Title: Complexity in Fundamental Physics

Date: Jun 23, 2011 05:10 PM

URL: http://pirsa.org/11060070

Abstract:

Pirsa: 11060070

- Motivation
- 2 Inspiration
 - Spin glass models
 - State space structure of the SK model
 - Overlap order parameter
- 3 Application to string theory and cosmology
 - Generalized overlap order parameters
 - Examples of glassy systems in string theory + results
 - Cosmology

2.11060070

Page 2/248

a: 11060070 Page 3/248

a: 11060070 Page 4/248

Quantum gravity (string theory) seems to imply reversal of usual complexity - fundamentalness relation:

Landscape of compactifications

a: 11060070 Page 5/24

Quantum gravity (string theory) seems to imply reversal of usual complexity - fundamentalness relation:

- Landscape of compactifications
- Black hole microstates

a: 11060070 Page 6/24

Quantum gravity (string theory) seems to imply reversal of usual complexity - fundamentalness relation:

- Landscape of compactifications
- Black hole microstates
- Eternal inflation

a: 11060070 Page 7/248

a: 11060070 Page 8/248

10110121212

- Seems unavoidable to understand positive cc in string theory:
 - All string constructions are of high complexity [KKLT,Silverstein,...]
 - Compactification data not a superselection sector [Coleman-de Luccia, Bousso-Polchinski,...]

1 age 3/2+0

- Seems unavoidable to understand positive cc in string theory:
 - All string constructions are of high complexity [KKLT,Silverstein,...]
 - Compactification data not a superselection sector [Coleman-de Luccia, Bousso-Polchinski,...]
- Interesting mathematical structures in complex systems in general:
 - spin glasses: spontaneous hierarchical organization, overlap order parameters, replica symmetry breaking, ...
 - universality: relaxation times, ...
 - · computational complexity, P vs NP, ...

a: 11060070 Page 10/24

- Seems unavoidable to understand positive cc in string theory:
 - All string constructions are of high complexity [KKLT,Silverstein,...]
 - Compactification data not a superselection sector [Coleman-de Luccia, Bousso-Polchinski,...]
- ② Interesting mathematical structures in complex systems in general:
 - spin glasses: spontaneous hierarchical organization, overlap order parameters, replica symmetry breaking, ...
 - universality: relaxation times, ...
 - computational complexity, P vs NP, ...
- O Holographic understanding of (nonlocal) glassy systems
 - large N = thermodynamic limit
 - microscopic understanding of glasses considered to be one of most important unsolved problems in CM physics.

a: 11060070 Page 11/248

- Seems unavoidable to understand positive cc in string theory:
 - All string constructions are of high complexity [KKLT,Silverstein,...]
 - Compactification data not a superselection sector [Coleman-de Luccia, Bousso-Polchinski,...]
- Interesting mathematical structures in complex systems in general:
 - spin glasses: spontaneous hierarchical organization, overlap order parameters, replica symmetry breaking, ...
 - universality: relaxation times, ...
 - computational complexity, P vs NP, ...
- Holographic understanding of (nonlocal) glassy systems
 - large N = thermodynamic limit
 - microscopic understanding of glasses considered to be one of most important unsolved problems in CM physics.
- Approach to understand state space geometry quantum cosmology

(0) (0) (2) (3)

- Motivation
- 2 Inspiration
 - Spin glass models
 - State space structure of the SK model
 - Overlap order parameter
- Application to string theory and cosmology
 - Generalized overlap order parameters
 - Examples of glassy systems in string theory + results
 - Cosmology

+ C > + C > + T > + T > 3

Real world example: Copper-Manganese alloy.

a: 11060070 Page 14/2-

- Real world example: Copper-Manganese alloy.
- Landscape; finding ground state intractable, also for nature.

1 age 10/240

- Real world example: Copper-Manganese alloy.
- Landscape; finding ground state intractable, also for nature.
- Edwards-Anderson model: like Ising but with quenched random nearest-neighbor interactions:

$$H = \sum_{ij} J_{ij} s_i s_j$$
 $p(J_{ij}) \propto e^{-J_{ij}^2}$.

イロトイクトイラトイラン

- Real world example: Copper-Manganese alloy.
- Landscape; finding ground state intractable, also for nature.

Fage 17/240

- Real world example: Copper-Manganese alloy.
- Landscape; finding ground state intractable, also for nature.
- Edwards-Anderson model: like Ising but with quenched random nearest-neighbor interactions:

$$H = \sum_{ij} J_{ij} s_i s_j$$
 $p(J_{ij}) \propto e^{-J_{ij}^2}$.

- Real world example: Copper-Manganese alloy.
- Landscape; finding ground state intractable, also for nature.
- Edwards-Anderson model: like Ising but with quenched random nearest-neighbor interactions:

$$H = \sum_{ij} J_{ij} s_i s_j \qquad p(J_{ij}) \propto e^{-J_{ij}^2}$$
.

• Sherington-Kirkpatrick model: no longer nearest-neighbor, all spin pairs interact in a completely nonlocal way; $p(J_{ij}) \propto e^{-NJ_{ij}^2}$. Page 19/248

State space structure of the SK model

- Below critical temperature, spins freeze = spin glass phase.
- Different possible freezing patterns possible

 equilibrium states.
- Local magnetization in state α : $m_{i\alpha} \equiv \langle s_i \rangle_{\alpha}$ (depends on T).
- State overlap:

$$q_{\alpha\beta}\equiv \frac{1}{N}\sum_{i}m_{i\alpha}m_{i\beta}$$
.

- Real world example: Copper-Manganese alloy.
- Landscape; finding ground state intractable, also for nature.
- Edwards-Anderson model: like Ising but with quenched random nearest-neighbor interactions:

$$H = \sum_{ij} J_{ij} s_i s_j$$
 $p(J_{ij}) \propto e^{-J_{ij}^2}$.

• Sherington-Kirkpatrick model: no longer nearest-neighbor, all spin pairs interact in a completely nonlocal way; $p(J_{ij}) \propto e^{-NJ_{ij}^2}$. Page 21/248

State space structure of the SK model

- Below critical temperature, spins freeze = spin glass phase.
- Different possible freezing patterns possible

 equilibrium states.
- Local magnetization in state α : $m_{i\alpha} \equiv \langle s_i \rangle_{\alpha}$ (depends on T).
- State overlap:

$$q_{\alpha\beta}\equiv \frac{1}{N}\sum_{i}m_{i\alpha}m_{i\beta}$$
.

Results

• SK model exactly solvable [Parisi 79]

a: 11060070 Page 23/248

Results

- SK model exactly solvable [Parisi 79]
- Key result: state space is ultrametric (distance $d_{\alpha\beta} \equiv q_{max} q_{\alpha\beta}$)
 - $\Leftrightarrow \forall \alpha, \beta, \gamma : d_{\alpha\beta} \leq \max\{d_{\alpha\gamma}, d_{\beta\gamma}\}.$
 - All triangles isosceles, with unequal side shortest (i.e. largest overlap
 - States organized as leaves of tree.

Analogous to evolution tree: distance = time to common ancestor, equivalently DNA overlap.

State space structure of the SK model

- Below critical temperature, spins freeze = spin glass phase.
- Different possible freezing patterns possible

 equilibrium states.
- Local magnetization in state α : $m_{i\alpha} \equiv \langle s_i \rangle_{\alpha}$ (depends on T).
- State overlap:

$$q_{\alpha\beta}\equiv \frac{1}{N}\sum_{i}m_{i\alpha}m_{i\beta}$$
.

Results

SK model exactly solvable [Parisi 79]

a: 11060070 Page 26/248

Results

- SK model exactly solvable [Parisi 79]
- Key result: state space is ultrametric (distance $d_{\alpha\beta} \equiv q_{max} q_{\alpha\beta}$)
 - $\Leftrightarrow \forall \alpha, \beta, \gamma : d_{\alpha\beta} \leq \max\{d_{\alpha\gamma}, d_{\beta\gamma}\}.$
 - All triangles isosceles, with unequal side shortest (i.e. largest overlap
 - States organized as leaves of tree.

Analogous to evolution tree: distance = time to common ancestor, equivalently DNA overlap.

- Real world example: Copper-Manganese alloy.
- Landscape; finding ground state intractable, also for nature.
- Edwards-Anderson model: like Ising but with quenched random nearest-neighbor interactions:

$$H = \sum_{ij} J_{ij} s_i s_j$$
 $p(J_{ij}) \propto e^{-J_{ij}^2}$.

• Sherington-Kirkpatrick model: no longer nearest-neighbor, all spin pairs interact in a completely nonlocal way; $p(J_{ij}) \propto e^{-NJ_{ij}^2}$. Page 28/248

Results

- SK model exactly solvable [Parisi 79]
- Key result: state space is ultrametric (distance $d_{\alpha\beta} \equiv q_{max} q_{\alpha\beta}$)
 - $\Leftrightarrow \forall \alpha, \beta, \gamma : d_{\alpha\beta} \leq \max\{d_{\alpha\gamma}, d_{\beta\gamma}\}.$
 - All triangles isosceles, with unequal side shortest (i.e. largest overlap
 - States organized as leaves of tree.

Analogous to evolution tree: distance = time to common ancestor, equivalently DNA overlap.

1日ト 1個ト 1 きト 1 きト

Problem: how to characterize spin glass phase?

 Q: How to detect frozen phase? How to define and distinguish different equilibrium states?

a: 11060070 Page 30/248

- Q: How to detect frozen phase? How to define and distinguish different equilibrium states?
- When phase transition is associated to symmetry breaking, A: Order parameter. State separation by switching on infinitesimal symmetry breaking perturbation.

Page 31/248

Results

- SK model exactly solvable [Parisi 79]
- Key result: state space is ultrametric (distance $d_{\alpha\beta} \equiv q_{max} q_{\alpha\beta}$)
 - $\Leftrightarrow \forall \alpha, \beta, \gamma : d_{\alpha\beta} \leq \max\{d_{\alpha\gamma}, d_{\beta\gamma}\}.$
 - All triangles isosceles, with unequal side shortest (i.e. largest overlap
 - States organized as leaves of tree.

Analogous to evolution tree: distance = time to common ancestor, equivalently DNA overlap.

Arises purely statically in SK model.

イロンイクンイランイラン 夏

Problem: how to characterize spin glass phase?

 Q: How to detect frozen phase? How to define and distinguish different equilibrium states?

a: 11060070 Page 33/24

- Q: How to detect frozen phase? How to define and distinguish different equilibrium states?
- When phase transition is associated to symmetry breaking, A: Order parameter. State separation by switching on infinitesimal symmetry breaking perturbation.

11060070 Page 34/248

- Q: How to detect frozen phase? How to define and distinguish different equilibrium states?
- When phase transition is associated to symmetry breaking, A: Order parameter. State separation by switching on infinitesimal symmetry breaking perturbation.
- E.g. Ising model at low T: $p_G(s) \equiv \frac{1}{Z}e^{-\beta H(\sigma)} = \frac{1}{2}p_+(s) + \frac{1}{2}p_-(s)$ where $p_{\pm}(s) = \lim_{\epsilon \to \mp 0} \lim_{N \to \infty} e^{-\epsilon \sum_i s_i} p_G(s)$.

Order parameter: $M = \frac{1}{N} \sum_{i} \langle s_i \rangle$.

Page 35/248

- Q: How to detect frozen phase? How to define and distinguish different equilibrium states?
- When phase transition is associated to symmetry breaking, A: Order parameter. State separation by switching on infinitesimal symmetry breaking perturbation.
- E.g. Ising model at low T: $p_G(s) \equiv \frac{1}{Z}e^{-\beta H(\sigma)} = \frac{1}{2}p_+(s) + \frac{1}{2}p_-(s)$ where $p_{\pm}(s) = \lim_{\epsilon \to \mp 0} \lim_{N \to \infty} e^{-\epsilon \sum_i s_i} p_G(s)$.

 Order parameter: $M = \frac{1}{N} \sum_i \langle s_i \rangle$.
- Spin glass: $p_G(s) = \sum_{\alpha} w_{\alpha} p_{\alpha}(s) \rightsquigarrow p_{\alpha}(s) = ?$. Also: M = 0 for all T.

Page 30/246

• Definition equilibrium state ("pure state"): p_{α} such that cluster decomposition holds: $\lim_{N\to\infty}\frac{1}{N^2}\sum_{ij}|\langle\mathcal{O}_i\mathcal{O}_j\rangle_{\alpha}-\langle\mathcal{O}_i\rangle_{\alpha}\langle\mathcal{O}_j\rangle_{\alpha}|=0$

a: 11060070 Page 37/24

- Definition equilibrium state ("pure state"): p_{α} such that cluster decomposition holds: $\lim_{N\to\infty}\frac{1}{N^2}\sum_{ij}|\langle\mathcal{O}_i\mathcal{O}_j\rangle_{\alpha}-\langle\mathcal{O}_i\rangle_{\alpha}\langle\mathcal{O}_j\rangle_{\alpha}|=0$
- Decompose $p_G(s) \equiv \frac{1}{Z}e^{-\beta H(s)} = \sum_{\alpha} w_{\alpha} p_{\alpha}(s)$.

- Definition equilibrium state ("pure state"): p_{α} such that cluster decomposition holds: $\lim_{N\to\infty}\frac{1}{N^2}\sum_{ij}|\langle\mathcal{O}_i\mathcal{O}_j\rangle_{\alpha}-\langle\mathcal{O}_i\rangle_{\alpha}\langle\mathcal{O}_j\rangle_{\alpha}|=0$
- Decompose $p_G(s) \equiv \frac{1}{Z}e^{-\beta H(s)} = \sum_{\alpha} w_{\alpha} p_{\alpha}(s)$.
- But w_{α} and overlaps $q_{\alpha\beta} = \frac{1}{N} \sum_{i} m_{i\alpha} m_{i\beta}$ still incomputable.

. age 65.2.10

- Definition equilibrium state ("pure state"): p_{α} such that cluster decomposition holds: $\lim_{N\to\infty}\frac{1}{N^2}\sum_{ij}|\langle\mathcal{O}_i\mathcal{O}_j\rangle_{\alpha}-\langle\mathcal{O}_i\rangle_{\alpha}\langle\mathcal{O}_j\rangle_{\alpha}|=0$
- Decompose $p_G(s) \equiv \frac{1}{Z}e^{-\beta H(s)} = \sum_{\alpha} w_{\alpha} p_{\alpha}(s)$.
- But w_{α} and overlaps $q_{\alpha\beta} = \frac{1}{N} \sum_{i} m_{i\alpha} m_{i\beta}$ still incomputable.

(0) (4) (2) (2)

- Definition equilibrium state ("pure state"): p_{α} such that cluster decomposition holds: $\lim_{N\to\infty}\frac{1}{N^2}\sum_{ij}|\langle\mathcal{O}_i\mathcal{O}_j\rangle_{\alpha}-\langle\mathcal{O}_i\rangle_{\alpha}\langle\mathcal{O}_j\rangle_{\alpha}|=0$
- Decompose $p_G(s) \equiv \frac{1}{Z}e^{-\beta H(s)} = \sum_{\alpha} w_{\alpha} p_{\alpha}(s)$.
- But w_{α} and overlaps $q_{\alpha\beta} = \frac{1}{N} \sum_{i} m_{i\alpha} m_{i\beta}$ still incomputable.
- Overlap distribution: $P(q) \equiv \sum_{\alpha\beta} w_{\alpha} w_{\beta} \, \delta(q q_{\alpha\beta})$.

1 dg0 + 1/2 +

- Definition equilibrium state ("pure state"): p_{α} such that cluster decomposition holds: $\lim_{N\to\infty}\frac{1}{N^2}\sum_{ij}|\langle\mathcal{O}_i\mathcal{O}_j\rangle_{\alpha}-\langle\mathcal{O}_i\rangle_{\alpha}\langle\mathcal{O}_j\rangle_{\alpha}|=0$
- Decompose $p_G(s) \equiv \frac{1}{Z}e^{-\beta H(s)} = \sum_{\alpha} w_{\alpha} p_{\alpha}(s)$.
- But w_{α} and overlaps $q_{\alpha\beta} = \frac{1}{N} \sum_{i} m_{i\alpha} m_{i\beta}$ still incomputable.
- Overlap distribution: $P(q) \equiv \sum_{\alpha\beta} w_{\alpha} w_{\beta} \, \delta(q q_{\alpha\beta})$.
- Can be rewritten in terms of two replicas in Gibbs state:

$$P(q) = \sum_{s^{(1)}, s^{(2)}} p_G(s^{(1)}) p_G(s^{(2)}) \delta(q - \frac{1}{N} \sum_i s_i^{(1)} s_i^{(2)})$$

$$\Rightarrow \text{Computable!}$$

Page 42/246

- Definition equilibrium state ("pure state"): p_{α} such that cluster decomposition holds: $\lim_{N\to\infty}\frac{1}{N^2}\sum_{ij}|\langle\mathcal{O}_i\mathcal{O}_j\rangle_{\alpha}-\langle\mathcal{O}_i\rangle_{\alpha}\langle\mathcal{O}_j\rangle_{\alpha}|=0$
- Decompose $p_G(s) \equiv \frac{1}{Z}e^{-\beta H(s)} = \sum_{\alpha} w_{\alpha} p_{\alpha}(s)$.
- But w_{α} and overlaps $q_{\alpha\beta} = \frac{1}{N} \sum_{i} m_{i\alpha} m_{i\beta}$ still incomputable.
- Overlap distribution: $P(q) \equiv \sum_{\alpha\beta} w_{\alpha} w_{\beta} \, \delta(q q_{\alpha\beta})$.
- Can be rewritten in terms of two replicas in Gibbs state:

$$P(q) = \sum_{s^{(1)}, s^{(2)}} p_G(s^{(1)}) p_G(s^{(2)}) \delta(q - \frac{1}{N} \sum_i s_i^{(1)} s_i^{(2)})$$

$$\Rightarrow \text{Computable!}$$

• Average over disorder $P(q) \equiv \int dJ_{ij} p(J_{ij}) P(q)$ can be computed analytically for SK model.

Page 43/248

- Definition equilibrium state ("pure state"): p_{α} such that cluster decomposition holds: $\lim_{N\to\infty}\frac{1}{N^2}\sum_{ij}|\langle\mathcal{O}_i\mathcal{O}_j\rangle_{\alpha}-\langle\mathcal{O}_i\rangle_{\alpha}\langle\mathcal{O}_j\rangle_{\alpha}|=0$
- Decompose $p_G(s) \equiv \frac{1}{Z}e^{-\beta H(s)} = \sum_{\alpha} w_{\alpha} p_{\alpha}(s)$.
- But w_{α} and overlaps $q_{\alpha\beta} = \frac{1}{N} \sum_{i} m_{i\alpha} m_{i\beta}$ still incomputable.
- Overlap distribution: $P(q) \equiv \sum_{\alpha\beta} w_{\alpha} w_{\beta} \, \delta(q q_{\alpha\beta})$.
- Can be rewritten in terms of two replicas in Gibbs state:

$$P(q) = \sum_{s^{(1)}, s^{(2)}} p_G(s^{(1)}) p_G(s^{(2)}) \delta(q - \frac{1}{N} \sum_i s_i^{(1)} s_i^{(2)})$$

$$\Rightarrow \text{Computable!}$$

- Average over disorder $\overline{P(q)} \equiv \int dJ_{ij} \, p(J_{ij}) \, P(q)$ can be computed analytically for SK model.
- a: 11060070 Multiple pure states $\Leftrightarrow P(q)$ nontrivial.

Result for SK model

P(q) for $T/T_c = 0.95, 0.9, ..., 0.3$ [Crisanti-Rizzo '02]

ロト (日) (き) (き)

Ultrametricity

Triangle distribution:

$$P(q_1, q_2, q_3) \equiv \sum_{\alpha\beta\gamma} w_{\alpha}w_{\beta}w_{\gamma}\,\delta(q_1 - q_{\beta\gamma})\delta(q_2 - q_{\gamma\alpha})\,\delta(q_3 - q_{\alpha\beta})$$

• Result for SK model, $q_i \ge 0$:

$$\overline{P(q_1, q_2, q_3)} = \frac{1}{2} \int_0^{q_1} dq \, \overline{P(q)} \, \overline{P(q_1)} \, \delta(q_1 - q_2) \, \delta(q_2 - q_3)$$

$$+ \frac{1}{2} \overline{P(q_1)} \, \overline{P(q_2)} \, \Theta(q_1 - q_2) \, \delta(q_2 - q_3) + \text{perm.}$$

Monte Carlo simulations

N=800 simulation at $T/T_c = 1.2, 0.86, 0.55, 0.12$

1 agc +1/2+0

Application to string theory and cosmology

- Motivation
- Inspiration
 - Spin glass models
 - State space structure of the SK model
 - Overlap order parameter
- Application to string theory and cosmology
 - Generalized overlap order parameters
 - Examples of glassy systems in string theory + results
 - Cosmology

Monte Carlo simulations

N=800 simulation at $T/T_c = 1.2, 0.86, 0.55, 0.12$

10110121212

Application to string theory and cosmology

- Motivation
- Inspiration
 - Spin glass models
 - State space structure of the SK model
 - Overlap order parameter
- 3 Application to string theory and cosmology
 - Generalized overlap order parameters
 - Examples of glassy systems in string theory + results
 - Cosmology

1 age 30/240

Generalization P(q) from classical Ising spins to general, nonlinear spac and quantum systems?

Several possibilities

a: 11060070 Page 51/24

Generalization P(q) from classical Ising spins to general, nonlinear spac and quantum systems?

Several possibilities

- whatever comes up naturally when integrating out quenched disord
- overlap operators that violate cluster decomposition
- reduced density matrices

1 age 32/240

Generalization P(q) from classical Ising spins to general, nonlinear spac and quantum systems?

Several possibilities

a: 11060070 Page 53/24

Generalization P(q) from classical Ising spins to general, nonlinear spac and quantum systems?

Several possibilities

- whatever comes up naturally when integrating out quenched disord
- overlap operators that violate cluster decomposition
- reduced density matrices

1 age 3-1/2-10

Generalization P(q) from classical Ising spins to general, nonlinear spac and quantum systems?

Several possibilities

- whatever comes up naturally when integrating out quenched disord
- overlap operators that violate cluster decomposition
- reduced density matrices ←

General definition:

- ϕ_i , $i=1,\cdots,N$ subset of d.o.f. of system.
- $\rho = \sum w_{\alpha} \rho_{\alpha}$, ρ_{α} s.t. cluster decomposition holds.
- ρ_{α}^{i} be reduced density matrix for ϕ_{i} d.o.f.
- Overlap $q_{lphaeta}\equiv rac{1}{N}\sum_{i}\operatorname{Tr}
 ho_{lpha}^{i}
 ho_{eta}^{i}$
- $P(q) = \sum_{\alpha\beta} w_{\alpha}w_{\beta}\delta(q q_{\alpha\beta})$

Generalization P(q) from classical Ising spins to general, nonlinear spac and quantum systems?

Several possibilities

- whatever comes up naturally when integrating out quenched disord
- overlap operators that violate cluster decomposition
- reduced density matrices ←

General definition:

- ϕ_i , $i = 1, \dots, N$ subset of d.o.f. of system.
- $\rho = \sum w_{\alpha} \rho_{\alpha}$, ρ_{α} s.t. cluster decomposition holds.
- ρ_{α}^{i} be reduced density matrix for ϕ_{i} d.o.f.
- Overlap $q_{lphaeta}\equiv rac{1}{N}\sum_i {
 m Tr}\,
 ho_lpha^i
 ho_eta^i$
- $P(q) = \sum_{\alpha\beta} w_{\alpha}w_{\beta}\delta(q q_{\alpha\beta})$

Replica formula: $P(q) = \langle \delta(q - \frac{1}{N} \sum_i \chi_i) \rangle_{n=2}$, where χ_i is the operator

イロトイクトイラトイラト 夏

String glasses

(Partial) results for:

Page 57/248 a: 11060070

(Partial) results for:

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo

a: 11060070 Page 58/248

(Partial) results for:

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials

1 age 39/240

101181131131

String glasses

(Partial) results for:

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials
- Wrapped M5 → (0,4) 2d CFT. No quenched disorder, "structural" glass:

a: 11060070 Page 60/248

(Partial) results for:

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials
- Wrapped M5 → (0,4) 2d CFT. No quenched disorder, "structural" glass:
 - outside Cardy regime: extremely complex landscape (at weak coupli

Fage 01/240

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials
- Wrapped M5 → (0,4) 2d CFT. No quenched disorder, "structural" glass:
 - outside Cardy regime: extremely complex landscape (at weak coupli
 - holographic dual $(AdS_3 \times S^2)$:

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials
- Wrapped M5 → (0,4) 2d CFT. No quenched disorder, "structural" glass:
 - outside Cardy regime: extremely complex landscape (at weak coupli
 - holographic dual (AdS₃ × S²): multiple black hole bound states belongerated at the critical T_L √

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials
- Wrapped M5 → (0,4) 2d CFT. No quenched disorder, "structural" glass:
 - outside Cardy regime: extremely complex landscape (at weak coupli
 - holographic dual (AdS₃ × S²): multiple black hole bound states belongerated to the critical T_L √
 - ultrametricity / hierarchical organization?

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials
- Wrapped M5 → (0,4) 2d CFT. No quenched disorder, "structural" glass:
 - outside Cardy regime: extremely complex landscape (at weak coupli
 - holographic dual (AdS₃ × S²): multiple black hole bound states belongerated at the critical T_L √
 - ultrametricity / hierarchical organization? always coalescence when (or T) increased √

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials
- Wrapped M5 → (0,4) 2d CFT. No quenched disorder, "structural" glass:
 - outside Cardy regime: extremely complex landscape (at weak coupli
 - holographic dual (AdS₃ × S²): multiple black hole bound states belongerated to the critical T_L √
 - ultrametricity / hierarchical organization? always coalescence when (or T) increased √
 - relaxation dynamics \(\to \) tunneling between configurations

(Partial) results for:

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials
- Wrapped M5 → (0,4) 2d CFT. No quenched disorder, "structural" glass:
 - outside Cardy regime: extremely complex landscape (at weak coupli
 - holographic dual (AdS₃ × S²): multiple black hole bound states belongerated at the critical T_L √
 - ultrametricity / hierarchical organization? always coalescence when (or T) increased √
 - relaxation dynamics \(\to \) tunneling between configurations

0 > 4/8 > 4/2 > 4/2 > 2

Cosmology

- Quantum fluctuations get exponentially stretched to super-Hubble scales and freeze, becoming effectively classical.
- This dynamically generates analog of spin glass "pure states", in which scalars, metric,... have definite values on large scales and cluster decomposition holds. (Not the case for HH/BD/Euclidean vacuum.)
- Overlap distribution → state space analysis without explicit description of clustering states.
- Useful quantity to compare quantum wave function of universe and "stochastic" measure approaches.

(Partial) results for:

- Bousso-Polchinski with quenched random metric on flux lattice
 - analytic: replica symmetric solution
 - numeric: exchange monte carlo
- Quiver models (for wrapped D-branes) with quenched random superpotentials
- Wrapped M5 → (0,4) 2d CFT. No quenched disorder, "structural" glass:
 - outside Cardy regime: extremely complex landscape (at weak coupli
 - holographic dual (AdS₃ × S²): multiple black hole bound states belonities to the critical T_L √
 - ultrametricity / hierarchical organization? always coalescence when (or T) increased √
 - relaxation dynamics \(\to \) tunneling between configurations

D > 1/8 > 1 2 > 1 2 > 2

Cosmology

- Quantum fluctuations get exponentially stretched to super-Hubble scales and freeze, becoming effectively classical.
- This dynamically generates analog of spin glass "pure states", in which scalars, metric,... have definite values on large scales and cluster decomposition holds. (Not the case for HH/BD/Euclidean vacuum.)
- Overlap distribution → state space analysis without explicit description of clustering states.
- Useful quantity to compare quantum wave function of universe and "stochastic" measure approaches.

MASSUESS SEALAR IN de 152: - dye 4 dx2 X = [0,211] S= S dy d= 1(00) + (00) or la she (xxx)

MASSUESS SEALAR IN de 152 - 172 4 dx2 XE [0,211] S= S dy d= 1(8) ((1) } < p(x) p(x) > - le pre (x-x)

- scales and freeze, becoming effectively classical.
- This dynamically generates analog of spin glass "pure states", in which scalars, metric,... have definite values on large scales and cluster decomposition holds. (Not the case for HH/BD/Euclidean vacuum.)
- Overlap distribution → state space analysis without explicit description of clustering states.
- Useful quantity to compare quantum wave function of universe and "stochastic" measure approaches.

Frederik Desef (Harvard, SCGP, Leaven) Complexity and organization in many tesses.

June 23, 2581

33

~ la 12= (X-X) φ(x)= = φnemx

(γ) ~ = = η 1 φη 12 = = p(1) p(2)

~ pro(x-x) φ(x)= = φnemx

(γ) ~ = = η |φη|² = Z p(1) p(2)

< f(x) \$(x-x) φ(x)= = φnemx

(γ) ~ e- = n | φη | 2 $= \sum_{n} \phi_n^{(i)} \phi_n^{(2)}$ (eil Que) -> (8(Qu-9))/1=2

< pre (x-x) p(x) = = pnemx 40 × e- = 1/9/2 $= \sum_{n} \phi_n^{(n)} \phi_n^{(2)}$ (e1) Que -> (8(Qn-9)) /1= 2

~ la 120 (x-x) φ(x) = = φnemx

(γ) ~ e = = n | φn | 2 = q'' φ''

~ la 12 (x=x) p(x) = = pnemx 45 ~ e- = 1/9/2 = = p(1) p(2) = (8(Qn-9))=

~ la 12 (x= x p(x) = Z pnemx 40 × e- = 1/9/2 = qn φ(2) -3 (8(Qn-9)) /n=3

~ la 120 (x- γ) p(x) = Z pnemx 40 × e- = 1/1/2 = qn (2) - (8(Qn-9)) /1=

~ la 12 (x- γ) p(x) = Z qnemx 40 ~ e- = 1/9/2 = = Pn (2) - (8(Qn-9)) =

~ la Die (x-x) φ(x)= = φnemx

(γ) ~ e- = n/4/2

