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Question:

What is the counterpart of the Wilsonian effective
action in the dual gravity description?

While there have been much work on holographic RG, the
Wilsonian point of view has not been properly developed.

Will comment on relation with earlier work at the end.

Will work in the large N limit, i.e. classical bulk gravity.
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Holographic Wilsonian RG

Legendre transform

IU\-T[@. A] ” SB [@ E]

Splo.d = [ 3 ai(0)s"
O — &
or — o"

Generically multiple-trace operators will be induced
along the flow.

- e ONSistent with field theory expectations. Miao Li (2000)
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The above equation should be treated as a functional equation:

- Oegi = Bi({9})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0.Sp[o, €] = _/ d’z H (@.H = Of;)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

Salo.el = [ > o)o" wmp 0.9 5.({g)
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation
| | 0S
0SB0, €] =—-f ddIH((D,H— 5;)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB[¢f6]=/Zgi(6)O” ) O =5:({9})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

.58, €]l = —f d’r H (G).H = O(;S;f)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

Splo. €] = /th " w99 =08i({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

.S, €] = ——/ d°c H (G)‘.H = OfoB)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

Sp(0. €] /Zgz " wmp O.9:=Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —/ dr H ((E)‘.H — O(‘;B)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

S[6. 4 /th " wmp 0.9: = Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0 SBlo, €] = —f dr H (G)‘.H = Of;)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

S5[6, ¢ /th " wmp  0.9: = 5i({g))
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —f d°r H (G)‘.H — Of;)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB(0. €] [Zgz " wmp O9:=Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —f dr H (G).H — OSB)

o

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

Salo.el = [ > o()o" wmp  0.9:=5.({s)
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [€]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = ——/ d*cz H (GD.H = 5?;)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB ¢, €] /th - d.0; = Bil4a})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —f dr H ((D.H = OSB)

00

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB[o, €] [th "y 9.9 =5:({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

.58, €] = “f ddrﬂ( H = Og:)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB(o. €] = /Zg@ " wmmp O.9:=5:({g})
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Role of Sy
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Cr—— o Bulk
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = £, (and regularity
sondition in the interior).

Cr— Bulk

¢ €
s we shift the boundary to z = ¢, we should not change physics,

e. keep the same classical solution, which requires different
oundary conditions at z = ¢.
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Gr— Bulk

3 €0
s we shift the boundary to z = ¢, we should not change physics,

e. keep the same classical solution, which requires different
oundary conditions at z = ¢.
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
3 &
s we shift the boundary to z = €, we should not change physics,

e. keep the same classical solution, which requires different
undary conditions at z = ¢.

Shift the cutoff surface ‘ flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Cr— Bulk

> £

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions

Pirsa: 11060071 Page 106/396



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
3 &
s we shift the boundary to z = ¢, we should not change physics,

e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface ‘ flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
3 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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B flow of S.



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface ‘ flow of boundary conditions

Pirsa: 11060071 Page 114/396
B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

- Bulk
€ 20
s we shift the boundary to z = €, we should not change physics,

e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface ‘ flow of boundary conditions

Pirsa: 11060071 Page 116/396
B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
- &
s we shift the boundary to z = ¢, we should not change physics,

e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface ‘ flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 €0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 €0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface ‘ flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = ¢, (and regularity
ondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

— Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface ‘ flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions

Pirsa: 11060071 Page 128/396
B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
undary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

C— - Bulk

> £

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 &9

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Cr—— = Bulk

> £

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
3 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
yundary conditions at z = ¢.

Shift the cutoff surface ‘ flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
3 €0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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B flow of S..



Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = £, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 &0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface ‘ flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 &9

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

- Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
bundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 &

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
sondition in the interior).

Bulk
2 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = €, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0.5, €] = —f dr H (O.H — Ofo‘B)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB(9; €] /Zgz "y 9.9 =Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —-f dr H (G).H = O(;S:)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

Sp(o, € /th "y 9.9 =59}
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [€]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = ~—/ d°cr H ((D.H = 5(;9;)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

5B, €| = /th " w99 =Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0S|, €] = ——/ dir H ((D‘.H = Of;;)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB(9. €] /th " mmp O.9: = Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = ——f dr H (G)..H — O;:)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

S5(6, ¢ /ng " w09 = 5i({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = ——/ dr H (G).H = 555)

Yo

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB[o, €] [Zgz "y 9.9 =5({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —f dr H ((;).H = ij)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB|0. € /Zgz " w99 =Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [g]

Semi-classical limit: Hamilton-Jacobi equation

0 SBlo, €] = —-f d°cr H ((D.H = Of;)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB(#. €] /Zga " w99 =5i({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0eSBlo, €] = —f d°r H (G)‘.H = OSB)

00

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB(o, €] /Zgz "y 9.9 =5({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —-/ dr H (G).H = O(;S:)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB|9; €] /Zgz " mmp O.9: =Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —f d°c H (G)..H — O(;S'OB)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

S|, €] /Zgz " w99 =3i({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —f dr H (G).H — Of@?)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

Sp(0 €] fzgz " w09 =Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

3:Splp, €] = —-/ dr H (G)-.H = Of@?)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB(0, €] [Zgz " 9.9 =Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [g]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €] = —/ ddrH(G’)-H = OSB)

Yo

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB0. €] /Zgz " mmp O9: =Bi({g})
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

‘ Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0SB0, €| = —f dz H (O‘H = Of;)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

- O.g; = Bil {g}
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Flow equation for Sy

Physics should not depend on where we choose z=¢ suface

- Flow equation for Sg [£]

Semi-classical limit: Hamilton-Jacobi equation

0eSBlo, €] = —f dr H (@.H = Of@?)

H: bulk Hamiltonian corresponding to z-foliation.

The above equation should be treated as a functional equation:

SB0. €] /Zgz " w99 =Bi({g})
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Role of Sg
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
€ 2
s we shift the boundary to z = €, we should not change physics,

e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
2 &

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = &.

Shift the cutoff surface - flow of boundary conditions
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
ondition in the interior).

Bulk
3 €0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions

| - flow of S, (consistent with the role of multi-trace operators)
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Role of Sg

standard AdS/CFT procedure: Solve classical equations
vith boundary conditions (e.g. Dirichlet) at z = €, (and regularity
:ondition in the interior).

Bulk
2 €0

s we shift the boundary to z = ¢, we should not change physics,
e. keep the same classical solution, which requires different
oundary conditions at z = ¢.

Shift the cutoff surface - flow of boundary conditions

| - flow of S, (consistent with the role of multi-trace operators)



A scalar example
Sele, o] = Ae) + /dd.r V=7 J(z,€)o(x)
-5 [de v fOt@) + -

2
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A scalar example

Sele, ¢ = Ae) + /dd.:c V= J(z,€)o(x)

1
- 5 [ @ v fOst@) +
Pure AdS:
€0.f=—f>+2uf
d
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A scalar example

Sgle, o] = Ale) + /ddl} V= J(x,€)o(x)

1
- 5 [ v f@et@) +
Pure AdS:
€edf=—f2+2f agree with field theory
d results

A=g+v Vecchi (2010)
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A scalar example

Sele, o] = Ae) + /dd.r V= J(x,€e)o(x)

1 .
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Pure AdS:
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d results
A=J+v Vecchi (2010)
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More general geometries (finite T, finite density, nonconformal
theories):



A scalar example
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Pure AdS:
€def=—f"+2vf agree with field theory
A results
A=g+v Vecchi (2010)
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More general geometries (finite T, finite density, nonconformal
theories):

Jouble (multi- ) trace term typically generated even if it is absent
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A scalar example

Sele, o] = Ae) + /ddx V= J(x,€)o(x)
1 2
- 5 [ dev= fEs

Pure AdS:
e0.f = —f2 +2vf agree with field theory
d results
A=g+v Vecchi (2010)

—

More general geometries (finite T, finite density, nonconformal
theories):

Jouble (multi- ) trace term typically generated even if it is absent
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Some caveats
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

Pirsa: 11060071 Page 195/396



Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Si . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
S . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sgi . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.
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Some caveats

1. The identification of boundary energy scale with bulk radial
coordinate is only heuristic.

2. What is the precise cutoff procedure in the boundary theory
corresponding to the bulk radial direction cutoff?

Clearly not sharp energy (or momentum) cutoff

3. In the integrated out region, there could be gapless
modes (of the boundary theory), which will result a nonlocal
Sg . Need to put these modes back in the low energy theory.

Holographic Fermi surface, quantum phase transitions,
w=uo@onservation law, ......
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de Boer, Verlinde and Verlinde (2000): Flow of log Zy 1k l€o]

It depends on IR data, cannot be Wilsonian

Both log Zvuik|€o] and Sg satisfy Hamilton-Jacobi equation,
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« Simple poles in the complex frequency plane.
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a complex bulk spacelike geodesic.

« Each geodesic is characterized by a l(w’k) —r(w.k)
~LUERing point. - ,,ml




Generic two-point functions
_onsider a generic operator O, and
G4 (1, 7) = (O(t, £)0(0))
black hole geometry - G4 (w, k)

e continuous spectrum: @ E(-w,-l-m) (due to presence of horizon)

« Simple poles in the complex frequency plane.
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+ Fora given (w. k), G+(w,k) is uniquely associated with
a complex bulk spacelike geodesic.

« Each geodesic is characterized by a I(w, k) —=r (w.k)
~LUERing point. - mml
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The story we just described is at the large N limit.

What happens at finite N?
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* Discrete energy spectrum.
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Correlation functions at finite N

“N=4 SYM theory on S? at finite N:

* Discrete energy spectrum.

« Wightman functions have simple analytic structure:
— _BEm
Gy(w,l)=2n Z ¢ pmnd(w — En + Em)
m.mn

A discrete sum of delta functions



But the Wightman functions we obtained from gravity
have a continuous spectrum, due to presence of
horizon.
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But the Wightman functions we obtained from gravity
have a continuous spectrum, due to presence of
horizon.

— FE ~ O(1) level spacing ~ O(1)

Energy spectrum of
M on a compact space
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But the Wightman functions we obtained from gravity
have a continuous spectrum, due to presence of
horizon.

E ~ O(N?) level spacing ~ o~ (")

— FE ~ O(1) level spacing ~ O(1)

Energy spectrum of
SYM on a compact space
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But the Wightman functions we obtained from gravity
have a continuous spectrum, due to presence of
horizon.

: E ~ O(Nz) level spacing ~ g—0(N")

- Continuous spectrum in the
large N limit

— E ~ O(1) level spacing ~ O(1)

Energy spectrum of
M on a compact space
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Likely all these structures do not depend on the specific
details of SYM theories, and only on the matrix structure.
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matrix quantum mechanics, like
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Likely all these structures do not depend on the specific
details of SYM theories, and only on the matrix structure.

Likely enough to understand them from some simple
matrix quantum mechanics, like

S = %tr / dt [(DIMIF + (D, M3)* — w3 (M7 + MZ) + AM; My M M,

irsa: 11060071 Page 377/396



Thank You

Pirsa: 11060071  Page 378/396



Thank You

Pirsa: 11060071  Page 379/396



Likely all these structures do not depend on the specific
details of SYM theories, and only on the matrix structure.

Likely enough to understand them from some simple
matrix quantum mechanics, like

S = %tr / dt [(D,JII)Z + (D My)* —wi(M{ + M3) + AM,; My M, M,
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Likely all these structures do not depend on the specific
details of SYM theories, and only on the matrix structure.

Likely enough to understand them from some simple
matrix quantum mechanics, like

N | . o
S =t / d [(DM)? + (DeMa)? — wB(M? + MZ) + AM, MM, M,
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