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Abstract: We compute the partition function of quantum Einstein gravity in three dimensional de Sitter space. The Euclidean path integra is
formulated as a sum over geometries, including both perturbative loop and non-perturbative instanton corrections coming from geometries with
non-trivial topology. These non-trivial geometries have a natural physical interpretation and lead to deviations from the standard thermal behaviour
of the de Sitter horizon; this is the de Sitter analog of the celebrated & quot;black hole Farey tail.&quot; Perturbative quantum corrections are
computed to all orders in perturbation theory and the vacuum partition function, including all instanton and perturbative corrections, is shown to
diverge in away which can not be regulated using standard field theory techniques. Thus the Hartle-Hawking state is not normalizable.
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"he Problem

Quantum cosmology is confusing:

» How is Unitarity consistent with singularities, inflation, ...7?
» Is quantum mechanics modified in cosmological settings?
» What are the appropriate observables for eternal inflation?

» What is the meaning and origin of the entropy of a
cosmological horizon?

Similar questions are answered in the context of black hole physics
by AdS/CFT.

Let us be bold and apply the same techniques to cosmology.
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"he Wave-function of the Universe

One lesson of AdS/CFT is that the ”"wave function of the
universe” |1) exists and is computable.

The Hartle-Hawking state

(h|wp) ~ / Dg e
glam=n

includes contributions from all geometries. It is the natural
“vacuum state” of quantum gravity.

In AdS this is a CFT partition function.
What about in dS7?

Goal: Find a theory where we can compute (h|?).
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e Sitter Space

For three dimensional general relativity with a positive
cosmological constant

5[g]=é/Mv’—7g(R—£%)

the partition function

= / Dg e >l&l

can be computed exactly.

We will be inspired by AdS/CFT but we will not use it.
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"he |ldea

The saddle point approximation is

7 _ /Dg o—Slel _ 3 o—kSO4SI41S2 4
g0

where k = £/G is the coupling. The approximation becomes exact
if we can

» Find all classical saddles

» Compute all perturbative corrections around each saddle

We will do both.

The new classical saddles have a straightforward physical

interpretation and lead to quantum gravitational effects for de
Sitter observers.
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"he Plan for Today:

e Find the Classical Solutions

e Compute the Partition Function

e Discuss the Result
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"he Causal Patch

A single observer can access only a small portion of the de Sitter

geometry. The metric in this patch is

dszzdrz—&:oszr1:1t2+5in21v'dr,r§v2
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Juantum Field Theory in de Sitter

There is no global definition of energy in dS, but there is a notion
of energy associated with an observer.

The two killing vectors

» H = O; generates time translations
» J = O, generates rotations.

States are labelled by energy H and angular momentum J.

The operators H and J can be constructed explicitly for free QFT.

The definition of the QFT vacuum state requires some care. It is
typically constructed by Wick rotation t = itg.
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-uclidean Continuation

The Euclidean metric
ds” = dr” + cos® r dtz +sin” r d¢” .
is smooth only if we identify tg ~ tg + 27n. This is the sphere S3.
The identification is generated by the operator
p=ePH B =2w

so field theory correlators obtained by analytic continuation are in
canonical ensemble at finite temperature.

The horizon emits a bath of thermal radiation at the Hawking
temperature 5.
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-uclidean Continuation ||

But the metric is also smooth if we identify

1
(te,9) ~ (te,9) + 27 (E"am‘F gﬂ)

for any (p, g) = 1. This is the lens space L(p,q) = SB/ZP.
The identification is generated by the operator

2 :
p=ePHH g F  =2xi"

p

so field theory correlators are in grand canonical ensemble at finite
temperature and chemical potential.

The Hawking radiation now contains correlations.
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‘uclidean Continuation ||

But the metric is also smooth if we identify
1 q
(tg, q‘.v) ~ (tE, qﬁ) + 27 (Bn, m —+ EH)
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p

p

p —
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Juantum Gravity

At the level of QFT in a fixed background these geometries are all
equally good “Euclidean continuations of de Sitter.”

Which one should we use? All of them!

The full partition function of quantum gravity includes a sum over
geometries. Each geometry contributes

P e-k-VOf ~ exp {_i}

In the semi-classical G — 0 limit the sphere dominates and the
state is approximately thermal.

The other geometries lead to calculable quantum gravity deviations
from the standard thermal behaviour of the Bunch-Davies vacuum.
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e Sitter Farey Talil

The sum over lens spaces is a sum over the modular group
SL(2,Z), i.e. over ways of “filling in” the Euclidean horizon.

0K
agiie
i

This is the dS version of the celebrated black hole Farey Tail.
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"he Partition Function

The norm of the Hartle-Hawking state is the partition function

Z=(ly) = [Dg e 5lel = 3 e k45 HiS
&0

Although 3D gravity has no local degrees of freedom there are
“global” degrees of freedom which give quantum corrections.

For example, the one loop determinants of the ghost and linearized
metric fluctuations do not quite cancel

e —
dEt ASTEVI'IUH

£1

To determine the S’ we can either compute the all-loop Feynman
diagrams or we can cheat. Let's cheat!
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hern-Simons Theory

Classical 3D gravity is an SU(2) x SU(2) Chern-Simons theory
with imaginary levels k. = =ik

Scr = kis[As] — kis[A_]

where I/ is the SU(2) Chern-Simons invariant

2
IG[A]:Tk[(AAdA+ §AAAAA)

For Minkowski and AdS gravity subtleties arise because the gauge
group and space-time are not compact.

But we are now studying CS theory with a compact gauge group
on a compact manifold.

The CS partition function can be computed exactly using TQFT
Pirsmetahod S. Page 34/74
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.hern-Simons Theory # Gravity
The two theories are not equivalent at the quantum level.

The CS path integral is a sum over all flat connections on a
manifold of fixed topology. The gravity path integral is a sum over
topologies, with a specific flat connection (a metric) for each

topology.

But they are equivalent at all orders in perturbation theory around
a given classical saddle.

To compute the gravity perturbative corrections we must isolate
the contribution to the CS path integral which comes from the flat
connection of gravity.

We can check that

» Tree level: Einstein-Hilbert action <« CS invariant

e udiiess One-loop level: GR determinant « CS determinant (hard! e o
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Results & Discussion
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"he Answer

We now compute the path integral, including all perturbative

(loop) and non-perturbative (instanton) corrections coming from
lens spaces.

For 3D Einstein gravity the answer is divergent due to the sum
over geometries with small volume

Z=24¢(1) +...

This divergence cannot be regulated using standard field theory
techniques.

Conclusion: the Hartle-Hawking state of Einstein gravity is not
normalizable. It does not live in a finite dimensional Hilbert space.
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1terpretation

What does this mean?

Perhaps:

» de Sitter gravity does not exist. (Unlikely)

» de Sitter gravity exists but we have not done the path integral
correctly. (Unlikely)

» de Sitter gravity exists but we are computing the wrong thing.
(Possible)

» de Sitter gravity exists and the wave function is normalizable

only if we include more interesting degrees of freedom.
(Likely)
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‘MG in dS

For example, if we modify the theory to include a gravitational
Chern-Simons term

. 2 —3
s=¢/ (R-a+ne)

the theory now has a local degree of freedom.

The Euclidean saddles are the same but the action is different. For
certain values of the coupling

£
C € (pf)Z

phases in the sum conspire to make the divergent piece cancel.
The Hartle-Hawking state has finite norm.

Interpretation: “Pure” quantum gravity does not exist. Additional
"He&¥rees of freedom are required. A



S/CFT

Near Z— the Hartle-Hawking wave function is conjectured to
become a CFT partition function times local counterterms

(h|lv) — Zcer(h)
Modular invariance
Z(t)=2Z(yr) € SL(2,Z)
allows us to determine the high energy density of states.

With certain (strong) assumptions, Cardy's formula reproduces the

de Sitter entropy:
A

S=E
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S/CFT

Near Z= the Hartle-Hawking wave function is conjectured to
become a CFT partition function times local counterterms

(hl) — Zcer(h)
Modular invariance
Z(r)=2Z(y1) ~e€SL(2,Z)
allows us to determine the high energy density of states.

With certain (strong) assumptions, Cardy's formula reproduces the
de Sitter entropy:
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S/CFT

Near Z= the Hartle-Hawking wave function is conjectured to
become a CFT partition function times local counterterms

(h|lv)) — Zcer(h)
Modular invariance
Z(t)=2Z(yr) € SL(2,Z)
allows us to determine the high energy density of states.

With certain (strong) assumptions, Cardy’s formula reproduces the

de Sitter entropy:

A
e
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e Sitter Entropy

Where did this modular invariance come from?

In the presence of a boundary, our saddle points are related by a
(large) coordinate transformation. The group of such coordinate
transformations is SL(2,7Z).

This explains the modular invariance of the dS/CFT partition
function

Modular invariance < General Coordinate Invariance

and at least partly explains the applicability of Cardy's formula.

Interpretation: de Sitter entropy is a feature of any consistent,
diffeomorphism invariant theory of quantum gravity in de Sitter
space.

e c.f. Castro’'s Talk Tomorraw



peculation: Peaks of the Wave Function

Near Z* the wave function (h|v)) approaches a CFT partition
function, regarded as a function of the conformal structure of the
spatial slice.

It is a CFT with negative central charge, so will have the reverse of
the usual properties

» |t vanishes when the spatial slice is very inhomogeneous

» |t is peaked when the spatial slice has automorphisms

Speculation: The wave function of the universe prefers geometries
with symmetry.
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peculation: Cosmological Constant

We can not explain the small value of the cosmological constant.

The partition function converges only when the coupling constant
of the theory obeys certain (number theoretic) equation. For
Einstein gravity this equation had no solutions.

For topologically massive gravity this required the cosmological
constant to be integer quantized.

Speculation: For more realistic theories of gravity the cosmological
constant solves a more complicated number theoretic equation.
This may explain its small value.
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