Title: Relativistic Magnetohydrodynamic Bondi--Hoyle Accretion

Date: Jun 24, 2011 09:40 AM

URL: http://pirsa.org/11060041

Abstract: I present a relativistic study of axisymmetric magnetohydrodynamic Bondi--Hoyle accretion onto a moving Kerr black hole. The equations of general relativistic magnetohydrodynamics are solved using high resolution shock capturing methods, involving the use of linearised Riemann solvers. In this study I use the ideal MHD limit, which assumes no viscosity and infinite conductivity. The fluid flow is completely specified by the adiabatic constant Gamma, the asymptotic speed of sound c_s^infty , and the plasma beta parameter $beta_P$. In particular I restrict the investigation to asymptotically supersonic flows where c_rms^infty . To determine the stability of the flow I measure the accretion rates of the energy, and mass. The models presented in this study exhibit a matter density depletion in the downstream region of the black hole which tends to vacuum in convergence tests. This is a feature due to the presence of the magnetic field, more specifically the magnetic pressure, which is not seen in purely hydrodynamic studies. The models investigated present a tendency towards a steady state, which is in agreement with previous studies performed by Font and Iban'ez (1998) using a purely hydrodynamic model.

Relativistic Bondi–Hoyle Accretion Black hole accretor

GRMHD -Bondi–Hoyle Accretion

A. J. Penner

troduction

Relativistic Bondii-Hoyte Accretion

Geometry & Lumerics

Txed Spacetime Jackground

The Matter Model Equations of Motion

esults

Accretion Profiles Accretion Rates Convergence

roblems

ummary

- Michel Stationary black hole accretor (1972)
- Petrich axisymmetric accretion, perfect fluid models (1988,1989)
- Font Axisymmetric and Nonaxisymmetric accretion perfect fluid models (1998, 1999)
- Blakely Non-symmetric perfect fluid (2009)
- Farris BH accretion in binary black hole mergers (2009)
- Dönmez BH accretion to explain QPO's (2010)
- Very few relativistic treatments, none involve magnetic fields.

- - - -

공기 이 문 이 이

Relativistic Bondi–Hoyle Accretion Black hole accretor

GRMHD -Bondi–Hoyle Accretion

A. J. Penner

troduction

Relativistic Bondii-Hoyle Accretion

eometry & lumerics

Txed Spacetim Sackground

The Matter Model culations of Motion

Numerical Routin

esults

Accretion Profiles Accretion Rates Convergence

roblems

ummary

- Michel Stationary black hole accretor (1972)
- Petrich axisymmetric accretion, perfect fluid models (1988,1989)
- Font Axisymmetric and Nonaxisymmetric accretion perfect fluid models (1998, 1999)
- Blakely Non-symmetric perfect fluid (2009)
- Farris BH accretion in binary black hole mergers (2009)
- Dönmez BH accretion to explain QPO's (2010)
- Very few relativistic treatments, none involve magnetic fields.

Black Hole Spacetime Backgrounds

GRMHD -Bondi–Hoyle Accretion

A. J. Penner

troduction

Relativistic Sondi-Hoyle Accretion

Geometry & Lumerics

Fixed Spacetime Background

The Matter Model Equations of Motion Numerical Routine

esults

Accretion Profiles Accretion Rates Convergence

roblems

ummary

We make restrictive assumptions

 Mass and angular momentum accretion rates are insufficient to modify the spacetime considerably

Leaves us with a fixed spacetime background satisfying Einstein's field equations

Two special cases with closed form solutions

- Axisymmetric Black Hole, Kerr solution, with parameters *M*, *a*
- Spherically Symmetric Black Hole,
- Schwarzschild solution, with parameters $M, a \rightarrow 0$

2 2 4

The Matter Model

GRMHD -Bondi-Hoyle Accretion

A. J. Penner

3

ntroduction

Relativistic Sondi-Hoyle Accretion

Geometry & lumerics

Fixed Spacetim Background

The Matter Model

Equations of Motion Numerical Routine

esults

Accretion Profiles Accretion Rates Convergence

roblems

ummary

 We assume the fluid background is an ideal fluid with no shear stress, heat flow, or viscosity.

•
$$P = (\Gamma - 1)\epsilon\rho_0$$

• Perfect conductor limit (infinite conductivity) $\rightarrow F^{\mu\nu} u_{\nu} = 0$

Ideal Magnetohydrodynamics

2 2 2 4 4

Equations of Motion

GRMHD -Bondi-Hoyle Accretion

A. J. Penner

3

troduction

Relativistic 3oncli–Hoyle Accretion

Geometry & lumerics

Fixed Spacetim Background

The Matter Model

Equations of Motion

lumerical Routine

esults

ocretion Profiles occretion Rates Convergence

roblems

ummary

- $\nabla_{\mu}J^{\mu} = 0$ Conservation of baryon density
- $\nabla_{\mu} T^{\mu\nu} = 0$ Conservation of total stress-energy
- ∇_{μ} (* $F^{\mu\nu}$) = 0 Maxwell equations

Use ADM variables to reduce these to a set of coupled partial differential equations

Pirsa: 11060041

Page 6/25

3 3 3 4 V

Numerical Routine

GRMHD -Bondi–Hoyle Accretion

A. J. Penner

troduction

Relativistic Bondi-Hoyle Accretion

Geometry & lumerics

Tixed Spacetim Background

The Matter Model

Equations of Motion

esuits

ocretion Profiles Accretion Rates Convergence

roblems

ummary

Valencia Formulation

$$\partial_t \mathbf{Q} + \partial_i \mathbf{F}^i(\mathbf{Q}) = \mathbf{S}(\mathbf{Q})$$

• Finite volume high-resolution shock-capturing techniques to discretize

 Captures shocks, integrates equations of motion over discontinuous data sets

- HLL flux approximation
- Second order Runge–Kutta time integration Hyperbolic divergence cleaning $\Rightarrow \nabla \cdot \mathbf{B} = 0$

3 5

Geometric Setup - Axisymmetry

Flow is fully specified by four asymptotic parameters:

- Speed of sound c[∞]_s
- Adiabatic Constant Γ
- Black hole velocity v_∞
- Plasma beta β_P^{∞}

3 3 4

	Magnetohydrodynamic Axisymmetric Accretion, Soft Fluid, Zero Spin
GRMHD- Bondi-Hoyle Accretion A. J. Penner Incoduction Relativistic Bondi-Hoyle Accretion Ceometry & Jumerics Fixed Spacetime Background The Matter Model Equations of Motion Numerical Routine Results Accretion Rates Convergence	\Im
Furmary Pirsa: 11060041	$O(\beta_P^{\infty}) = 2$ Page 9/25

-

100

連 き イ

Pressure Profiles a = 0

 $P_{\text{thermal}}(\mathbf{r},\theta)$

GRMHD -Bondi–Hoyle Accretion

A. J. Penner

3

troduction

Relativistic Sondi-Hoyle Accretion

eometry & lumerics

fixed Spacetim Jackground

The Matter Model Equations of Motion Immedical Politice

esults

Accretion Profiles Accretion Rates Convergence

roblems

ummary

The total pressure looks like one would expect in a hydrodynamic flow, t = 2500M

Pirsa: 11060041

 $P_{\text{magnetic}}(r, \theta)$

 $P_{\text{total}}(r,\theta)$ Page 18/25

思い たいうきく きょう

Pirsa: 11060041

Page 19/25

100

- -

log $\rho_0(t, r, \theta)$ for asymptotic velocity $v_{\infty} = 0.5$, $\Gamma = 4/3$,

Page 20/25

2 2 4

Results – Angular Sections

GRMHD -Bondi–Hoyle Accretion

A. J. Penner

37

ntroduction

Relativistic Sondi-Hoyle Accretion

Geometry & lumerics

fixed Spacetim Background

The Matter Model Equations of Motion

Numerical Routine

esuits

Accretion Profiles Accretion Rates Convergenice

roblems

ummary

Pirsa: 11060041

100

2 - -

Pirsa: 11060041

Page 22/25

100

Convergence of Ψ

GRMHD -Bondi–Hoyle Accretion

A. J. Penner

ST

ntroduction

Relativistic Sondi-Hoyle: Accretion

Geometry & lumerics

Fixed Spacetim Background

The Matter Model Equations of Motion

Numerical Routine

esults

Accretion Profiles Accretion Rates

Convergence

robiems

ummary

Convergence tests using the auxiliary function Ψ

Page 23/25

-

3 3

コントラ・トラー

Outstanding Issues

GRMHD -Bondi–Hoyle Accretion

A. J. Penner

37

troduction

Relativistic Sondi-Hoyle Accretion

Geometry & lumerics

Fixed Spacetim Background

The Matter Model Equations of Motion

esults

Accretion Profile Accretion Rates Convergence

roblems

ummary

- The debate over the best method to enforce $\nabla \cdot \mathbf{B} = 0$ constraint continues.
- Hyperbolic divergence cleaning introduces additional parameters.
- Real flows are not likely to be uniform, nor ideal fluids
- Electromagnetic accretion

· · · · · · · · ·

Summary

GRMHD -Bondi–Hoyle Accretion

A. J. Penner

S

troduction

Relativistic Sondi-Hoyle Accretion

Geometry & lumerics

Fixed Spacetim Background

The Matter Model Equations of Motion Jumerical Routine

esults

Accretion Profiles Accretion Rates Convergence

roblems

Summary

- The introduction of a magnetic field does not upset steady-state solution.
- The rotating axisymmetric black hole has an impact on the flow morphology.
- Presence of a depletion region near the black hole or the axis of symmetry.
- Another test case for code development.

. . .