Title: Bubble Popper
Date: Jun 24, 2011 03:00 PM
URL: http://pirsa.org/11060052

Abstract: In the context of the ADS/CFT correspondence, | will discuss model-independent properties shared by bulk theories of gravity with
consistent dual descriptions. | will then discuss the prospects of extending these ideas to non-conformal theories, in particular to attempts to realize
cosmological theories holographically. | will address the status of in-principle falsifiability of various holographic proposals through internal
consistency conditions of the boundary theory.
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Bubble Popper

Holographic cosmology —
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Figure: The Universe

Our best phenomenological model of cosmology indicates that our
present Universe has a positive vacuum energy and will asymptgfe
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de Sitter etc.

Figure: The Universe

Eternal inflation suggests our observable Universe was born from a
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Falsifiability

People who don't want to think about
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Falsifiability

People who don't want to think about unobservable quantities
have been accused of

irsa: 11060052 Page 7/172




Falsifiability

People who don't want to think about unobservable quantities
have been accused of constipation
| will try to avoid that
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Falsifiability

People who don’t want to think about unobservable quantities
have been accused of constipation ...
| will try to avoid that problem ...
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Figure: The Opposite Of Constipated
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Falsifiability

» No objection here to unobservable superstructure no matter
how baroque, so long as we keep track of what's observable as
an output.

et

» | don’t care how " conveniently observable” something is, so
long as it's observable.
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Falsifiability

» No objection here to unobservable superstructure no matter
how baroque, so long as we keep track of what's observable as
an output.

» | don’'t care how " conveniently observable” something is, so
long as it's observable. E.g., the FRW /CFT framework gives
sharp in-principle observables that are very inconvenient to
observe.

» Won't even restrict ourselves to infinitely sharp observables
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framework that exists at the same level of precision that we
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Falsifiability

» No objection here to unobservable superstructure no matter
how baroque, so long as we keep track of what's observable as
an output.

» | don't care how " conveniently observable” something is, so
long as it's observable. E.g., the FRW /CFT framework gives
sharp in-principle observables that are very inconvenient to

observe.

» Won't even restrict ourselves to infinitely sharp observables —
but let's make sure to inquire whether our holographic
framework that exists at the same level of precision that we
expect our predictions for in-principle observable quantities.
For instance FRW /CFT is supposed to be infinitely sharp
whereas dS/CFT likely does not exist beyond a certain level of
precision... which may be precise enough for some purposes.
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Falsifiability

» To amplify the second point, by observable or falsifiable, we
can be referring to sectors of the landscape apparently disjoint
from our own. Because someday a census taker will be able to
look back from a terminal SUSY vacuum and see all of them.

» In fact, generating a list of metastable de Sitter solutions
represents one observable that's accessible in principle to a
terminal observer and should be calculable.

» May or may not have any significance for the " measure
problem”
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Falsifiability

» To amplify the second point, by observable or falsifiable, we
can be referring to sectors of the landscape apparently disjoint
from our own. Because someday a census taker will be able to
look back from a terminal SUSY vacuum and see all of them.

» In fact, generating a list of metastable de Sitter solutions
represents one observable that's accessible in principle to a
terminal observer and should be calculable.

» May or may not have any significance for the "measure
problem”
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Falsifiability

» A few concrete questions about de Sitter vacua you might

o =
2

» What is the spectrum of allowed cosmological constants?
» Gauge groups’
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Falsifiability

» A few concrete questions about de Sitter vacua you might
asK:
» What is the spectrum of allowed cosmological constants?
Gauge groups? Matter content? Potentials?
For a given cosmological constant, what is the highrest

possible mass of the lightest state that is not a collection of
gravitons?
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Falsifiability

» A few concrete questions about de Sitter vacua you might
ask:

» What is the spectrum of allowed cosmological constants?

» Gauge groups’ Matter content? Potentials?

» For a given cosmological constant, what is the highrest
possible mass of the lightest state that is not a collection of
gravitons? (May be fuzzy — more on that later.)

» For a given gauge group, what is the highrest possible mass of
the lightest charged state?
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» A few concrete questions about de Sitter vacua you might
ask:

» What is the spectrum of allowed cosmological constants?

» Gauge groups?’ Matter content? Potentials?

» For a given cosmological constant, what is the highrest
possible mass of the lightest state that is not a collection of
gravitons? (May be fuzzy — more on that later.)

» For a given gauge group, what is the highrest possible mass of
the lightest charged state? (NOT fuzzy.)
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Falsifiability

» A few concrete questions about de Sitter vacua you might
ask:

» What is the spectrum of allowed cosmological constants?

» Gauge groups? Matter content? Potentials?

» For a given cosmological constant, what is the highrest
possible mass of the lightest state that is not a collection of
gravitons? (May be fuzzy — more on that later.)

» For a given gauge group, what is the highrest possible mass of
the lightest charged state? (NOT fuzzy.)

» For a given cosmological constant, what is the lowest possible
mass of a spin-3/2 state?

» What are the possible dimensionalities of dS solutions? Can we
ever have D >47

» All these questions have AdS analogs.

» What does it mean to solve the dS bootstrap?
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BTW

If | say your theory is unfasifiable
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BTW

If | say your theory is unfasifiable — don’t take it personally —

Figure: Don't cry!
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BTW

Just let me know if | hurt your feelings and | will make it up to you.
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BTW

Just let me know if | hurt your feelings and | will make it up to you.

Figure: make-up gift
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CFT FAQ

Not everyone knows what a CFT is.
A CFT is an object defined by a set of local operators O;(z) and
an operator product expansion.

Oi(z1) - Oj(z2) = Y f*(21,22)Ou(22) .
k

including the identity Qg = 1.

These local operators define a set of expectation values such that
the OPE is satisfied inside the expectation value.

(O;,(z1)O;,(22) - (other operators)) = Z fi ;:,f(zl. z3) (Oj(z3) - (other
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CFT FAQ

This product is taken to be associative, and the expansion is
convergent, for z; sufficiently close to z;.

One of these operators is taken to be the stress tensor T .

Furthermore the theory is taken to be defined on an arbitrary”
manifold M with an arbitrary * background geometry g
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CFT FAQ

Finally the stress tensor is given by the variation of the theory with
resepect to gup:

-

0
<Tab(z) : (operators)> — = ((operators))
ab

For a theory depending only on the conformal structure, and not
on the local scale, the stress tensor must be traceless: 7,7 = 0.

In particular, our expectation values depend only on the intrinsic
geometry and topology and not on the coordinate system.

The invariance under infinitesimal coordinate transformations is
equivalent to the condition that VT, = 0.

sauoosz | e invariance under coordinate transformations not connected i
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CFT derivation of a maximum mass gap in gravity

In practice, the CFT is still hard to use, for two rea

N
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In practice, the CFT is still hard to use, for two reasons:

First, there is no " natural definition” of the "mass gap” in finite
solume — only in
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CFT derivation of a maximum mass gap in gravity

In practice, the CFT is still hard to use, for two reasons:

un

J"

First, there is no " natural definition” of the "mass gap” in finite
volume — only in infinite volume.

So, at finte AdS radius, there's no canonical way to read off the
mass gap from the spectrum of the corresponding CFT.
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In practice, the CFT is still hard to use, for two reasons:

First, there is no " natural definition” of the "ma
volume — only in infinite volume.
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So, at finte AdS radius, there’s no canonical way to read off the

mass gap from the spectrum of the corresponding CFT.
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CFT derivation of a maximum mass gap in gravity

In practice, the CFT is still hard to use, for two reasons:

First, there is no " natural definition” of the "mass gap” in finite
volume — only in infinite volume.

So, at finte AdS radius, there's no canonical way to read off the
mass gap from the spectrum of the corresponding CFT.

Second. we don't know much about conformal field theories in
general!
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First, there is no " natural definition” of the "mass gap” in finite
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CFT derivation of a maximum mass gap in gravity

In practice, the CFT is still hard to use, for two reasons:

First, there is no " natural definition” of the "mass gap” in finite
volume — only in infinite volume.

So, at finte AdS radius, there's no canonical way to read off the
mass gap from the spectrum of the corresponding CFT.

Second, we don’'t know much about conformal field theories in
general!

That is, we know a great deal about special classes of CFT
—(SUSY, holomorphically factorized, integrable,- - - )
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CFT derivation of a maximum mass gap in gravity

In practice, the CFT is still hard to use, for two reasons:

First, there is no " natural definition” of the "mass gap” in finite
volume — only in infinite volume.

So, at finte AdS radius, there’s no canonical way to read off the
mass gap from the spectrum of the corresponding CFT.

Second, we don't know much about conformal field theories in
general!

That is, we know a great deal about special classes of CFT
—(SUSY, holomorphically factorized, integrable,- - - ) — but not
characteristics of the entire landscape of CFT.
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AdS;3/CFT,

Both of these difficulties are easier to deal with in two dimensiona
CFT. So we will try to learn the maximum mass gap for a theory
of quantum gravity with A < 0 in three dimensions.
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AdS,/CFT,

Both of these difficulties are easier to deal with in two dimensiona
CFT. So we will try to learn the maximun gap for a theory
of quantum gravity with A < 0 in three dimension

M Mass

L

First, there is a clean definition of the "gap”
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AdS;/CFT,

Both of these difficulties are easier to deal with in two dimensional
CFT. So we will try to learn the maximum mass gap for a theory
of quantum gravity with A < 0 in three dimensions.

First, there is a clean definition of the "gap” — that is, a separation
between multi-graviton states, and massive bulk states.
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Ad53_ff'ffCFT2

Both of these difficulties are easier to deal with in two dimensional
CFT. So we will try to learn the maximum mass gap for a theory
of quantum gravity with A < 0 in three dimensions.

First, there is a clean definition of the "gap” — that is, a separation
between multi-graviton states, and massive bulk states.

Second, the full landscape of CFT is better understood in D = 2
than in any other dimension.
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AdS;/CFT,

Both of these difficulties are easier to deal with in two dimensional
CFT. So we will try to learn the maximum mass gap for a theory
of quantum gravity with A < 0 in three dimensions.

First, there is a clean definition of the "gap” — that is, a separation
between multi-graviton states, and massive bulk states.

Second, the full landscape of CFT is better understood in D = 2
than in any other dimension. (Although by no means completely
understood, at all.)
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AdS3/CF T,

In three dimensional gravity, there are NO graviton states that
- o
propagate in the bulk of spacetime.
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AdS3/CF T,

In three dimensional gravity, there are NO graviton states that
: g
propagate in the bulk of spacetime.

For A < 0, we have only boundary gravitons that circulate as free
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AdS3/CF T,

In three dimensional gravity, there are NO graviton states that
propagate in the bulk of spacetime.

For A < 0, we have only boundary gravitons that circulate as free

‘-

particles at spatial infinitiy.

Each angular momemtum mode with |n| > 2 can be occupied by
an arbitrary number of boundary gravitons, each with energy
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AdS3/CF T,

Note: there are no dipole excitations n = +1 of the vacuum:
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AdS3/CFT;

In three dimensional gravity, there are NO graviton states that
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AdS3/CF T,

Note: there are no dipole excitations n = +1 of the vacuum:
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AdS3/CF T,

Note: there are no dipole excitations n = +1 of the vacuum: those
correspond to boosting the vacuum, and are pure gauge. Adding
a dipole boundary graviton to an excited state is just boosting it to
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AdS3/CF T,

Note: there are no dipole excitations n = £1 of the vacuum: those
correspond to boosting the vacuum, and are pure gauge. Adding

a dipole boundary graviton to an excited state is just boosting it to

a higher state of motion.
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AdS3/CF T,

Note: there are no dipole excitations n = £1 of the vacuum: those
correspond to "boosting” the vacuum, and are pure gauge. Adding
a dipole boundary graviton to an excited state is just boosting it to

a higher state of motion.

In terms of the CF T, the states with boundary gravitons excited,
or boosted from the rest frame, are descendant states. [ he states

at rest, and with no boundary gravitons excited, are primary states.
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AdS3/CFT;

Note: there are no dipole excitations n = *1 of the vacuum: those
correspond to "boosting” the vacuum, and are pure gauge. Adding
a dipole boundary graviton to an excited state is just boosting it to
a higher state of motion.

In terms of the CFT5, the states with boundary gravitons excited,
or boosted from the rest frame, are descendant states. [ he states
at rest, and with no boundary gravitons excited, are primary states.

£ 3

,L_1: < energy — raising boost
E sl >
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AdS3/CF T,

Note: there are no dipole excitations n = £1 of the vacuum: those
correspond to "boosting” the vacuum, and are pure gauge. Adding
a dipole boundary graviton to an excited state is just boosting it to

a higher state of motion.

In terms of the CFT5, the states with boundary gravitons excited,
or boosted from the rest frame, are descendant states. T he states
at rest, and with no boundary gravitons excited, are primary states.

& energy — raising boost

L_l. L_l .
L pL_p,n>2: <& boundary graviton creation

[Witten, 2007]
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AdS3/CFT;

Note: there are no dipole excitations n = *1 of the vacuum: those
correspond to "boosting” the vacuum, and are pure gauge. Adding
a dipole boundary graviton to an excited state is just boosting it to

a higher state of motion.

In terms of the CF T, the states with boundary gravitons excited,
or boosted from the rest frame, are descendant states. T he states
at rest, and with no boundary gravitons excited, are primary states.

L

1,L_1: < energy — raising boost
L L p,n>2: <& boundary graviton creation

[Witten, 2007]
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AdS;/CFT

The space of CFT in two dimensions is relativelv well-understood.
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AdS3/CF T,

The space of CFT in two dimensions is relatively well-understood.
In certain special classes of CFT, a bound on the gap is actually
known! [Hohn, Witten]
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AdS3/CF T,

The space of CFT in two dimensions is relatively well-understood.
In certain special classes of CFT, a bound on the gap is actually

known! [H6hn, Witten]

When the Hilbert space completely factorizes as a product of left-
and right-moving states, then it is possible to prove the following
bound:

m
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AdS3/CF T,

The space of CFT in two dimensions is relatively well-understood.
In certain special classes of CFT, a bound on the gap is actually
known! [H6hn, Witten]

When the Hilbert space completely factorizes as a product of left-

and right-moving states, then it is possible to prove the following
bound:

C

-t
h < o2 +1
. Z
E e
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Furthermore, this is the best possible bound for holomorphically
factosioed CET > P seeanily oy

The "extremal CFT”

Page 61/172




AdS3/CF T,

This is great, BUT
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AdS3/CF T,

This is great, BUT it is ON LY TRU E for
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AdS3/CF T,

This is gre BUT i QNLY TRUE for

holomorphically factorized

The generic 2D CFT is VERY FAR from holomorphically

~torized!
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AdS3/CF T,

This is great, BU | itis ONLY T RUE for

holomorphically factorized CFT!

The generic 2D CFT is VERY FAR from holomorphically
factorized!

Z(7,T)#ZricHT(T) - ZLEFT(T)
in general!
We would like to extract the underlying principle and generalize

the bound to the non-factorized
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Modular Invariance

The underlying principle of Witten's proof is

6666666666




Modular Invariance

The underlying principle of Witten's proof is modular invariance.

If we drop the assumption of modular invariance, then the
Witten-Hohn bound is no longer true! A CFT that is NOT
modular invariant displays pathologies in general:

» non-quantization of angular momentum,
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Modular Invariance

The underlying principle of Witten's proof is modular invariance.

If we drop the assumption of modular invariance, then the
Witten-Hohn bound is no longer true! A CFT that is NOT
modular invariant displays pathologies in general:

» non-quantization of angular momentum,

» gravity without black holes,

» clectromagnetism without charged states,
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Modular Invariance

The underlying principle of Witten's proof is modular invariance.

If we drop the assumption of modular invariance, then the
Witten-Hohn bound is no longer true! A CFT that is NOT

modular invariant displays pathologies in general:
» non-quantization of angular momentum,
» gravity without black holes,
» clectromagnetism without charged states,

» moduli without massless fields,
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Modular Invariance

The underlying principle of Witten's proof is modular invariance.

If we drop the assumption of modular invariance, then the
Witten-Hohn bound is no longer true! A CFT that is NOT
modular invariant displays pathologies in general:

» non-quantization of angular momentum,

» gravity without black holes,

» eclectromagnetism without charged states,

o ” moduli without massless fields,
L

» Etc.!
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Modular Invariance

The underlying principle of Witten's proof is modular invariance.

If we drop the assumption of modular invariance, then the
Witten-Hohn bound is no longer true! A CFT that is NOT
modular invariant displays pathologies in general:

g

>

non-quantization of angular momentum,
gravity without black holes,
electromagnetism without charged states,

moduli without massless fields,

Etc.!
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Modular Invariance

The underlying principle of Witten's proof is modular invariance.

If we drop the assumption of modular invariance, then the
Witten-Hohn bound is no longer true! A CFT that is NOT
modular invariant displays pathologies in general:

» non-quantization of angular momentum,

» gravity without black holes,

» eclectromagnetism without charged states,

» moduli without massless fields,

» Etc.!
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Modular Invariance

Modular invariance imposes an infinite number of equations on the
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Modular Invariance

Here

where
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Modular Invariance

Modular invariance imposes an infinite number of equations on the

partition function:

e

B |
( 33z ) Z(B) ‘ =0, for p odd .
Here
- = i3
rF — —T — I

where 3 is the inverse temparature.

These identities are derived by expanding the equation
20 —Zt )

J
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Modular Invariance

D

Modular invariance imposes an infinite number of equations on the

partition function:

( 303 )pZ(.jf) =3 for p odd .

Here

s
|
il

2

—

i

where 3 is the inverse temparature.

These identities are derived by expanding the equation
Z(B) = 2(4_*;5") around the fixed point 5 = 27
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Modular Invariance

Modular invariance imposes an infinite number of equations on the
partition function:

( 5o; )pz(,j) = for p odd .

Here

i

where 3 is the inverse temparature.

These identities are derived by expanding the equation

i

Z(B) = Z(75-) around the fixed point 3 = 27, which maps to
itself under the S-transformation.
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Modular Invariance

Modular invariance imposes an infinite number of equations on the
partition function:

( 505 )" z(8)

—0 for p odd .

A=2x

Here

i3
2T

[ ——

where 3 is the inverse temparature.

These identities are derived by expanding the equation
Z(B) = Z(*5-) around the fixed point 3 = 27, which maps to
itself under the S-transformation. We call this the

- 1100002 ll€A1UM—temperature expansion
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Modular Invariance

Modular invariance imposes an infinite number of equations on the
partition function:

( 505 )pZ(j)

= for p odd .

Here
i3

r=—F=—
27

where 3 is the inverse temparature.

These identities are derived by expanding the equation
Z(B) = Z("f) around the fixed point 3 = 27, which maps to
itself under the S-transformation. We call this the

« uosere Medium—-temperature expansion of the equation for modular....,

invariance




Modular Invariance

The
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Modular Invariance

The first order condition of moular invariance at medium

irsa: 11060052 Page 81/172




Modular Invariance

The first order condition of moular invariance at mediu
temperature is that the average energy is exactly equal to
zero when (3 =
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Modular Invariance

The first order condition of moular invariance

D
Y
-t
3
(1
-
-
o

temperature is that the average energy is exactly equal to

M
1
o

More ¢

erally, at higher odd order p, the condition for modular
invariance is
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Modular Invariance

The first order condition of moular invariance at medium
temperature is that the average energy is exactly equal to
zero when [ =27

B —.

M

More generally, at higher odd order p, the condition for modular

invariance is

where f,(E) is a polynomial defined by

fo(E)
p\& )
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Modular Invariance

The first order condition of moular invariance at medium
temperature is that the average energy is exactly equal to

zero when 8 =2w
E | ==

More generally, at higher odd order p, the condition for modular

invariance Is

fo(E) =0,

where f,(E) is a polynomial defined by

fo(E) =(—1)° -exp( +2nE) - ( P9 )*”
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Modular Invariance

The first two odd polynomialsare
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‘ Modular Invariance

1 he first twc are :

™
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Modular Invariance
The rrst two odd polvnomials are

F1(E) = 2wE . f3(E) = (2xE)} — 3 (2wE)? + (2wE
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Modular Invariance
1d poivnomiails are :

Using these polynomials , we will show that the first-

irsa: 11060052 Page 89/172




Modular Invariance
The first two odd polvnomials are :

2

f+(E) = 2=xE . )= ['ZTTE)S — 3 (2rE)” +(27E)

Using these polynomials , we will show that the first- and third- order
equations for
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| | Modular Invariance
The first two odd polvnomials are :

f1(E) = 27E . f3(E) = (2nE)® — 3 (2wE)

Using these polynomials , we will show that the first- and third- ordey

------

equations for modular invariance cannot be satisfied

irsa: 11060052
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= Modu ar Invariance
The first two odd polynomials are :

F1(E) = 2nE f3(E) = (2nE)® — 3 (2xE)* + (2xE)

Using these polynomials , we will show that the first- and third- ordey
equations for modular invariance cannot be satisfied simultaneously
if E; is too high compared to |Ep|.
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| ~ Modular Invariance
The first two odd polynomials are :

f1(E) = 27E . f3(E) = (2nE)® — 3 (27E)? + (27E)
Using these polynomials , we will show that the first- and third- order

equations for modular invariance cannot be satisfied simultaneously
if E; is too high compared to |Ep|. Defining

Z(vac) — exp (
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; ~ Modular Invariance
The first two odd polynomials are :

Using these polynomials , we will show that the first- and third- order
equations for modular invariance cannot be satisfied simultaneously |
if E; is too high compared to |Eg|. Defining

2

7 (vac) — exp( — BE,) Zie) — Z

n—1
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| ~ Modular Invariance
The first two odd polynomials are :

f1(E) = 2xE, f3(E) = (2nE)* — 3 (2nE)* + (2E)

Using these polynomials , we will show that the first- and third- ordet
equations for modular invariance cannot be satisfied simultaneously |
if E; is too high compared to |Ey|. Defining

Z(*¢) = exp( — BE,) 263 — Zexp( — BE.) ,

n—=1

we can write

Lo bgie S (05
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: Modular Invariance
The first two odd polynomials are :

£.(E) = 2xE, f3(E) = (2xE)* — 3 (2xE)* + (2xE)

Using these polynomials , we will show that the first- and third- ordet
equations for modular invariance cannot be satisfied simultaneously |
if E; is too high compared to |Ep|. Defining

7Y —ounf BE,) s — Zexp( — BE.) |,
n=1
we can write
. 3 > (ex) '| —— a_ > 7(vac) |
( Baj ) Z | B=27 ( 361 ) Z 1:5_:27'.'
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Modular Invariance

Using these p
equations for
E; is too higl

Z{ vac)

we can write

(B9 )'Z¢=) | =—(pag)°z0=) |

|B=2m | B=2x
( 'jt}% )LZ{EXJ = = -( :JL]-; )‘Z{.VQC} |

] \ s i -
o — | | —
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Modular Invariance
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| 385 ) * 7(ex) |

95 ) 2= |

Modular Invariance




BOs )E'Z!_ﬁx; |

Modular Invariance

B304 ):Z[ﬂ:} .

M




Modular Invariance

e Y 1 f3(Em) exp
(8o )*2(=

M
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Modular Invariance

. v Y 1 F3(Em) exp( — 2wER)
( 303 ) Z\ex) S::lrl{En) ‘—‘}":[3‘( =

Im

irsa: 11060052 Page 102/172




Modular Invariance

= -f(Em) exp(—27Em)

Ml m

Y"_"‘k_

> w1 (Ep) exp(—27E,)

L ap—1

M
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Modular Invariance

> - . kiE,) -R(E.) exp(—2xE,)
Y =, fi(En) exp(—27E,)
Now subtract En) from sides
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Modular Invariance

T""fh

T
m
3

L
]
3
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Modular Invariance

m

IT— l
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‘T":\_

L am=—1 31

R

Modular Invariance

-htEkn) expl—2xk,)

'\‘"‘"l

Lumr=1

irsa: 11060052

L(E,) exp(—27E,)

'

m
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Mx

3
(|
[l
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_Fh

Modular Invariance

T—; > ::.': : F d

T"l

__.nzl

m) fi(Em) exp (—27E,,) — hi(E

fi(E,) exp(—2m

m
My
gh
Y
g
|
N
-
M
-
|
-
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Modular Invariance

|
| S

b4

T fL(E,) exp(—27E,) =0

1—

===
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Now bring /( Ep)

irsa: 11060052

.
hi(Em) A(Em)exp(—27Em) Z

Modular Invariance

F\p

inside the sum —
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Modular Invariance

m

Y fi(E,) exp (—27E,)

=2

Z B1(Em fl(Em)pr(—jfTEm} — 1

h(Ep)exp(—27E,) =0

1
[]8
m
)
M
3
"
|
N
=
m
3
|
[]8
m

— change dummy indices —
: Page 111/172
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Modular Invariance

Z hi(En) A(Em)exp(—27E,,) Z n)exp (—2wE,)

(

(Eg) fi( Ey) exp (—27E,,)

I
[™]¢
m
)
M
3
_:,3:
i
|
m
3
|
[™]8
Im

— and group
Page 112/172
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Modular Invariance

m=1
= Z R1(Em) fi(Em) exp(—27Em) — Z
m=1 S
= 5" ( Bu(En) — Ba(Eo) ) Ai(Em) exp (—27En) =0
m—1
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Modular Invariance

1(Eo) ) Fi(Em)exp (—27Em)

0

Ml

3
[l
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Modular Invariance

[M]¢
m
|
|

3
'I_L
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Modular Invariance

ot
——
Hi
|

h1(Eo) ) fi(Em)exp(—27En) =0

3
'IL

We will derive a2 universal inequalitvy from this identit
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Modular Invariance

Z ( Em) — E ) i(Em)exp(—27En) =0 |
m—1
The ratio h;1(E) is given by i;(E) =
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Modular Invariance

) fi(Em)exp(—27En) =0

1 F
Y ( bi(Em) — bi(E
m=—1

E) is given by I(E) =(2nE) —3(27E) + 1

| -

The ratio /
Fixing

Page 118/172
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Modular Invariance

! XC

! = f = - |
Z ( hi(Exn) — Ri(Eg ) fi(Em)exp(—27nEn) =0

' m=1

|

The ratio h31(E) is given by h1(E) =(27E) — 3 (27E) + 1.

Fixing Eg, the roots of the equation 531(E
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Modular Invariance

i ( B1(Em) — Bi(Eo ) fi(Em)exp(—27En) =0

‘ m=1

|

The ratio 3;1(E) is given by h1(E) = 27E) —3(27E) + 1.
Fixing Eg, the roots of the equation 51(E) = h1(Eg) are E =
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Modular Invariance

| x |
| L (F .- (o |
| Z ( hi1(Em) — Ri(Eg ) fi(Em)exp(—27En) =0 |
| m=—1 |
!
The ratio /;1(E) is given by I1(E) =(27wE) — 3 (27E) + 1.

Fixing Eg, the roots of the equation 51(E) = h1(Ey) are E = Eg,

and £E = E.. with
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Modular Invariance

2

Z ( hi(Em) — Bi(Eo) ) fi(Em)exp(—27Eyn) =0

m—1

The ratio 3;(E) is given by /51(E) :[:.‘.’E}: —3(27wE) + 1.

Fixing Eg, the roots of the equation h(E) = h1(Ey) are E = Ep,
and £ = E., with

E, = — Ep .

2T :

Note that E. is positive: we are assuming unitarity
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Modular Invariance

0

Z ( hi(Em) — Ri(Eo) ) fi(Em) exp(—27En) =

m=1

The ratio i1(E) is given by 1(E) :[.'_"':"E}_ 3(2nE) + 1.

Fixing Eg, the roots of the equation hi(E) = h1(Ey) are E = Ep,

and £E = E. . with

Note that £. is positive: we are assuming unitarity so Eg < 0

If a an energy E is greater than
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Modular Invariance

M8

( B1(Em) — k(o) ) fi(Em) exp (—27Em) = 0
A

3
|

The ratio i1(E) is given by I1(E) :[_f.‘rrE}: — 3(2nwE) + 1.
Fixing Eg, the roots of the equation h1(E) = h1(Ey) are E = Ep,
and £E = E., with

3
=iy
Note that E. is positive: we are assuming unitarity so Eg < 0.
If a an energy E is greater than E., then i1(E) — hi(Ep) and
A(E)
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Modular Invariance

2

> ( 51(Em) — b1(Eo) ) fi(Em)exp (—27Em) =0

m=1

The ratio h1(E) is given by 51(E) :(ErrEf}: —3(2wE) + 1.
Fixing Ep, the roots of the equation h(E) = h1(Ey) are E = Ep,
and £ = E., with

Note that E£. is positive: we are assuming unitarity so Eg < 0.
If a an energy E is greater than E., then k1(E) — Bi(Ep) and
fi(E) =2wE are both positive:

r_l[ E] - ( /31{. E :| = Page 125/172




Modular Invariance

I
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Modular Invariance

[M]8

(IE¢ETJ—-hj£iE) f,(E,,) exp (—27E,,)

|
-

3
1L

A(E) , ( Bi(E)— k(o) ) >0  for  E>Ey.

If every excited level E,. n > lis greater than E., then the
left-hand side of our medium-temperature modular identity is
strictly positive. Therefore some level E,. n> 1 must be
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Modular Invariance

3
J

M

Im

M

31\ & J rfl{EmJ*ﬁ’Xp(_

for
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Universal inequality

A b

This is a univeral inequality for unitary. mod

CFT with discrete spectrum
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Universal inequality

Written in terms of operator dimensions A = E — Eg, we have
A1 <
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Universal inequality

Written in terms of operator dimensions A = E — By, we have

- {:: —_— —
3 Ctof
e
2T 12
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Universal inequality
Written in terms of operator dimensions A = E — Ey, we have

By < N, .

3 Lo
A, = —+ = =
2T 12
J— CT_t__JI
= 0477465 + — .
12

For low central charge
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For

Ctot —

Universal inequality
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Universal inequality

|

. = 3 Ctot |
M=ot |
A <A, . }

|

For ciot > 24 — 28 ~ 18.2704, the bound is uninformative,
since A, > 2 in this range. ( There is always a stress tensor in a
CF Tanyway, with A = 2).

But we can adapt
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Universal inequality for primary operators

mials are :

!

The first

Page 135/172
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Universal inequality for primary operators

The first few polvnomials are :

1
'E — ZFE—;

irsa: 11060052
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Universal inequality for primary operators

The first few polynomials are :

M

|
|
M
|
M
-1
r"r.]
s
|
[\
p—
N
=
M
i
e
0| =~
|
)
)
o
e
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Universal inequality for primary operators

rrst few polvnomials are :
| - L - rJ'.. W L= b = -

M

M

m
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Universal inequality for primary operators

The first few polynomials are :

+--::|{E.| — 1
1
f«E) = 2xE — —.
A | 2
2 7

f20E) = (2ZnE)Y—2(2nE) + | = + 2nrp

3 9 2
fstE) = ExE —5(._:TE)

41 17
= 2 (8—'—61’20)(2;:E)(16+3r2[]
where the numerical constant ryg is defined as:
(i

rsa: 11060052 rj[-} —

)
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Universal inequality for primary operators

The first few polynomials are :

m;n_E] — 1
1
Tl E] — 2;T E — E .
- 7
f2lE) = (2ZrE)— 2(2wE) + | = + 2nrp
o
falE) = E)? E(QTE)z
4 17
+ (8—-—61’20)(2:7[:_)(16—1—3.@0)
where the numerical constant g is defined as:
| () 1 D0 w2 n? —
' i n(i) 16 é] sinh?(wn) g




The gravitational interpretation

So our universal inequality for primary operators is:

N, <
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Universal inequality for primary operators

Proceeding in parallel with our warm-up proof, we derive the
inequality
Ay < A, .

where A is defined as the largest root A of the cubic equation

A(A + E) — b3(£o) A(A + E) =

The function A_ is well-defined for all values of ¢¢. At large cGiot
it can be expanded as
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Universal inequality for primary operators

Proceeding in parallel with our warm-up proof, we derive the

inequality
Ay <A,
where A is defined as the largest root A of the cubic equation
,\ £ .
f3(A+ E) — b ,‘0) h(A+E)=0
b1(Eo)

The function A_ is well-defined for all values of ¢¢. At large Gt
it can be expanded as

Ctot - =
&___: {—2—00+O(Ct01} ) -
(12 — 7) + (137 — 12)exp (—27)

S = ~ 0.473695 + ( 10~7 ) .
’ 6r (1 —exp(—2m)) ot

=190 |t is also possible to prove that A is uniformly bounded abdve by




The gravitational interpretation

So our universal inequality for primary operators is:
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The gravitational interpretation

So our universal inequality for primary operators is:

L
A, < —

— K

0.473695 + o ( 10

.

)
-
i
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The gravitational interpretation

We have seen that there is a universal upper limit on the
energy to which a theory of quantum gravity and matter can

EVER be extended.

The bound can be proved rigorously with no use of
perturbation theory or semiclassical methods.

As A — 0 the bound is independent of the boundary condition,
and makes a universal statement about local bulk physics.

It is similar in spirit to the weak gravity conjecture.
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The gravitational interpretation

So we use the AdS3/CFT5 dictionary:

3L
Crot = G':js A=Lags M,

where M is the mass of a state in the bulk.
Using this translation, we obtain:
1 do
s 1 .
4Gy Ladgs
This inequality is universal for all theories of gravity and matter in
3 dimensions with negative cosmological constant. It is exact at

finite AdS radius, and approaches a finite limit when the AdS
o0 FAAIUS goes to infinity.
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The gravitational interpretation

» We have seen that there is a universal upper limit on the
energy to which a theory of quantum gravity and matter can
EVER be extended.

» The bound can be proved rigorously with no use of

perturbation theory or semiclassical methods.
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The gravitational interpretation

» We have seen that there is a universal upper limit on the
energy to which a theory of quantum gravity and matter can

EVER be extended.

» The bound can be proved rigorously with no use of
perturbation theory or semiclassical methods.

» As A — 0 the bound is independent of the boundary condition,
and makes a universal statement about local bulk physics.
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The gravitational interpretation

So we use the AdS3/CF T, dictionary:

3L
Crot = Gfs A=LagsM .

where M is the mass of a state in the bulk.
Using this translation, we obtain:
1 do
My< —— +——
4Gy Lads
This inequality is universal for all theories of gravity and matter in
3 dimensions with negative cosmological constant. It is exact at
finite AdS radius, and approaches a finite limit when the AdS
o0 FAAIUS gOes to infinity.
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The gravitational interpretation

Page 151/172
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The gravitational interpretation

» We have seen that there is a universal upper limit on the
energy to which a theory of quantum gravity and matter can
EVER be extended.

» The bound can be proved rigorously with no use of

perturbation theory or semiclassical methods.
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The gravitational interpretation

» We have seen that there is a universal upper limit on the
energy to which a theory of quantum gravity and matter can

EVER be extended.

» The bound can be proved rigorously with no use of
perturbation theory or semiclassical methods.

» As A — 0 the bound is independent of the boundary condition,
and makes a universal statement about local bulk physics.
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The gravitational interpretation

We have seen that there is a universal upper limit on the
energy to which a theory of quantum gravity and matter can

EVER be extended.

The bound can be proved rigorously with no use of
perturbation theory or semiclassical methods.

As A — 0 the bound is independent of the boundary condition,
and makes a universal statement about local bulk physics.

It is similar in spirit to the weak gravity conjecture.
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The gravitational interpretation

We have seen that there is a universal upper limit on the
energy to which a theory of quantum gravity and matter can

EVER be extended.

The bound can be proved rigorously with no use of
perturbation theory or semiclassical methods.

As A — 0 the bound is independent of the boundary condition,
and makes a universal statement about local bulk physics.

It is similar in spirit to the weak gravity conjecture.

Very easy — only uses elementary methods.

Page 155/172




rsa: 11060052

The gravitational interpretation

We have seen that there is a universal upper limit on the
energy to which a theory of quantum gravity and matter can

EVER be extended.

The bound can be proved rigorously with no use of
perturbation theory or semiclassical methods.

As A — 0 the bound is independent of the boundary condition,
and makes a universal statement about local bulk physics.

It is similar in spirit to the weak gravity conjecture.
Very easy — only uses elementary methods.

Similar constraints can be obtained in higher dimesions using
associativity of the four-point function.
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The gravitational interpretation

We have seen that there is a universal upper limit on the

energy to which a theory of quantum gravity and matter can
EVER be extended.

The bound can be proved rigorously with no use of
perturbation theory or semiclassical methods.

As A — 0 the bound is independent of the boundary condition,
and makes a universal statement about local bulk physics.

It is similar in spirit to the weak gravity conjecture.
Very easy — only uses elementary methods.

Similar constraints can be obtained in higher dimesions using
associativity of the four-point function. (Rattazzi, Rychkov,

Tonni, Vichi, Poland, Simons-Duffin, ---)
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The gravitational interpretation

]
-

» What would it mean to solve the "de Sitter bootstrap”?
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The gravitational interpretation

» What would it mean to solve the "de Sitter bootstrap™?
» Falsifiable?

» Good example
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The gravitational interpretation

» What would it mean to solve the "de Sitter bootstrap”?
» Falsifiable?

» Good example — Freivogel-Kleban: false!

irsa: 11060052 Page 160/172




irsa: 11060052

>

The gravitational interpretation

What would it mean to solve the "de Sitter bootstrap” ?
Falsifiable?

Good example — Freivogel-Kleban: false!
FRW/CFT and dS/CFT — no implementation of unitarity!
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The gravitational interpretation

» What would it mean to solve the "de Sitter bootstrap™?
» Falsifiable?

» Good example — Freivogel-Kleban: false!
» FRW/CFT and dS/CFT — no implementation of unitarity!

ik
3

irsa: 11060052
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The gravitational interpretation

What would it mean to solve the "de Sitter bootstrap” ?
Falsifiable?

Good example — Freivogel-Kleban: false!

FRW/CFT and dS/CFT — no implementation of unitarity!

dS/CFT only exists as asymptotic expansion in invers
charge at most.

central

D
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The gravitational interpretation

What would it mean to solve the "de Sitter bootstrap™?
Falsifiable?
Good example — Freivogel-Kleban: false!

FRW/CFT and dS/CFT — no implementation of unitarity!

dS/CFT only exists as asymptotic expansion in inverse central
charge at most.

Polchinski, Penedones, Heemskerk and Sully
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The gravitational interpretation

What would it mean to solve the "de Sitter bootstrap™?
Falsifiable?
Good example — Freivogel-Kleban: false!

FRW/CFT and dS/CFT — no implementation of unitarity!

dS/CFT only exists as asymptotic expansion in inverse central
charge at most.

Polchinski, Penedones, Heemskerk and Sully — asymptotic
expansion not sufficient to derive consistency conditions
beyond effective field theory.
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The gravitational interpretation

What would it mean to solve the "de Sitter bootstrap™?
Falsifiable?
Good example — Freivogel-Kleban: false!

FRW/CFT and dS/CFT — no implementation of unitarity!

dS/CFT only exists as asymptotic expansion in inverse central
charge at most.

Polchinski, Penedones, Heemskerk and Sully — asymptotic
expansion not sufficient to derive consistency conditions
beyond effective field theory.

Seems dS/CFT can never do more than describe effective field
theory in the bulk.
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