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Abstract: We make some remarks about the semiclassical wavefunction of the universe around de-Sitter space. In five dimensional gravity with a
positive cosmological constant it is possible to compute the full semiclassical measure for arbitrary geometries at superhorizon scales. In four
dimensions, the same computation can be reformulated as a problem in conformal gravity.

Pirsa: 11060072 Page 1/107



AdS crunches

Crunching slicing

De Sitter slicing
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AdS crunches
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CFT in de Sitter

* Same as in the cylinder
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CFT in de Sitter

* Same as in the cylinder

* Can continue beyond dS infinity, into a new copy
of de Sitter
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CFT in de Sitter

* Same as in the cylinder

* Can continue beyond dS infinity, into a new copy
of de Sitter

 No crunch

irsa: 11060072 “\ Page 7/107




CFT in de Sitter

* Same as in the cylinder

* Can continue beyond dS infinity, into a new copy
of de Sitter

 No crunch

* Boltzman brains in the de Sitter picture, just the
vacuum in the cylinder.
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CFT in de Sitter

» Same as in the cylinder

* Can continue beyond dS infinity, into a new copy
of de Sitter

 No crunch

* Boltzman brains in the de Sitter picture, just the
vacuum in the cylinder.

* Conformaly coupled scalars have large
superhorizon fluctuations in de Sitter = just
collapse smoothly, if undisturbed (ie. Nothing
mesured). They decohere and cohere again!.
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Non-conformal field theories in de
Sitter
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Non-conformal field theories in de
Sitter

* The bulk geometry contains an additional scalar that is
uniform in the hyperbolic slices
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Non-conformal field theories in de
Sitter

* The bulk geometry contains an additional scalar that is
uniform in the hyperbolic slices

* This generically leads to a real crunch.
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Non-conformal field theories in de
Sitter

* The bulk geometry contains an additional scalar that is
uniform in the hyperbolic slices

* This generically leads to a real crunch.

* |n some situations there is no crunch at all, but a wall
at a finite value of the radial coordinate in de-Sitter

slices. (This happens when the mass scale of the theory
is larger than the Hubble scale).
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Non-conformal field theories in de
Sitter

* The bulk geometry contains an additional scalar that is
uniform in the hyperbolic slices

* This generically leads to a real crunch.

* |n some situations there is no crunch at all, but a wall
at a finite value of the radial coordinate in de-Sitter
slices. (This happens when the mass scale of the theory
is larger than the Hubble scale).

* Simple dual of crunching cosmologies.
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Non-conformal field theories in de
Sitter

* The bulk geometry contains an additional scalar that is
uniform in the hyperbolic slices

* This generically leads to a real crunch.

* |n some situations there is no crunch at all, but a wall
at a finite value of the radial coordinate in de-Sitter
slices. (This happens when the mass scale of the theory
is larger than the Hubble scale).

* Simple dual of crunching cosmologies.

* Continuing beyond infinity? Seems to require more
data, if at all possible.
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Coleman de Luccia decays into AdS
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Wall




Coleman de Luccia decays into AdS

* Consider a decay into AdS in the thin wall limit. Consider the case
where radius of curvature of the wall is much larger than the radius

of AdS.
Raags < Rwaii

Wall
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Coleman de Luccia decays into AdS

* (Consider a decay into AdS in the thin wall limit. Consider the case
where radius of curvature of the wall is much larger than the radius

of AdS.
Radgs < Rwail

- Wall

* Then we can approximately replace the AdS region by a field theory
living on the wall. It is a CFT plus an irrelevant perturbation, dual to
the massive field in AdS. The field theory has a UV cutoff related to
the radial position where the wall is sitting. With this field theory
description, there is no singularity (or interior).
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* The decay looks like a bubble of nothing decay,
with a CFT living on the surface of the bubble

surface
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Coleman de Luccia decays into AdS

* (Consider a decay into AdS in the thin wall limit. Consider the case
where radius of curvature of the wall is much larger than the radius

of AdS.
Rads < Rwali

Wall
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Non-conformal field theories in de
Sitter

* The bulk geometry contains an additional scalar that is
uniform in the hyperbolic slices

* This generically leads to a real crunch.

* |n some situations there is no crunch at all, but a wall
at a finite value of the radial coordinate in de-Sitter
slices. (This happens when the mass scale of the theory
is larger than the Hubble scale).

 Simple dual of crunching cosmologies.
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* The decay looks like a bubble of nothing decay,
with a CFT living on the surface of the bubble

surface
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* The decay looks like a bubble of nothing decay,
with a CFT living on the surface of the bubble
surface

* When the radius of the wall and the radius of AdS
are comparable the argument is not so clear, but
one could still imagine a similar approximate,
qualitative picture.
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Conclusions

* CFT’s in dS plus a small massive deformation
can lead to interesting crunching geometries
in the bulk.
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* When the radius of the wall and the radius of AdS
are comparable the argument is not so clear, but
one could still imagine a similar approximate,
qualitative picture.
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Coleman de Luccia decays into AdS

* (Consider a decay into AdS in the thin wall limit. Consider the case
where radius of curvature of the wall is much larger than the radius

of AdS.
Rads < Rwoaii

Wall
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Conclusions

* CFT’s in dS plus a small massive deformation
can lead to interesting crunching geometries
in the bulk.

* CdL decays into AdS can be viewed as bubble
of nothing decays with a field theory living on
the domain wall of the bubble. This gives a
non-singular picture of the tunneling process.




2"d part

Solution of the tree level 5d measure problem in
pure 5d gravity. Finding the probability for
different shapes for the spatial sections.
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pure 5d gravity. Finding the probability for
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The wavefunction of the universe =
measure problem
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The wavefunction of the universe =
measure problem

* Quantum gravity is a quantum theory.
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The wavefunction of the universe =
measure problem

* Quantum gravity is a quantum theory.
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The wavefunction of the universe =
measure problem

* Quantum gravity is a quantum theory.

* In quantum theories probabilities are given by
the square of the wavefunction
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The wavefunction of the universe =
measure problem

* Quantum gravity is a quantum theory.

* In quantum theories probabilities are given by
the square of the wavefunction

* |f you have IR divergencies in a physical
question =2 it was not a good question, you
need to modify the question.
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Perturbation theory around dS




Perturbation theory around dS

* Rules are clear. Compute properties of the

interacting Tagirov-Chernikov-Bunch-Davies-
Hartle-Hawking vacuum.
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* Problems with the measure should show up
nere, perhaps as small problems.




Perturbation theory around dS

* Rules are clear. Compute properties of the
interacting Tagirov-Chernikov-Bunch-Davies-
Hartle-Hawking vacuum.

* Problems with the measure should show up
nere, perhaps as small problems.

* This perturbative gravity (and scalar field) has
made successful predictions for our universel.
(CMB anisotropies, etc..).




5d pure gravity in de Sitter

* Gravity with positive cosmological constant

* Consider the BD vacuum in the weakly

COUD'Ed regime, EL > 1

P

" .
* —dn* + g;jdx*dx? B
ds® = ? 713 gi; = 0ij + hij

-

L:[j (gij ) Wavefunction of the universe
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* The wavefunction of the universe is well
defined perturbatively. It is a perturbative
solution of the measure problem. Here we just
discuss the tree level part.

——
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WKB computation of the wavefunction
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WKB computation of the wavefunction

* Consider a classical solution with the
appropriate boundary conditions.
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WKB computation of the wavefunction

* Consider a classical solution with the
appropriate boundary conditions.

* |t is a complex wavefunction because the
boundary conditions in the past are a posmve
frequency boundary condition, g~é¢™" . 5 — —
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WKB computation of the wavefunction

* Consider a classical solution with the
appropriate boundary conditions.

* |t is a complex wavefunction because the
boundary conditions in the past are a positive
frequency boundary condition, g~¢¢™". 5 — —

* |[tis the same as the Hartle Hawking

prescription, (but not restricted to the minisuperspace
approximation).
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WKB computation of the wavefunction

* Consider a classical solution with the
appropriate boundary conditions.

* |t is a complex wavefunction because the
boundary conditions in the past are a posmve
frequency boundary condition, g~¢e¢™". 5 — —

* Itis the same as the Hartle Hawking

prescription, (but not restricted to the minisuperspace
approximation).
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* Time dependence is simple for fixed
wavelengths =2 metric becomes time
independent at late times
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* Time dependence is simple for fixed
wavelengths =2 metric becomes time
independent at late times

e Time = scale

* Scale dependence of the wavefunction?
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* Time dependence is simple for fixed
wavelengths =2 metric becomes time
independent at late times

* Time =2 scale
* Scale dependence of the wavefunction?

e = Become scale invariant = Hamiltonian
constraint. (up to the conformal anomaly...).

1 ic [—J; S Va+—= [ /agR+logno [ W?—E|
¥(—5gi;) =e L7 1 @ R(g:;)
o
U r[Q%(x)g:;] = Y Rr[g:;]
Time independence = R T L Jij R JE_]J
Conformal invariance
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EAdS = dS analytic continuation
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The boundary conditions also transform properly:
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* Time dependence is simple for fixed
wavelengths =2 metric becomes time
independent at late times

* Time =2 scale
* Scale dependence of the wavefunction?

e = Become scale invariant = Hamiltonian
constraint. (up to the conformal anomaly...).

! - {—4 [ Va+=% [ VaR+logne [ W2—E|
l:p[ ~ (}E } ':I — IL_- o T c | ‘L—DR{ -{_]}} \
o |
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Time independence = II]R[" (LZ )gfj} =) @R[gzj}
Conformal invariance ,
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EAdS = dS analytic continuation

< —7 —x’r; . R__'hff,” — —!'Rff;_; A

9. 9. 9. 9.

o 5o dz© 4+ dx~ 5 o —dn* + dx”
ds® = Ri,q — ., — ds® = R;gs 2

The boundary conditions also transform properly:
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EAdS = dS analytic continuation

= — & —R'.?} ] R,qdi; — —!'R;f_g-;' ]

) 2 .. 7.

a 5> dz= +dx- > 5 —dn*© + dx~
ds® = R s — , —> ds° = Rjs -

The boundary conditions also transform properly:

i N N : . L1 . _
g ~ € . & —# O —> g = € I —+ —0O&

In flat space 2 continuation from Euclidean space

In de Sitter 2 continuation from EAdS.
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In Euclidean space, we have a real answer:

1 F 32 = — = RS o R . 1
- -\ — €ads|=g3 J V9+—= J voR+loge | W* —E+{Finite(g)
lP t _—)fjl}u'lr } = (_. | i A" e W 1
F_
. - Ris ; R;s
- .'1.!’.;:-‘- - — ' ¥
(T_\,' CT_\,'

All terms become purely imaginary, including the finite term. The only
real part arises via

i\

log € — log |ng| + 2-
(Depends on the metric
s = _l_. — -—2 \ E i . : z
| \IJ 2 —CgsS Tt J d=r \r’fy( W) of the four dimensional
' — € slice)
Action of conformal gravity Gives a topological term,
the Euler number.
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EAdS = dS analytic continuation

z —> —n ,iRads = —tRgs ,

) ) o) o

5 5o dz° + dx”° - 5> —dn® + dzx“
ds” = R, ,q — _ —  ds® = R;g <

The boundary conditions also transform properly:

g~e 7, z—500 — gr~e' 1 — —0oC

In flat space 2 continuation from Euclidean space

In de Sitter 2 continuation from EAdS.
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In Euclidean space, we have a real answer:

1 . N T e = s i
\ — o€Aads|—g J vVa+—= J VaR+loge | W”— E+Finite(g)
V(—=9gi;) =€ ket 5 W e Y |
'F—
fl)_..';lrf - _ Rf«‘; <
{.'._1"'1':"_‘- — -u - L ;] -
(_T_‘\' C_T_\,'

All terms become purely imaginary, including the finite term. The only
real part arises via

_ 4L
log € — log |ng| + 1 -
(Depends on the metric
- S | o > _ £ : . . 1
:l:[j . - —CqsST J d*r vfy( | %! s S of the four dimensional
i — € slice)
Action of conformal gravity Gives a topological term,
the Euler number.
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It is completely local. This is surprising, because in even bulk dimensions we
will see that it is non-local.
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In Euclidean space, we have a real answer:

1 . S B~ S W — - T L T o A E - A 1
T( Ly, ) = ecass[E J Va+d [ JaR+ioge [ W~ E+Finite(g)]
€27

RS

ds

-
- - L
G 2

(L.

C. AdS —

All terms become purely imaginary, including the finite term. The only
real part arises via

_ L
o ~ YT [Tl +
log e — log |ng| + 1 -
(Depends on the metric
: o P - : Pt . . .
| l:[j 2, - —CysT J d—LI Vfg( = E] of the four dimensional
— € slice)
Action of conformal gravity Gives a topological term,
the Euler number.
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It is completely local. This is surprising, because in even bulk dimensions we
will see that it is non-local.
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It is completely local. This is surprising, because in even bulk dimensions we
will see that it is non-local.

Notice that in the wavefunction, reparametrization symmetry translates
into relatively simple equations, or conditions on the answer.

Of course, when we want to define gauge invariant projection operators, the
problem of finding gauge invariant observables will come back again.
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L = i

Jl

i —

V)
V)

L T il el

* In five dimensional de-Sitter there is a huge
simplification if we compute the
wavefunction.

* We simply get the action of conformal gravity
in 4d. This is the 4d spatial slice of the 5d
geometry at superhorizon distances.
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EAdS = dS analytic continuation

& —2 —?'I] ] R__ldj' — —J'qu_n_;' ]
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a , dz© +dx° " > —dn® + dx~
ds® = Ris 5 — ds” = Rjs <

The boundary conditions also transform properly:

— = _1WwT)

g~e ", z—500 — gre — —oc

In flat space = continuation from Euclidean space

In de Sitter 2 continuation from EAdS.
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In Euclidean space, we have a real answer:

1 _ . B =L F . /aRtione EWE— Bt Fonidetal
Y ( _.jﬂ;':’) — “AdS| 4 J /9 —3 J VaR+loge€ | E+Finite(g |
€27
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All terms become purely imaginary, including the finite term. The only
real part arises via

_ N
YO YT (Tl —+—
log € — log |ng| + 1 =
(Depends on the metric
. - 4 PR > ._ . : e g
\:[j . —C4gsST J d*r vfy( W-—F) of the four dimensional
| — € slice)
Action of conformal gravity Gives a topological term,
the Euler number.
Pirsa: 11060072 Page 69/107




4 dimensional de Sitter gravity




The wavefunction in 4 dimensions:
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* The same problem in four dimensions is more
complicated.

* The answer is non-local. It is simply the same

as the non-local answer in the EAdS case (up
to an overall sign).




The wavefunction in 4 dimensions:

* The same problem in four dimensions is more
complicated.

* The answer is non-local. It is simply the same

as the non-local answer in the EAdS case (up
to an overall sign).

* Curious observation: This non-local, and finite

part, can be computed using conformal
gravity.




2 Facts
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2 Facts

* Solutions of Einstein gravity =2 also solutions
of conformal gravity. (Equations of conformal
gravity are derivatives of the Ricci tensor)
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2 Facts

* Solutions of Einstein gravity =2 also solutions
of conformal gravity. (Equations of conformal
gravity are derivatives of the Ricci tensor)

* Renormalized action for ordinary Einstein
gravity =2 Equal to the action of ordinary

gravity.
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* Asimple boundary condition on the fields of

conformal gravity selects the Einstein gravity
solutions.

 Conformal gravity equations: 4™ order. 2

boundary conditions in the past from Bunch
Davies. Two in the future:

gii(n =0) = yi : 2t — 0)—4

R S X S i | _ .
72 —arn +—\g xN g TN g T ---)aral Einstein solutions.
o=

]

No time derivative
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Useful identity:

Euler = | W*> +2 | Ricci’ - lR:
J Jw2+2f :

Equations of motion of Weyl gravity = Involves Ricci tensor. For Einstein spaces,
Ricci is proportional to the metric. So the equations of motion are proportional
to the metric, but the equations of motion (Bach tensor) are traceless = must be zero

Evaluating the Einstein action on an Einstein space = Same as evaluating the 4 volume.
The volume arises from the Ricci terms.

SE x /x\_:x / W-* - E

- _Renorma

v i = 1 ! —y A7 2 ] T 1 \
St k= / d*x./qg — Boundary = / d*x\/gW= — (Euler Number)
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* Asimple boundary condition on the fields of

conformal gravity selects the Einstein gravity
solutions.

 Conformal gravity equations: 4™ order. 2

boundary conditions in the past from Bunch
Davies. Two in the future:

giij(n =0) = _q?} : 0ngii(n=0)=0

ds* _’-fﬁ’“ g +tn7°g9g +n°g” --- Jdxdzx Einstein solutions.
(L= —
r,l:

No time derivative
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2 Facts

e Solutions of Einstein gravity = also solutions
of conformal gravity. (Equations of conformal
gravity are derivatives of the Ricci tensor)

* Renormalized action for ordinary Einstein
gravity = Equal to the action of ordinary

gravity.
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* Asimple boundary condition on the fields of

conformal gravity selects the Einstein gravity
solutions.

 Conformal gravity equations: 4™ order. 2

boundary conditions in the past from Bunch
Davies. Two in the future:

gij\1 — 0) = _f}?} . Or;ﬂé,j(” =0)=0

5 i 'J ¥ B '_?II :" \ 5
—dn” +(g" $n7°g +n°g” +---)dzdx

-

I~

Jg2 Einstein solutions.
IS =

No ttme derivative
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L

Conformal

[h,h'=0]=W

Einstein Re normalized [ Z]

cfw? _
67 f = e SE Re normalized C =——

-We get the right” sign for the conformal gravity action for dS and the "wrong”
one for AdS

-The overall constant is simply the central’” charge, or the de Sitter entropy, which
is given by M?/H?

-This is also the only dimensionless coupling constant for pure gravity in dS (or AdS)
.[at tree level).
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Ordinary de-Sitter wavefunctions:
h=0-ikn)e™"

Can be viewed as the combination
of conformal gravity wavefunctions
obeying the Neumann boundary
condition.

We can use the propagators of conformal gravity with a Neumann condition +
the vertices of conformal gravity

Or

The usual propagators of Einstein gravity
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« With a boundary condition, conformal gravity
gave the same results as ordinary gravity. Thus
we got rid of the ghosts.
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« With a boundary condition, conformal gravity
gave the same results as ordinary gravity. Thus
we got rid of the ghosts.

 All we did, was to evaluate the ghost
wavefunctions at zero values for the ghost fields.
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Ghosts?

* With a boundary condition, conformal gravity
gave the same results as ordinary gravity. Thus
we got rid of the ghosts.

* All we did, was to evaluate the ghost
wavefunctions at zero values for the ghost fields.

A quartic action + conformal couplings to
background curvature =2 to an action in dS or
AdS, which is the sum of two quadratic fields, one
with positive norm one with negative norm. We
are simply putting zero boundary conditions for
the negative norm one.
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Quartic Scalar field

1 [ [ : 1 }
—_— 14 P == -3 b .....-} = ) } K = a X Sl
5 — 3 i .4 \.' ‘f_i'r \\I (_ r — 2{ },LLI'I . E:‘ JLII' I_. "' jii t-(_ { ’FI-'{_ |

- |

Massive (tachyonic in AdS) field

Massless field
(setting this to zero at the boundary)
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L=

NS

(D
W

Quantum Quu

* Some versions of N=4 conformal sugra appear
to be finite. Fradkin Tseytlin

* (one of these appears from the twistor strmg
theory) e

* Can this truncation be extended to the N=4
theory? Do we get an ordinary O(4) gauged
Sugra? suggested by Berkovits

s -\_1'. L L W T

) . In N=4 conformal supergravity, the coupling
L r g 74 : : . :
ft? (W-+CV(O) Constant is the vev of a field = sets the ratio
of the Planck scale to the cosmological constant scale

We can get large hierarchies from a not so large C.
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* Can the quantum theory with a Neumann
boundary condition be interpreted as the
result of a Unitary bulk theory ?

- Note that we would only get the
wavefunction at one time. Only superhorizon
wavefunction.
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FIQ'?d Weyl invariant in

target space.
Induced metric

The problem of computing a Wilson loop in AdS is equivalent to computing

a Wilson loop in flat space with the rigid string action, with an extra Neuman boundary
condition on the fields. r =0 b X" (o

Value of the Wilson loop = Value of the rigid string action.
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Membranes in dS and rigid strings

Membrane (domain wall in 4d) is created in the probe approximation. (Or connecting

same energy vacua). Its dS boundary is a two dimensional surface. The probability
that this surface has a given shape = Given by the rigid string action.

I‘P(JX-) r? = E—R:'%Tfr(Srﬂz-‘,ﬁd—Etzler}

Same argument using the conformal anomaly for the membrane action
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Wevyl invariant in
target space.

The problem of computing a Wilson loop in AdS is equivalent to computing

a Wilson loop in flat space with the ri gu:: string action, with an extra Neuman boundary
condition on the fields. X*(o =0 b X" (o

Value of the Wilson loop = Value of the rigid string action.
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Membranes in dS and rigid strings

Membrane (domain wall in 4d) is created in the probe approximation. (Or connecting

same energy vacua). Its dS boundary is a two dimensional surface. The probability
that this surface has a given shape = Given by the rigid string action.

'\IJ(J&‘F) 12 _ E—R:"J‘TTT(SNQM—Euler}

qqqqqqq

Same argument using the conformal anomaly for the membrane action
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* Conformal gravity with Neumann boundary conditions is
equivalent (at tree level) to ordinary gravity on
superhorizon distances.

* |n AdS: The partition function of conformal gravity with
Neumann boundary conditions is the same as that of
ordinary gravity

* @Gives a different way to compute AdS gravity correlation
functions. Connections with Twistor string?

 This is non-linear, but classical (or semiclassical) relation

* It would be interesting to see what happens in the
guantum case. One probably needs to do it for N=4
conformal sugra, which is finite.
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T’IQ"Z-d Weyl invariant in

target space.
Induced metric

The problem of computing a Wilson loop in AdS is equivalent to computing

a Wilson loop in flat space with the rigid string action, with an extra Neuman boundary
condition on the fields. X*(o b X" (o

Value of the Wilson loop = Value of the rigid string action.
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* Can the quantum theory with a Neumann
boundary condition be interpreted as the
result of a Unitary bulk theory ?

- Note that we would only get the
wavefunction at one time. Only superhorizon
wavefunction.
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Ouantum Questions
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e Some versions of N=4 conformal sugra appear
to be finite. Fradkin Tseytlin

* (one of these appears from the twistor strmg
theory)

e Can this truncation be extended to the N=4
theory? Do we get an ordinary O(4) gauged
Sugra? suggested by Berkovits

) . ’ In N=4 conformal supergravity, the coupling
L T £ + : 2 :
J‘t? (W-+CVO) Constant is the vev of a field = sets the ratio
of the Planck scale to the cosmological constant scale

We can get large hierarchies from a not so large C.
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Quartic Scalar field

) 1 f = i > Oy 1 - i
2y = ? "J’F“L.«"\,_ Y 'T"(_ - — E(RL;I‘ = E-f!’uz.']?“ {u(- "f.?.‘(-

Massive (tachyonic in AdS) field

Massless field
(setting this to zero at the boundary)
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Membranes in dS and rigid strings

Membrane (domain wall in 4d) is created in the probe approximation. (Or connecting

same energy vacua). Its dS boundary is a two dimensional surface. The probability
that this surface has a given shape = Given by the rigid string action.

‘IJ(J() i2 = E—R:'%T?r(Sm-md—Euler)

Same argument using the conformal anomaly for the membrane action schiler
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Induced metric

Susr_zal

T I,f}"i-d Weyl invariant in
target space.

The problem of computing a Wilson loop in AdS is equivalent to computing

a Wilson loop in flat space with the r:g:d string action, with an extra Neuman boundary
condition on the fields. X*(oc =0 X

Value of the Wilson loop = Value of the rigid string action.
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