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Abstract: Thistalk will be aheuristic discussion of the challenges for the big bang inflationary picture and possible approaches for addressing them.
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Two Principal Challenges
for the Big Bang Inflationary Picture

Inflation makes no predictions

without strong prniors about intial conditions or measure

Inflation is highly unlikely

_..or of indeterminate likelthood. based on conservative measures
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for the Big Bang Inflationary Picture

Inflation makes no predictions

_.without strong prniors about mitial condiions or measure

Inflation is highly unlikely

_..or of indetermmate likellhood. based on conservative measures

Why conftinue fo think only about infiation?
Why noft alternatives?




e.qg., straw man theory: the onginal big bang mode/
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Infiation rewards “rogue” regions
(atypical regions normally, buf here infiation makes them dominant)
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can happen will happen:
infinite number of times.”

Back where we started!
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Worse still: the volume measure fails
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Two Principal Challenges
for the Big Bang Inflationary Picture

Inflation makes no predictions

..wathout strong prniors about miial condiions or measure

we did not fake proper account of how quantum mechanics and inflation mix

Inflation is highly unlikely

Nzive views zbout likely initial condifions




The Penrose (1988) argument. _.
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...and the Liouville argument
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extrapolating backwards,

Answer- Almost none’

Gibbons & Turok (20086)

e lal

Turok (20




Lenny's Janitor
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Liouville argument counterintuitive?

Seems fo disfavor sfrong attractor behavior.
which we normally considerable
desirable in a theory?77
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Liouville argument counterintuitive?

Seems fo disfavor strong atfractor behavior,

which we normally considerable
deswrable in a theory?77

- in homogeneous case,
Inflation /S favored

... just not a lot (<< 60 e-folds)
Skinny aftractor
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Liouville argument counternntuitive?

Seems o disfavor strong attractor behavior,
which we normally considerable
desirable in a theory?77?

e ™~ In homogeneous case,
Inflation /S favored
... just not a lot (<< 60 e-folds)
Skinny afttractor
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_..and the Liouville argument
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Stronger than the entropy argument 7
Liouville
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Corollary: makes clear that KE >>PE
as you extrapolate back in time
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Corollary: makes clear that KE >>PE
' as you extrapolate back in time

Except for special cases (oscillations).
only equal at one instant in time,
N so equality is not likely




herefore, KE >>> PE much more likely initial condition than KE ~ PE.
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How much more likely?




efore, KE >>> PE much more likely initial condition than KE ~ PE.

\ ] I reason to expect ‘:'h.ﬂ g0 OF \.E: l_‘:'l _\[:‘1.
5. It seems reasonable to suppese that the most natural matial conditions at

the classical description of the universe first becomes feasible are

Linde (2005)
How much more likely?

Liouviille tefls us exponentially more likely!
(which is why infiation is disfavored)




How to Fix the Problems?

Inflation makes no predictions
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Inflation makes no predictions
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SMOOTH AND FLATTEN WHILE PENAL IZING ROGUE REGIONS
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SMOOTH AND FLATTEN WHILE PENALIZING ROGUE REG/IONS

H. smoothing < 0 <<H after

o logical possibilities:

smooth while expanding (.e.g., see Roger's talk)

smooth while contracting — then need info preserving bounce
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NO CAUSALITY PROBLEM

NO FLATNESS PROBLEM
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rogue regions that delay reh.eating rogue regions that delay reheating
contract or expand slower expand faster




THER POSSIBLE ADVANTAGES:

itial conditions: higher entropy
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THER POSSIBLE ADVAN TAGES:
itions: higher entropy

itial condit

. possible explanation for small A

nore time”
ycling: efficient use of space
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THE BOUNCE:

Required fo have bounce that is unitary/analytc.. ..

that smoothly matches conditions

from before fo after




THE BOUNCE:

Required fo have bounce that is unitary/analytc. . ..

that smoothly matches conditions

from before fo after

NEED NOT BE GENERIC'!




THE IMPERFECT BOUNCE: ANIDEAL ENTROPY SIEVE?

Sieves out regions with large geometncal entropy (they form black holes)

Passes regions with tiny geomeincal entropy and high matier entropy

A NON-HAMIL TONIAN EVOLUTION




Generic predictions:

primordial g-waves: exponentially small and blue

H exponentially small and increasing in magnitude

Koyama, Mizunc, Vemizzi, Wands

non-gaussian perturbations  swconce. <oy, ow

Lehners PSS

: F e 3 = 3
Largew: & e f\Z?L i s 8nz S

[z (eychic) ~ ~w+1 = O(10)

g, (cyclic) ~ —40(w+1)=—0(1000)
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\ 3) Almost all iniial conditions lead
to nearly full ekpyrotic phase
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Liouville



