Title: The Curious Nonexistence of Gaussian 2-designs

Date: Jul 18, 2011 04:00 PM

URL: http://pirsa.org/11070004

Abstract: Continuous-variable SICPOVMS seem unlikely to exist, for a variety of reasons. But that doesn't rule out the possibility of other 2-designs for the continuous-variable Hilbert space L2(R). In particular, it would be nice if the coherent states -- which form a rather nice 1-design -- could be generalized in some way to get a 2-design comprising *Gaussian* states. So the question is: "Can we build a 2-design out of Gaussian states?". The answer is "No, but in a very surprising way!" Like coherent states, Gaussian states have a natural transitive symmetry group. For coherent states, it's the Heisenberg group. For Gaussian states, it's the affine symplectic group -- the Heisenberg group plus squeezings and rotations. And this group acts irreducibly on the symmetric subspace of L2(R) x L2(R)... which, by Schur's Lemma, implies that the Gaussian states *should* be a 2-design. Yet a very simple explicit calculation shows that they are not! The resolution is fascinating -- it turns out that the "symplectic twirl" involves an integral that does not quite converge, and this provides a loophole out of Schur's Lemma. So, in the end, we: (1) Show that Gaussian 2-designs do not exist, (2) Demonstrate a major stumbling block to *any* symplectic-covariant 2-designs for L2(R), (3) Gain a pretty complete understanding of *one* of the [formerly] mysterious discrepancies between discrete and continuous Hilbert spaces.

Pirsa: 11070004 Page 1/37

The Curious Non-Existence of Gaussian 2-Designs

Robin Blume-Kohout and Peter Turner (U. Tokyo)

The Order of Events

- 1. Gaussian 2-designs should exist.
- 2. Gaussian 2-designs don't exist.

The Order of Events

- -1. What are designs? especially 2-designs?
 - 0. Why would we want a 2-design made of Gaussian states?
 - 1. Gaussian 2-designs should exist.
 - 2. Gaussian 2-designs don't exist.

Ais ferent from finite in a new ish way).

The Order of Events

- -1. What are designs? especially 2-designs?
 - 0. Why would we want a 2-design made of Gaussian states?
 - 1. Gaussian 2-designs should exist.
 - 2. Gaussian 2-designs don't exist.
 - 3. Infinity is different from finite (in a newish way).

Designs

- State designs are sets of pure states that mimic (to some degree) the uniform ensemble of all pure states.
- A t-design $\mathcal{E} = \{ |\psi_k \rangle \}$ for Hilbert space H satisfies:
 - (i) Every *t*-th order polynomial in $|\psi\rangle\langle\psi|$ has the same average value over \mathcal{E} as it does over the [unique] unitarily invariant ensemble of states (Haar measure).
 - (ii) The *t*-copy mixed state for \mathcal{E} , $\rho^{(t)} = \operatorname{avg}_{\mathcal{E}} \left(|\psi\rangle\langle\psi|^{\otimes t} \right)$ is equal to the *t*-copy mixed state for Haar measure.
 - (iii) $\rho^{(t)}$ is proportional to the projector on the symmetric subspace of t copies, $\Pi_{\text{symm}} (H^{\otimes t})$.

Designs

- State designs are sets of pure states that mimic (to some degree) the uniform ensemble of all pure states.
- A t-design $\mathcal{E} = \{ |\psi_k \rangle \}$ for Hilbert space H satisfies:
 - (i) Every *t*-th order polynomial in $|\psi\rangle\langle\psi|$ has the same average value over \mathcal{E} as it does over the [unique] unitarily invariant ensemble of states (Haar measure).
 - (ii) The *t*-copy mixed state for \mathcal{E} , $\rho^{(t)} = \operatorname{avg}_{\mathcal{E}} \left(|\psi\rangle\langle\psi|^{\otimes t} \right)$ is equal to the *t*-copy mixed state for Haar measure.
 - (iii) $\rho^{(t)}$ is proportional to the projector on the symmetric subspace of t copies, $\Pi_{\text{symm}} (H^{\otimes t})$.

Designs

- State designs are sets of pure states that mimic (to some degree) the uniform ensemble of all pure states.
- A t-design $\mathcal{E} = \{ |\psi_k \rangle \}$ for Hilbert space H satisfies:
 - (i) Every *t*-th order polynomial in $|\psi\rangle\langle\psi|$ has the same average value over \mathcal{E} as it does over the [unique] unitarily invariant ensemble of states (Haar measure).
 - (ii) The *t*-copy mixed state for \mathcal{E} , $\rho^{(t)} = \operatorname{avg}_{\mathcal{E}} \left(|\psi\rangle\langle\psi|^{\otimes t} \right)$ is equal to the *t*-copy mixed state for Haar measure.
 - (iii) $\rho^{(t)}$ is proportional to the projector on the symmetric subspace of t copies, $\Pi_{\text{symm}} (H^{\otimes t})$.

Applications of Designs

- A 1-design is a rank-1 POVM -- e.g., orthogonal basis.
 - Many boring uses, e.g. averaging expectation values.
- 3-, 4-, etc. designs do not have a lot of known uses.
- 2-designs are the sweet spot:
 - SICPOVMs, MUBs, stabilizer states (overkill)...
 - Optimal tomographic measurements
 - Optimal process-tomographic input ensembles
 - Can average quadratic functions over all states:
 - * variances, e.g. $\Delta x^2 = \langle \mathbf{x}^2 \rangle \langle \mathbf{x} \rangle^2$
 - * gate fidelity, $\langle \psi | \mathcal{N} [|\psi \rangle \langle \psi |] | \psi \rangle$

Generating Designs

- Unitary design = a set of unitary operators $\{U_k\}$ that mimic the Haar ensemble of unitaries.
 - Necessary & sufficient condition: $\{U_k | \psi_0 \rangle\}$ is a *state t*-design for all $|\psi_0 \rangle$.
 - So unitary t-designs generate state t-designs.
- If $\{U_k\}$ represent a group, then a nice condition is: The representation $\{U_k\}$ must be *irreducible* on the symmetric subspace of $H^{\otimes t}$.
 - ⇒ no invariant subspaces
 - ⇒ twirling takes any state to uniform mixture.
- So: irreducible representations generate state designs.

-

Heisenberg 1-Designs

- The Heisenberg Group H: translations on flat phase space
 - position shifts,
 - momentum boosts,
 - Berry phases (ignore these to get projective representation)
- Case 1: Discrete $d \times d$ phase space:
 - \boldsymbol{H} is represented on H_d . Irreducible. d^2 elements.
 - Generates (e.g.) **x** and **p** bases. Also SICPOVMs (!!).

- Case 2: Continuous x-p phase space.
 - **H** represented on $L^2(\mathbb{R})$. Irreducible. Uncountable.
 - Generates \boldsymbol{x} / \boldsymbol{p} bases. Also coherent states.

Measure Theory for Continuous Designs

- Averaging over continuous designs requires measure theory.
- $\{U_k\}$ is a representation \Rightarrow group-invariant measure.
 - Finite rep: always a unique Haar measure.
 - Compact infinite rep: always a unique Haar measure.
 - Noncompact: usually left and right Haar measures.
- Examples:
 - SU(2)... compact... all reps have a Haar measure.
 - H on $L^2(\mathbb{R})$... noncompact... has a nice Haar measure equal to Lebesgue measure on \mathbb{R}^2 .

Symplectic [Linear] Transforms

- Heisenberg group = linear translations on phase space.
- Other linear transforms: shears, rotations*, squeezes*.
 - => Symplectic group $Sp = SL_2 = 2x2$ matrices w/det 1.
 - Noncompact [continuously infinite] Lie group.
 - Add in **H** to get **WSp**, the affine symplectic group.
- \circ Discrete $SL_2(Z_d)$
 - Generates MUBs (2-design)

• Pretty easy to show that it's a unitary 2-design.

Symplectic Transforms on $L^2(\mathbb{R})$

- Sp = SL₂(R): rotations, shears, squeezes on continuous phase space
- WSp is a transitive symmetry group for Gaussian states (i.e., transforms every Gaussian into any other)
- Has a well-defined left-invariant Haar measure (left and right are not the same, though...)
- So: WSp-invariant measure over Gaussian states is a <u>candidate</u> Gaussian 2-design.

Gaussian 2-Designs Should Exist

Why? **WSp** is irreducible on Symm $(L^2(\mathbb{R}) \otimes L^2(\mathbb{R}))$.

1. Refactor
$$L^2(x) \otimes L^2(y) \leftrightarrow L^2(x-y) \otimes L^2(x+y)$$

$$\equiv L^2(x_+) \otimes L^2(x_-)$$

- 2. **H** subgroup acts only on x_+ factor, & is irreducible.
- 3. $SL_2(\mathbf{R})$ contains an SO(2) subroup
 - = harmonic oscillator dynamics
 - => irreps are 1-dimensional (HO basis states!)
- 4. Squeezing mixes all even (odd) HO basis states.
- =>WSp is irreducible on Symm/Antisymm subspaces

Gaussian 2-Designs Don't Exist

Why? Π_{symm} is not in convex hull of Gaussian $|\psi\rangle\langle\psi|^{\otimes 2}$.

- 1. $\Pi_{\text{symm}} = 1 I_{x_-} \otimes \frac{1}{2} (1 + \mathbb{P})_{x_-}$. Wigner $W(x, p) \propto \delta(x) \delta(p) + 1$... Impossible to build w/Gaussians!
 - 1. Refactor $|\psi\rangle\langle\psi|^{\otimes 2}$ in x_+ / x_- factorization \Rightarrow tensor product of pure Gaussians, and... ... $\psi(x_-)$ is a squeezed vacuum state; $\langle x \rangle = \langle p \rangle = 0$

- 3. Average $W(x_-, p_-)$ over SO(2) subgroup
- 4. Every such W drops off between e^{-r^2} and 1/r.

Pirsa: 11070004 So we cannot possibly build up $\delta(x)\delta(p)+1$.

Gaussian 2-Designs Don't Exist

Why? Π_{symm} is not in convex hull of Gaussian $|\psi\rangle\langle\psi|^{\otimes 2}$.

- 1. $\Pi_{\text{symm}} = 1 l_{x_{-}} \otimes \frac{1}{2} (1 + \mathbb{P})_{x_{-}}$. Wigner $W(x, p) \propto \delta(x) \delta(p) + 1$... Impossible to build w/Gaussians!
 - 1. Refactor $|\psi\rangle\langle\psi|^{\otimes 2}$ in x_+ / x_- factorization \Rightarrow tensor product of pure Gaussians, and... ... $\psi(x_-)$ is a squeezed vacuum state; $\langle x \rangle = \langle p \rangle = 0$
 - 2. **H** twirling depolarizes the x_+ factor, so ignore it.
 - 3. Average $W(x_-, p_-)$ over SO(2) subgroup
 - 4. Every such W drops off between e^{-r^2} and 1/r.

Pirsa: 11070004 So we cannot possibly build up $\delta(x)\delta(p)+1$.

WTF?

- Have we just proved a contradiction?
- ...Maybe Schur's Lemma doesn't hold? "If ρ is irrep-invariant, it must be $\propto 1_{\rm irrepspace}$
- No. Schur's Lemma still holds (the only SL₂(R)-invariant operator on Symm $(H^{\otimes 2})$ is Π_{symm} .
- So what operator does $SL_2(\mathbf{R})$ -twirling $|\psi\rangle\langle\psi|^{\otimes 2}$ converge to? **NOTHING**. The twirling integral diverges.
- $SL_2(\mathbf{R})$ -twirling of $|\psi\rangle\langle\psi|^{\otimes 2}$ diverges... ...so the "average" state isn't defined ...so we can derive contradictory properties for it.

A Study in Non-Convergence

- Problem is *not* that the measure doesn't exist. You just can't integrate $|\psi\rangle\langle\psi|^{\otimes 2}$ over it.
- Contrast with H-twirling & coherent states
 - **H**-measure is unbounded, so *technically* the integral of $|\psi\rangle\langle\psi|$ doesn't converge (non-Cauchy sequence).
 - But project |ψ|⟨ψ| onto any bounded subspace, and it does converge... to 1l.
 - Works because distant coherent states are irrelevant.
- There are "too many" squeezed states overlapping any region.
- So the integral diverges on every bounded subspace.

sa: 11070004 Page 31/3

WTF?

- Have we just proved a contradiction?
- ...Maybe Schur's Lemma doesn't hold? "If ρ is irrep-invariant, it must be $\propto 1_{\rm irrepspace}$
- No. Schur's Lemma still holds (the only SL₂(R)-invariant operator on Symm $(H^{\otimes 2})$ is Π_{symm} .
- So what operator does $SL_2(\mathbf{R})$ -twirling $|\psi\rangle\langle\psi|^{\otimes 2}$ converge to? **NOTHING**. The twirling integral diverges.
- $SL_2(\mathbf{R})$ -twirling of $|\psi\rangle\langle\psi|^{\otimes 2}$ diverges... ...so the "average" state isn't defined ...so we can derive contradictory properties for it.

Gaussian 2-Designs Don't Exist

Why? Π_{symm} is not in convex hull of Gaussian $|\psi\rangle\langle\psi|^{\otimes 2}$.

- 1. $\Pi_{\text{symm}} = 1 l_{x_{-}} \otimes \frac{1}{2} (1 + \mathbb{P})_{x_{-}}$. Wigner $W(x, p) \propto \delta(x) \delta(p) + 1$... Impossible to build w/Gaussians!
 - 1. Refactor $|\psi\rangle\langle\psi|^{\otimes 2}$ in x_+ / x_- factorization \Rightarrow tensor product of pure Gaussians, and... ... $\psi(x_-)$ is a squeezed vacuum state; $\langle x \rangle = \langle p \rangle = 0$

- 3. Average $W(x_-, p_-)$ over SO(2) subgroup
- 4. Every such W drops off between e^{-r^2} and 1/r.

-1.

Pirsa: 11070004 So we cannot possibly build up $\delta(x)\delta(p)+1$.

WTF?

- Have we just proved a contradiction?
- ...Maybe Schur's Lemma doesn't hold? "If ρ is irrep-invariant, it must be $\propto 1_{\rm irrepspace}$ "
- No. Schur's Lemma still holds (the only **SL₂(R)**-invariant operator on Symm $(H^{\otimes 2})$ is Π_{symm} .
- So what operator does $SL_2(\mathbf{R})$ -twirling $|\psi\rangle\langle\psi|^{\otimes 2}$ converge to? **NOTHING**. The twirling integral diverges.
- $SL_2(\mathbf{R})$ -twirling of $|\psi\rangle\langle\psi|^{\otimes 2}$ diverges... ...so the "average" state isn't defined ...so we can derive contradictory properties for it.

A Study in Non-Convergence

- Problem is *not* that the measure doesn't exist. You just can't integrate $|\psi\rangle\langle\psi|^{\otimes 2}$ over it.
- Contrast with H-twirling & coherent states
 - **H**-measure is unbounded, so *technically* the integral of $|\psi\rangle\langle\psi|$ doesn't converge (non-Cauchy sequence).
 - But project $|\psi\rangle\langle\psi|$ onto any bounded subspace, and it does converge... to 1l.
 - Works because distant coherent states are irrelevant.
- There are "too many" squeezed states overlapping any region.
- So the integral diverges on every bounded subspace.

rsa: 11070004 Page 35/3

Conclusions (Math)

- Even with a perfectly well-defined measure, some functions can't be integrated (and some can, of course).
 e.g., SL₂(R)-twirling is still well-defined!
- Sometimes, ill-defined integrals really are ill-defined!!!
- This issue probably rules out any well-behaved SL₂(R)covariant 2-designs for L²(R).
- SICPOVM-type solutions are still possible, but if they exist, they must be really nasty.

(maximal entanglement between x_{+} and x_{-} factors).

Pirsa: 11070004 Page 36/37

Conclusions (Physics)

- There are no Gaussian 2-designs.
- You can't even get very close.
- You can't even get close on E<E₀ subspaces.
 N.B. 2-designs are possible -- but not Gaussian ones.
- But... a good ensemble of squeezed states is a lot closer to being a 2-design than the coherent state ensemble.
 - 2-design is flat over E... squeezed states ~ 1/E decline... coherent states ~ e^{-E} decline.
- First practical difference between infinite and finite Hilbert spaces (for quantum info science) that I'm aware of.

Pirsa: 11070004 Page 37/37