Title: A Canonical Measure for Inflation

Date: Jun 24, 2011 11:20 AM

URL: http://pirsa.org/11060073

Abstract:

Pirsa: 11060073

A Canonical Measure for Inflation

Neil Turok, Perimeter Institute

Question: Is there a natural measure on the space of cosmological solutions?

What is the likelihood of a universe like ours in a given physical model? eg inflation, cyclic,

Two key ingredients in this talk

- I: Penrose critique of inflation Hamiltonian evolution almost never
 turns a generic state into an unusual
 state. Canonical measure is invariant.
- II: Counting of states in gravity should be done in an asymptotic region where global properties of spacetime become sharp

In a specific setup, we shall obtain a precise, canonical measure and show a universe like ours is extremely unlikely in slow-roll inflationary models

- standard slow-roll inflation

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3}\rho_{\phi} - \frac{k}{a^{2}}; \quad \rho_{\phi} = \frac{1}{2}\dot{\phi}^{2} + V(\phi)$$

$$\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} = -V_{,\phi}$$

$$\Rightarrow \dot{H} = -\frac{1}{2}\dot{\phi}^{2} + \frac{k}{a^{2}}$$

- Hamiltonian and time reversal invariant

(For now, I'll focus on FRW spacetimes – thi is of course generous to inflation – and assume $V(\phi)$ is monotonic away from its min)

I'll focus on k=-1 (so a and H are monotonic) and compactify the spatial slices

* a mathematical device to keep everything finite: the results do not depend on the compactification volume

* (but in fact has been advocated as a very natural setup for chaotic inflation ea by Linde)

- standard slow-roll inflation

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3}\rho_{\phi} - \frac{k}{a^{2}}; \quad \rho_{\phi} = \frac{1}{2}\dot{\phi}^{2} + V(\phi)$$

$$\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} = -V_{,\phi}$$

$$\Rightarrow \dot{H} = -\frac{1}{2}\dot{\phi}^{2} + \frac{k}{a^{2}}$$

- Hamiltonian and time reversal invariant

(For now, I'll focus on FRW spacetimes – thi is of course generous to inflation – and assume $V(\phi)$ is monotonic away from its min)

I'll focus on k=-1 (so a and H are monotonic) and compactify the spatial slices

* a mathematical device to keep everything finite: the results do not depend on the compactification volume

* (but in fact has been advocated as a very natural setup for chaotic inflation ea by Linde)

2-parameter family of solutions with an initial singularity:

asymptotically flat singularity

I'll focus on k=-1 (so a and H are monotonic) and compactify the spatial slices

* a mathematical device to keep everything finite: the results do not depend on the compactification volume

* (but in fact has been advocated as a very natural setup for chaotic inflation ea by Linde)

- standard slow-roll inflation

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3}\rho_{\phi} - \frac{k}{a^{2}}; \quad \rho_{\phi} = \frac{1}{2}\dot{\phi}^{2} + V(\phi)$$

$$\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} = -V_{,\phi}$$

$$\Rightarrow \dot{H} = -\frac{1}{2}\dot{\phi}^{2} + \frac{k}{a^{2}}$$

- Hamiltonian and time reversal invariant

(For now, I'll focus on FRW spacetimes – thi is of course generous to inflation – and assume $V(\phi)$ is monotonic away from its min)

I'll focus on k=-1 (so a and H are monotonic) and compactify the spatial slices

* a mathematical device to keep everything finite: the results do not depend on the compactification volume

* (but in fact has been advocated as a very natural setup for chaotic inflation ea by Linde)

2-parameter family of solutions with an initial singularity:

Criteria for a Measure

- (i) Positive, normalisable
- (ii) Independent of slicing or coordinates on either space-time or field space
- (iii) No ad hoc external structures eg comoving observers, volume factors ...
- (iv) Natural extension of canonical quantum measur for fluctuations to the background (why use for former but not for latter???)

irsa: 11060073

Canonical measure on space of solutions

$$\omega_c = dp_a \wedge da + dp_{\phi} \wedge d\phi$$

$$\int_{\Sigma} \omega_c \Big|_{\mathbb{H}=0}$$

Liouville
Gibbons, Hawking, Stewa
Hawking, Page
Hollands Wald
Kofman, Linde, Mukhanov
Gibbons, NT
Carroll, Tan

with Σ pierced once by every trajectory e.g. a=const or H=const

Satisfies all of conditions (i)-(iv) except normalisability, because \sum is not compact (because \mathbb{H} isn't positive)

Page

Flat space canonical (Gibbs) ensemble. Cannot just integrate over Liouville: instead, we maximise entropy $S = -\sum p_i \ln p_i$

subject to constraint $E = \sum p_i E_i$

Note: in information theory approach, max ent principle is very general, can even be applied to non-equilibrium situations (see e.g. beautiful papers of E.T. Jaynes)

But in GR, $\mathbb{H}=0$ on all physical states, so we cannot constrain its expectation value to make measure finite

What do we do?

In k=+1, zero Λ cosmologies, matter density is diluted away at large a -> gravity becomes negligible, expansion of 'box' is adiabatic

-> entropy reduces to that of the matter (inc grav waves), and is an adiabatic invariant

Every trajectory ends up on an adiabat curve $S_m(E_m,a)$ = const

Natural to label an ensemble of spacetimes by the asymptotic entropy $S=S_m$

Pirsa: 11060073

Ln pt generic open FRW cosmology

Ln a

In k=+1, zero Λ cosmologies, matter density is diluted away at large a -> gravity becomes negligible, expansion of 'box' is adiabatic

-> entropy reduces to that of the matter (inc grav waves), and is an adiabatic invariant

Every trajectory ends up on an adiabat curve $S_m(E_m,a)$ = const

Natural to label an ensemble of spacetimes by the asymptotic entropy $S=S_m$

irsa: 11060073

Ln p generic open FRW cosmology

Ln a

Pirea: 11060073

$$a = const slicing$$
 $\omega_c = a^3 d\dot{\phi} d\phi$

$$ds^{2} = \frac{da^{2}}{1 + 8\pi G \rho a^{2} / 3} + a^{2} dH_{3}^{2} \approx dM_{4}^{2} - \frac{8\pi G C}{3 a} da^{2}$$

(C is analogous to the AdM mass)

in large a limit, effect of matter on background spacetime (i.e. gravity) becomes negligible

we just have flat spacetime, and an adiabatically expanding box filled with matter

Pirea: 11060073

statistical ensemble: minisuperspace

$$\mathbb{H}_{\mathrm{m}}(p_{\phi},\phi) = \frac{1}{2} \left(\frac{p_{\phi}^{2}}{Ua^{3}} + Ua^{3}V(\phi) \right)$$

$$\left\langle \mathbf{H}_{\mathsf{m}} \right\rangle = \frac{\int dp_{\phi} d\phi e^{-\beta \mathbf{H}_{\mathsf{m}}}}{\int dp_{\phi} d\phi e^{-\beta \mathbf{H}_{\mathsf{m}}}} = E(a, \beta)$$

entropy
$$S = S_m = \ln(\frac{Ua^3\rho_{\phi}}{m}) = \text{adiabatic invarian}$$

constant entropy=fixed C

in large a limit, effect of matter on background spacetime (i.e. gravity) becomes negligible

we just have flat spacetime, and an adiabatically expanding box filled with matter

Pirsa: 11060073

$$a = const slicing$$
 $\omega_c = a^3 d\dot{\phi} d\phi$

$$\rho = \frac{1}{2}(\dot{\phi}^2 + m^2\phi^2)$$

$$-C/a^3, \ a \to \infty,$$

$$\rho a^3 \text{ adiabatically conserved}$$

$$ds^{2} = \frac{da^{2}}{1 + 8\pi G \rho a^{2} / 3} + a^{2} dH_{3}^{2} \approx dM_{4}^{2} - \frac{8\pi G C}{3 a} da^{2}$$

(C is analogous to the AdM mass)

in large a limit, effect of matter on background spacetime (i.e. gravity) becomes negligible

we just have flat spacetime, and an adiabatically expanding box filled with matter

Pires: 11060073

statistical ensemble: minisuperspace

$$\mathbb{H}_{\mathrm{m}}(p_{\phi},\phi) = \frac{1}{2} \left(\frac{p_{\phi}^{2}}{Ua^{3}} + Ua^{3}V(\phi) \right)$$

$$\left\langle \mathbf{H}_{\mathsf{m}} \right\rangle = \frac{\int dp_{\phi} d\phi e^{-\beta \mathbf{H}_{\mathsf{m}}}}{\int dp_{\phi} d\phi e^{-\beta \mathbf{H}_{\mathsf{m}}}} = E(a, \beta)$$

entropy
$$S = S_m = \ln(\frac{Ua^3\rho_{\phi}}{m}) = \text{adiabatic invarian}$$

constant entropy=fixed C

infinite N_I slow-roll solution

$$H^{2} = \frac{1}{3}V + \frac{2}{3}\left(\frac{dH}{d\phi}\right)^{2}$$

$$H_{SR}(\phi) \approx \sqrt{\frac{V(\phi)}{3}}\left(1 + \frac{1}{2}\left(\frac{V_{,\phi}}{V}\right)^{2}...\right)$$

Deviations (going back in N):

$$\frac{d\delta H}{dN} = 3\delta H \Rightarrow \delta H \propto e^{3N}$$

$$\delta\theta \sim \sqrt{N_I}e^{3(6-N_I)} \sim P(N \geq N_I)$$

Pirea: 11060073

Canonical measure for inflation

Finite C result is always lower than $C=\infty$ result at large $N_{\rm I}$

in large a limit, effect of matter on background spacetime (i.e. gravity) becomes negligible

we just have flat spacetime, and an adiabatically expanding box filled with matter

Pirea: 11060073

$$a$$
 = const slicing $\omega_c = a^3 d\dot{\phi} d\phi$

$$\rho = \frac{1}{2}(\dot{\phi}^2 + m^2\phi^2)$$

$$-C/a^3, \ a \to \infty,$$

$$\rho a^3 \text{ adiabatically conserved}$$

$$ds^{2} = \frac{da^{2}}{1 + 8\pi G \rho a^{2} / 3} + a^{2} dH_{3}^{2} \approx dM_{4}^{2} - \frac{8\pi G C}{3 a} da^{2}$$

(C is analogous to the AdM mass)

infinite N_I slow-roll solution

$$H^{2} = \frac{1}{3}V + \frac{2}{3}\left(\frac{dH}{d\phi}\right)^{2}$$

$$H_{SR}(\phi) \approx \sqrt{\frac{V(\phi)}{3}}\left(1 + \frac{1}{2}\left(\frac{V_{,\phi}}{V}\right)^{2}...\right)$$

Deviations (going back in N):

$$\frac{d\delta H}{dN} = 3\delta H \Rightarrow \delta H \propto e^{3N}$$

$$\delta\theta \sim \sqrt{N_I}e^{3(6-N_I)} \sim P(N \geq N_I)$$

Pirea: 11060073

Canonical measure for inflation

Finite C result is always lower than $C = \infty$ result at large N_I

- * Note: "attractor" becomes "repeller" because statistical ensemble defined in asymptotic region where gravity becomes unimportant: the future
- * more inflaton fields makes problem worse

$$P_{>}(N_{I}) \propto (\delta \theta)^{m} \sim e^{-3N_{I}m}$$
 cf N-flation

- * this analysis makes precise a problem identified by Penrose long ago (Annals NYAS, 1989)
- * with this canonical measure, inflation cannot be considered a viable explanation for the observed state of the cosmos.

Pirsa: 11060073

What could be wrong?

- * canonical measure?
- * neglect of: entropy production? no: reheating is unitary, cannot alter proportion of states $P(N \ge N_I)$ inhomogeneities? quantum fluctuations?
- * inflation?

cf "cyclic/ekpyrotic" theory, where gravity is unimportant in the past, and according to the analogous canonical measure, every trajectory undergoes near-maximal ekpyrosis (w/P. Steinhard

Flat space canonical (Gibbs) ensemble. Cannot just integrate over Liouville: instead, we maximise entropy $S = -\sum p_i \ln p_i$

subject to constraint $E = \sum p_i E_i$

Note: in information theory approach, max ent principle is very general, can even be applied to non-equilibrium situations (see e.g. beautiful papers of E.T. Jaynes)

But in GR, $\mathbb{H}=0$ on all physical states, so we cannot constrain its expectation value to make measure finite

What do we do?

infinite N_I slow-roll solution

$$H^{2} = \frac{1}{3}V + \frac{2}{3}\left(\frac{dH}{d\phi}\right)^{2}$$

$$H_{SR}(\phi) \approx \sqrt{\frac{V(\phi)}{3}}\left(1 + \frac{1}{2}\left(\frac{V_{,\phi}}{V}\right)^{2}...\right)$$

Deviations (going back in N):

$$\frac{d\delta H}{dN} = 3\delta H \Rightarrow \delta H \propto e^{3N}$$

$$\delta\theta \sim \sqrt{N_I}e^{3(6-N_I)} \sim P(N \geq N_I)$$

Pirea: 11060073

- * Note: "attractor" becomes "repeller" because statistical ensemble defined in asymptotic region where gravity becomes unimportant: the future
- * more inflaton fields makes problem worse

$$P_{>}(N_{I}) \propto (\delta\theta)^{m} \sim e^{-3N_{I}m}$$
 cf N-flation

- * this analysis makes precise a problem identified by Penrose long ago (Annals NYAS, 1989)
- * with this canonical measure, inflation cannot be considered a viable explanation for the observed state of the cosmos.

Pirsa: 11060073

What could be wrong?

- * canonical measure?
- * neglect of: entropy production? no: reheating is unitary, cannot alter proportion of states $P(N \ge N_I)$ inhomogeneities? quantum fluctuations?
- * inflation?

cf "cyclic/ekpyrotic" theory, where gravity is unimportant in the past, and according to the analogous canonical measure, every trajectory undergoes near-maximal ekpyrosis (w/P. Steinhard

Future:

semiclassical theory including quantum jumps and tunneling -> "eternal" inflation

rsa: 11060073

What could be wrong?

- * canonical measure?
- * neglect of: entropy production? no: reheating is unitary, cannot alter proportion of states $P(N \ge N_I)$ inhomogeneities? quantum fluctuations?
- * inflation?

cf "cyclic/ekpyrotic" theory, where gravity is unimportant in the past, and according to the analogous canonical measure, every trajectory undergoes near-maximal ekpyrosis (w/P. Steinhard

No Signal VGA-1

Pirsa: 11060073

No Signal

VGA-1

Page 48/48