\pi G\rho a^{2}/3} + a^{2}dH_{3}^{2} \approx dM_{4}^{2} - \frac{8\pi G}{3}\frac{C}{a}da^{2}$$

(C is analogous to the AdM mass)

generic open FRW cosmology

Lnpt



Ln a

$$a = const slicing$$
 $\omega_c = a^3 d\dot{\phi} d\phi$

$$\rho = \frac{1}{2}(\dot{\phi}^2 + m^2\phi^2)$$

$$\sim C/a^3, \ a \to \infty,$$

$$\rho a^3 \text{ adiabatically conserved}$$

$$ds^{2} = \frac{da^{2}}{1 + 8\pi G\rho a^{2}/3} + a^{2}dH_{3}^{2} \approx dM_{4}^{2} - \frac{8\pi G}{3}\frac{C}{a}da^{2}$$

(C is analogous to the AdM mass)

Including backreaction

$$\phi \sim \frac{(2C)^{\frac{1}{2}}}{ma^{\frac{3}{2}}} \left(\cos \theta + \frac{C \cos^3 \theta}{24a} \right) + \dots,$$

$$\rho_{\phi} \sim \frac{C}{a^3} \left(1 + \frac{3 \sin 2\theta}{2ma} + \frac{C(2 \cos 2\theta + \sin^2 2\theta)}{24a} \right) + \dots$$

where
$$\theta = m(a - \frac{5C}{24}\ln(ma)) + \theta_0$$

in large a limit, effect of matter on background spacetime (i.e. gravity) becomes negligible

we just have flat spacetime, and an adiabatically expanding box filled with matter

statistical ensemble: minisuperspace

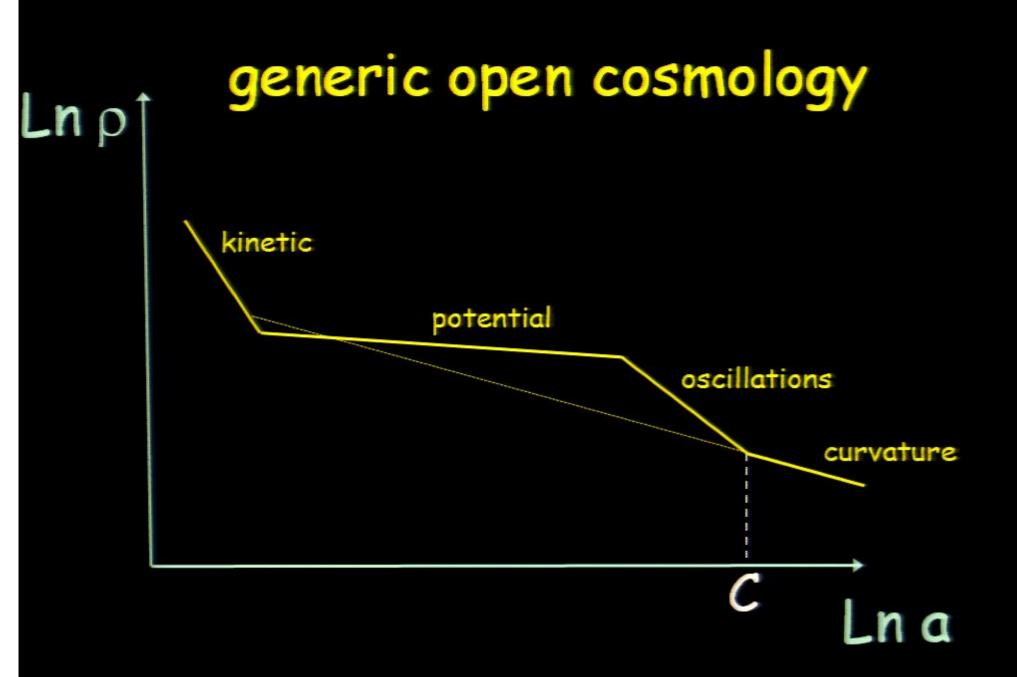
$$\mathbb{H}_{\mathbf{m}}(p_{\phi}, \phi) = \frac{1}{2} \left(\frac{p_{\phi}^2}{Ua^3} + Ua^3 V(\phi) \right)$$

$$\left\langle \mathbf{H}_{\mathsf{m}}\right\rangle = \frac{\int dp_{\phi} d\phi e^{-\beta \mathbf{H}_{\mathsf{m}}}}{\int dp_{\phi} d\phi e^{-\beta \mathbf{H}_{\mathsf{m}}}} = E(a, \beta)$$

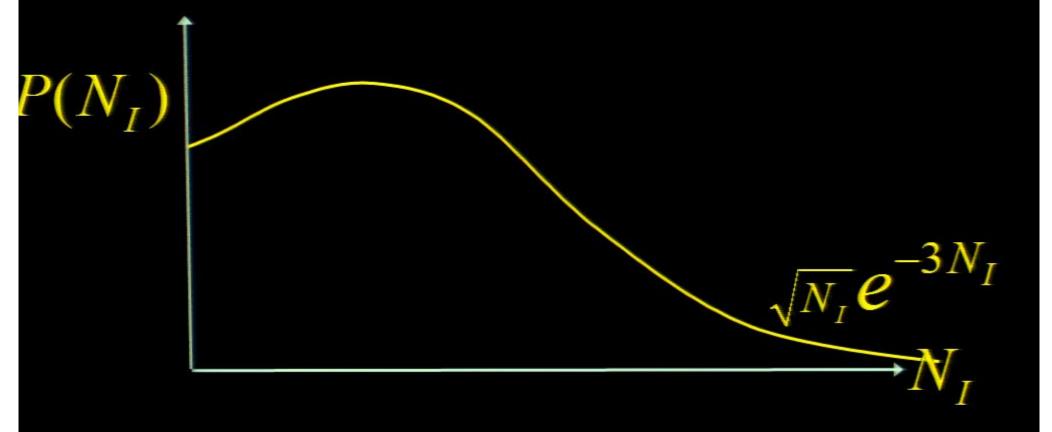
entropy
$$S = S_m = \ln(\frac{Ua^3 \rho_{\phi}}{m}) = \text{adiabatic invarian}$$

constant entropy=fixed C

Ε Page Ε Page



Canonical measure for inflation



Finite C result is always lower than $C = \infty$ result at large $N_{\rm I}$

- * Note: "attractor" becomes "repeller" because statistical ensemble defined in asymptotic region where gravity becomes unimportant: the future
- * N slow-roll inflaton fields (N-flation) makes problem worse

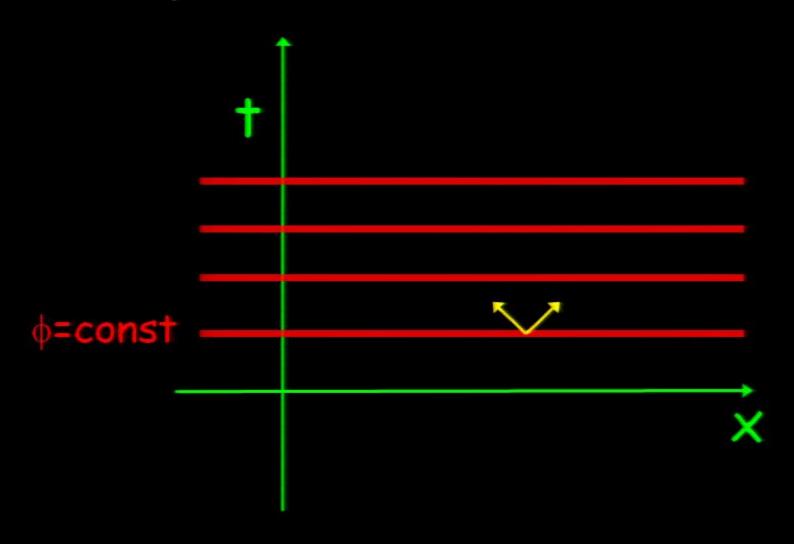
$$P_{>}(N_I) \propto \prod_i \delta\theta_i \sim e^{-3N_I N}$$

- * this analysis makes precise a problem identified by Penrose long ago (Annals NYAS, 1989)
- * with this canonical measure, slow-roll/`chaotic' inflation cannot be considered a viable explanation for the observed state of the cosmos
- * can be extended to landscape with inclusion of complex solutions describing tunneling: false vacua don't help

- * Could add further restrictions e.g. insist ϕ bounded -> 1-parameter family ϕ_0 (S_{final})
- * Large entropy -> many e-folds, but large final entropy (or flatness) is then an input, not a prediction
- * Could restrict to non-singular spacetimes (eg Page) and just reject all k=-1 solutions
- * k=+1 "bounce" solutions possible, have finite measure but collapsing phase very unstable
- * How do we justify rejecting cosmic singularities but allowing black holes? What about white holes?

What could be wrong?

- * canonical measure?
- * neglect of: entropy production?



But the relative proportions of phase space corresponding to $N_{\rm I}$ or more efolds are preserved (by unitarity or Liouville)

What could be wrong?

- * canonical measure?
- * neglect of: entropy production?
 - : inhomogeneities?
 - : quantum fluctuations?
- * constraint on final entropy? maybe, but what alternative?
- * global structure?
- * inflation?

compare "cyclic/ekpyrotic" theory, where gravity is unimportant in the past, and according to the corresponding canonical measure, every trajectory undergoes near-maximal ekpyrosis

(w/P. Steinhardt)

Scale Invariant perturbations

- * near-massless scalar in de Sitter
- * exponentially flat potentials in collapsing phase (cyclic)
- * scale-invariant duals via holography

Summary

concordance cosmology has plenty of challenges

- singularity
- tuning
- reliance on anthropics
- measure: a good one exists!

No Signal

VGA-1

Pirsa: 11070044 Page 53/54

No Signal

VGA-1

Pirsa: 11070044 Page 54/54