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Quantum gravity (string theory) seems to imply reversal of usual
complexity - fundamentalness relation:

@ Landscape of compactifications
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Complexity in fundamental physics

Quantum gravity (string theory) seems to imply reversal of usual
complexity - fundamentalness relation:

@ Landscape of compactifications
@ Black hole microstates
© Eternal inflation
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Why?

© Seems unavoidable to understand positive cc in string theory:
o All string constructions are of high complexity [KKLT Silverstein,.. ]
o Compactification data not a superselection sector [Coleman-de
Luccia, Bousso-Polchinski, ...}

o Eternal inflation ~ fractal structure future infinity.
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o All string constructions are of high complexity [KKLT Silverstein,.. ]

¢ Compactification data not a superselection sector [Coleman-de
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Why?

© Seems unavoidable to understand positive cc in string theory:

o All string constructions are of high complexity [KKLT Silverstein,.. ]
e Compactification data not a superselection sector [Coleman-de
Luccia, Bousso-Polchinski, ... ]

o Eternal inflation ~+ fractal structure future infinity.
@ Interesting mathematical structures in complex systems in general:

e spin glasses: spontaneous hierarchical organization, overlap order
parameters, replica symmetry breaking, ...
e universality: relaxation times, ...

e computational complexity, P vs NP, ...
@ Holographic understanding of (nonlocal) glassy systems

e large N = thermodynamic limit

e microscopic understanding of glasses considered to be one of most
important unsolved problems in CM physics.
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Why?

© Seems unavoidable to understand positive cc in string theory:
o All string constructions are of high complexity [KKLT Silverstein,.. ]
¢ Compactification data not a superselection sector [Coleman-de

Luccia, Bousso-Polchinski, ... ]
o Eternal inflation ~+ fractal structure future infinity.

© Interesting mathematical structures in complex systems in general:

e spin glasses: spontaneous hierarchical organization, overlap order
parameters, replica symmetry breaking, ...
e universality: relaxation times, ...

o computational complexity, P vs NP, ...

© Holographic understanding of (nonlocal) glassy systems

e large N = thermodynamic limit
e microscopic understanding of glasses considered to be one of most
important unsolved problems in CM physics.

QO Approach to understand state space geometry quantum cosmology
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© Inspiration
@ Spin glass models
@ State space structure of the SK model
@ Overlap order parameter
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Spin glasses

@ Real world example: Copper-Manganese alloy.
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Spin glass models

Spin glasses
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@ Real world example: Copper-Manganese alloy.
@ Landscape; finding ground state intractable, also for nature.
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@ Real world example: Copper-Manganese alloy.

@ Landscape; finding ground state intractable, also for nature.

@ Edwards-Anderson model: like Ising but with quenched random
nearest-neighbor interactions:

H = Z Jijsis; p(Jjj) e i .
J]

a: 11060070 Page 16/248




Spin glass models

P T °
L] -‘.-.-. €
.-...;:_i--- G ﬂ' & ﬁ 0
o % Sosiba
X LE - o 090
- “‘
S o o o o
T ? o o o o
. [ ]
. N - 54
oo 20 3 f o
L
.® > o o o o
a W
. o o o

@ Real world example: Copper-Manganese alloy.
@ Landscape; finding ground state intractable, also for nature.
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@ Real world example: Copper-Manganese alloy.

@ Landscape; finding ground state intractable, also for nature.

@ Edwards-Anderson model: like Ising but with quenched random
nearest-neighbor interactions:

H = Z Jijsis; p(J;;) o< ei.
J]
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Spin glass models
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@ Real world example: Copper-Manganese alloy.

@ Landscape; finding ground state intractable, also for nature.

@ Edwards-Anderson model: like Ising but with quenched random
nearest-neighbor interactions:

H= Z =SS p(Jij) x e i .
J]

@ Sherington-Kirkpatrick model: no longer nearest-neighbor, all spin
S : —NJ
Fueo  pairs interact in a completely nonlocal way; p(J;) < e NI page o
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State space structure of the SK model
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@ Below critical temperature, spins freeze = spin glass phase.
@ Different possible freezing patterns possible ~ equilibrium states.
@ Local magnetization in state a: m;, = (s;), (depends on T).

@ State overlap:
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@ Real world example: Copper-Manganese alloy.

@ Landscape; finding ground state intractable, also for nature.

@ Edwards-Anderson model: like Ising but with quenched random
nearest-neighbor interactions:

.
H = Z s p(J;) oc e i .
J]

@ Sherington-Kirkpatrick model: no longer nearest-neighbor, all spin
e : —NJ
Fue0 pairs interact in a completely nonlocal way; p(J;) < e NI§ pase
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State space structure of the SK model
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@ Below critical temperature, spins freeze = spin glass phase.
@ Different possible freezing patterns possible ~+ equilibrium states.
o Local magnetization in state a: m;, = (s;), (depends on T).

@ State overlap:
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State space structure of the SK model

Results

@ SK model exactly solvable [Parisi 79]
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State space structure of the SK model

Results

@ SK model exactly solvable [Parisi 79]

@ Key result: state space is ultrametric (distance d,3 = Gmax — Gas)
& Va,B,7 : dog < max{d,~, ds~}.
< All triangles isosceles, with unequal side shortest (i.e. largest overla
& States organized as leaves of tree.

Analogous to evolution tree: distance = time to common ancestor
equivalently DNA overlap.
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o Below critical temperature, spins freeze = spin glass phase.
@ Different possible freezing patterns possible ~» equilibrium states.
o Local magnetization in state a: m;, = (s;), (depends on T).

@ State overlap:
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State space structure of the SK model

Results

@ SK model exactly solvable [Parisi 79

a: 11060070 Page 26/248




State space structure of the SK model

Results

@ SK model exactly solvable [Parisi 79]

@ Key result: state space is ultrametric (distance d,3 = Gmax — Gas)
& Va,B,7 : dog < max{d,~, ds~}.
< All triangles isosceles, with unequal side shortest (i.e. largest overla
& States organized as leaves of tree.

Analogous to evolution tree: distance = time to common ancestor
equivalently DNA overlap.

A: 11060070 Page 27/248




Spin glass models

Spin glasses
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@ Real world example: Copper-Manganese alloy.

@ Landscape; finding ground state intractable, also for nature.

@ Edwards-Anderson model: like Ising but with quenched random
nearest-neighbor interactions:

H = Z Jisis; p(J;j) e i .
J]

@ Sherington-Kirkpatrick model: no longer nearest-neighbor, all spin
= 1 . — 2
Fuee  pairs interact in a completely nonlocal way; p(J;) < e NIG page 2z




State space structure of the SK model

Results

@ SK model exactly solvable [Parisi 79]

@ Key result: state space is ultrametric (distance d,3 = Gmax — Gas)
& Va,B,7 : dog < max{d,~, ds~}.
< All triangles isosceles, with unequal side shortest (i.e. largest overla
& States organized as leaves of tree.

Analogous to evolution tree: distance = time to common ancestor
equivalently DNA overlap.
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Overlap order parameter

Problem: how to characterize spin glass phase?

@ Q: How to detect frozen phase? How to define and distinguish
different equilibrium states?
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Problem: how to characterize spin glass phase?

@ Q: How to detect frozen phase? How to define and distinguish
different equilibrium states?

@ When phase transition is associated to symmetry breaking, A: Ord

parameter. State separation by switching on infinitesimal symmet
breaking perturbation.
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State space structure of the SK model

Results

@ SK model exactly solvable [Parisi 79]

@ Key result: state space is ultrametric (distance d,3 = Gmax — Ga3)
& Va,B,7 : dog < max{d,~, ds~}.
< All triangles isosceles, with unequal side shortest (i.e. largest overla
& States organized as leaves of tree.

Analogous to evolution tree: distance = time to common ancestor
equivalently DNA overlap.

@ Arises purely statically in SK model.
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Overlap order parameter

Problem: how to characterize spin glass phase?

@ Q: How to detect frozen phase? How to define and distinguish
different equilibrium states?
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Insparation Overlap order parameter

Problem: how to characterize spin glass phase?

@ Q: How to detect frozen phase? How to define and distinguish
different equilibrium states?

@ When phase transition is associated to symmetry breaking, A: Ord

parameter. State separation by switching on infinitesimal symmet
breaking perturbation.
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Inspiration Overlap order parameter

Problem: how to characterize spin glass phase?

@ Q: How to detect frozen phase? How to define and distinguish
different equilibrium states?

@ When phase transition is associated to symmetry breaking, A: Ord

parameter. State separation by switching on infinitesimal symmet
breaking perturbation.

o E.g. Ising model at low T: pg(s) = 3779 = Zp. (s) + 3p_(s)
where pi(s) = lime_=g limy_oc € <2 % pg(s).

Order parameter: M = 5 Y .(s;).
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Inspiration Overlap order parameter

Problem: how to characterize spin glass phase?

a: 11060070

@ Q: How to detect frozen phase? How to define and distinguish
different equilibrium states?

@ When phase transition is associated to symmetry breaking, A: Ord
parameter. State separation by switching on infinitesimal symmet
breaking perturbation.

@ E.g. Ising model at low T: pg(s) = %e_ﬁ’”(”} = %p_,L(s) +- %p_(s)
where p.(s) = lime_ =g limy_oc e i % pg(s).

Order parameter: M = 5 Y. (s;).

@ Spin glass: pg(s) = ) _, Wa Pals) ~ pals) =7.
Also: M =0 for all T.
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Overlap order parameter
p

Parisi’'s overlap “order’ “parameter’

@ Definition equilibrium state ( “pure state”): p, such that cluster
decomposition holds: limpy_, E}L 2_i {0i0j)a — (0i)a(Oj)al =0
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Parisi's overlap “order” “parameter”

@ Definition equilibrium state ( “pure state” ): p, such that cluster
decomposition holds: limpy_. n}i 2. 1{0i0j)a — (0i)a(Oj)al =0

o Decompose pg(s) = e 1) =3 wy pals).
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Overlap order parameter

Parisi's overlap “order” “parameter”

@ Definition equilibrium state ( “pure state” ): p, such that cluster
decomposition holds: limy_. % 2_i 1{0i0j)a — (0i)a(Oj)al =0

eBHE) = T w, pu(s).

@ Decompose pg(s) = >
e But w, and overlaps g,3 = ;}‘JZ; m;,m;g still incomputable.
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Parisi's overlap “order” “parameter”

@ Definition equilibrium state ( “pure state” ): p, such that cluster
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Parisi's overlap “order” “parameter”

@ Definition equilibrium state ( “pure state” ): p, such that cluster
decomposition holds: limy_.o % 2. 1{0i0j)a — (0i)a(0Oj)al =0

o Decompose pg(s) = ;e 1) =3 wy, pals).
o But w, and overlaps g,35 = %}Z; m;,m;g still incomputable.

e Overlap distribution: P(q) = )__5 Waw3s (g — gas).
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Parisi's overlap “order” “parameter”

@ Definition equilibrium state ( “pure state”): p, such that cluster

decomposition holds: limy_. o -’%—2 i 1{0i0j)a — (0i)a(0Oj)al =0

o Decompose pg(s) = ;e M) =3 wy pals).
e But w, and overlaps g,3 = %}Z; m;,m;g still incomputable.

@ Overlap distribution: P(q) = )5 Waws (g — gas).

@ Can be rewritten in terms of two replicas in Gibbs state:

P(q) = X < Pe(sM) pe(s?) 6(g — L ;s s\ 2)

= Computable!
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Inspiration Overlap order parameter

Parisi's overlap “order” “parameter”

a: 11060070

@ Definition equilibrium state ( “pure state”): p, such that cluster
decomposition holds: limy_. % 2. 1{0i0j)a — (0i)a(Oj)al =0

o Decompose pg(s) = ;e 1) =3 wy, pals).
e But w, and overlaps g,3 = %Z; m;,m;g still incomputable.

@ Overlap distribution: P(q) = )5 Wawz (g — gag).

@ Can be rewritten in terms of two replicas in Gibbs state:

P(q) = T o Pe(s™) pe(s?) 6(g — L T, ss?)

= Computable!

@ Average over disorder P(q) = [ dJ;; p(J;;) P(q) can be computed
analytically for SK model.
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Parisi's overlap “order” “parameter”
@ Definition equilibrium state ( “pure state”): p, such that cluster
decomposition holds: limy_. % 2_i {0i0j)a — (0i)a(Oj)al =0
o Decompose pg(s) = ;e 9H5) =3 wy, pals).
e But w, and overlaps g,3 = %&Z] m;,m;g still incomputable.

e Overlap distribution: P(q) = )__5 Waw3s (g — gas)

@ Can be rewritten in terms of two replicas in Gibbs state:

P(q) = X s P6(sM) pe(s?P) d(g — £ T, st Vsi?)
= Computable!

@ Average over disorder P(q) = [ dJ;; p(J;;) P(q) can be computed
analytically for SK model.

L1000 ® Multiple pure states < P(q) nontrivial. page aa2ds




Overlap order parameter

Result for SK model

P(Q) for T/T. =0.95,0.9,...,0.3 [Crisanti-Rizzo '02]
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LUl Overlap order parameter

Ultrametricity

@ Triangle distribution:
P(q1. 92, G3) = 3,5, WaWswy 0(q1 — 954)(92 — Gya) 6(93 — Gags
@ Result for SK model, g; > 0:
P(q1,q2,q3) = 5 [y dg P(q) P(q1) 6(q1 — q2) 6(q2 — q3)
+3P(q1) P(q2) ©(q1 — g2) 5(q2 — q3) + perm.
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Overlap order parameter

Monte Carlo simulations

gﬁk“\ b

N=800 simulation at 7 /7. = 1.2,0.86,0.55,0.12
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Application to string theory and cosmology

© Application to string theory and cosmology
@ Generalized overlap order parameters
® Examples of glassy systems in string theory + results
@ Cosmology
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Generalized overlap order parameters

Application to string theory and cosmology

Generalized overlap order parameters

Generalization P(q) from classical Ising spins to general, nonlinear spac
and quantum systems?’

Several possibilities
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Generalized overlap order parameters

Generalization P(q) from classical Ising spins to general, nonlinear spac
and quantum systems?’

Several possibilities
© whatever comes up naturally when integrating out quenched disor
© overlap operators that violate cluster decomposition
© reduced density matrices
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Generalized overlap order parameters

Generalization P(q) from classical Ising spins to general, nonlinear spac
and quantum systems?’

Several possibilities
© whatever comes up naturally when integrating out quenched disor
© overlap operators that violate cluster decomposition
© reduced density matrices
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Generalized overlap order parameters

Generalization P(q) from classical Ising spins to general, nonlinear spac
and quantum systems?’

Several possibilities
© whatever comes up naturally when integrating out quenched disor
© overlap operators that violate cluster decomposition
© reduced density matrices «—

General definition:
@ ¢;, i=1,---, N subset of d.o.f. of system.
@ p= ) WgpPa, Pa S.t. cluster decomposition holds.
o p' be reduced density matrix for ¢; d.o.f.
@ Overlap g.5 = % 5. Tr ol ol
® P(q) = 2 ap Waw3d(q — Gas)
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Application to string theory and cosmology Generalized overlap order parameters

Generalized overlap order parameters

Generalization P(q) from classical Ising spins to general, nonlinear spac
and quantum systems?’

Several possibilities
© whatever comes up naturally when integrating out quenched disor
@ overlap operators that violate cluster decomposition
© reduced density matrices «—

General definition:
@ ¢;, i=1,---, N subset of d.o.f. of system.
@ p= ) WgpPa, Pa S.t. cluster decomposition holds.
e p' be reduced density matrix for ¢; d.o.f.
o Overlap g, = v X, Trplp};
® P(q) = 2 ap Wawsd(q — Gas)

Replica formula: P(q) = (6(q —  X_; Xi)) n=2. where ; is the operato
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String glasses

(Partial) results for:
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String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo
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String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo

@ Quiver models (for wrapped D-branes) with quenched random
superpotentials

a: 11060070 Page 59/248




L r T e 1a LR e iy e e L el Examples of glassy systems in string theory — results

String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo

@ Quiver models (for wrapped D-branes) with quenched random
superpotentials

@ Wrapped M5 ~+ (0,4) 2d CFT. No quenched disorder, “structural
glass:
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String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo

@ Quiver models (for wrapped D-branes) with quenched random
superpotentials

@ Wrapped M5 ~ (0,4) 2d CFT. No quenched disorder, “structural
glass:

o outside Cardy regime: extremely complex landscape (at weak coupli
o holographic dual (AdS; x $?):
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String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo

@ Quiver models (for wrapped D-branes) with quenched random
superpotentials

@ Wrapped M5 ~+ (0,4) 2d CFT. No quenched disorder, “structural
glass:

o outside Cardy regime: extremely complex landscape (at weak coupli
» holographic dual (AdS; x $%): multiple black hole bound states bel
critical T;
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String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo

@ Quiver models (for wrapped D-branes) with quenched random
superpotentials

@ Wrapped M5 ~+ (0,4) 2d CFT. No quenched disorder, “structural
glass:

¢ outside Cardy regime: extremely complex landscape (at weak coupli

o holographic dual (AdS; x S?): multiple black hole bound states bel
critical T; v

o ultrametricity / hierarchical organization?
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Application to string theory and cosmology Examples of glassy systems in string theory + results

String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo

@ Quiver models (for wrapped D-branes) with quenched random
superpotentials

@ Wrapped M5 ~+ (0,4) 2d CFT. No quenched disorder, “structural
glass:

¢ outside Cardy regime: extremely complex landscape (at weak coupli
o holographic dual (AdS; x 52): multiple black hole bound states bel
critical T; v

o ultrametricity / hierarchical organization? always coalescence when
(or T) increased v
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String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo

@ Quiver models (for wrapped D-branes) with quenched random
superpotentials

@ Wrapped M5 ~ (0,4) 2d CFT. No quenched disorder, “structural
glass:

o outside Cardy regime: extremely complex landscape (at weak coupli

» holographic dual (AdS; x $%): multiple black hole bound states bel
critical T; v

e ultrametricity / hierarchical organization? always coalescence when
(or T) increased v

¢ relaxation dynamics ~~ tunneling between configurations
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String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo

@ Quiver models (for wrapped D-branes) with quenched random
superpotentials

@ Wrapped M5 ~+ (0,4) 2d CFT. No quenched disorder, “structural
glass:

¢ outside Cardy regime: extremely complex landscape (at weak coupli

o holographic dual (AdS; x S?): multiple black hole bound states bel
critical T; v

o ultrametricity / hierarchical organization? always coalescence when
(or T) increased v

¢ relaxation dynamics ~~ tunneling between configurations
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Application to string theory and cosmology [REELGEEFY

Cosmology
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@ Quantum fluctuations get exponentially stretched to super-Hubble
scales and freeze, becoming effectively classical.

e This dynamically generates analog of spin glass “pure states”, in
which scalars, metric,... have definite values on large scales and
cluster decomposition holds. (Not the case for HH/BD/Euclidean
vacuum.)

@ Overlap distribution — state space analysis without explicit
description of clustering states.

e Useful quantity to compare quantum wave function of universe an

=uocoe— “stochastic” measure approaches. Page 661243




Application to string theory and cosmology Examples of glassy systems in string theory + results

String glasses

(Partial) results for:

@ Bousso-Polchinski with quenched random metric on flux lattice

e analytic: replica symmetric solution
e numeric: exchange monte carlo

@ Quiver models (for wrapped D-branes) with quenched random
superpotentials

@ Wrapped M5 ~+ (0,4) 2d CFT. No quenched disorder, “structural
glass:

e outside Cardy regime: extremely complex landscape (at weak coupli

» holographic dual (AdS; x $%): multiple black hole bound states bel
critical T; v

o ultrametricity / hierarchical organization? always coalescence when
(or T) increased v

¢ relaxation dynamics ~~ tunneling between configurations
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Application to string theory and cosmology [N

Cosmology
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@ Quantum fluctuations get exponentially stretched to super-Hubble
scales and freeze, becoming effectively classical.

@ This dynamically generates analog of spin glass “pure states”, in
which scalars, metric,... have definite values on large scales and
cluster decomposition holds. (Not the case for HH/BD/Euclidean
vacuum.)

@ Overlap distribution — state space analysis without explicit
description of clustering states.

@ Useful quantity to compare quantum wave function of universe an

=uocoe— “stochastic” measure approaches. Page 701245
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