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Increased dimensionality (Nordhaus et al. 2010) may be
enougn to get robust explosion.
sing some crucial microphysics which could

2. May be mis
naturally increase the heating rate?
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1. Increased dimensionality (Nordhaus et al. 2010) may be

enougn to get robust explasion.

2. May be missing some crucial microphysics which could
naturally increase the heating rate?
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Answer: ??
1. Increased dimensionality (Nordhaus et al. 2010) may be
enougn to get robust explosion.
2. May be missing some crucial microphysics which could
naturally increase the heating rate?
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* Formalism neutrino oscillations

* Neutrino heating in the postshock region

* Influence of collective neutrino oscillations on
shack revival + prospects of this mechanism




Neutrino Oscillations
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Neutrino Oscillations

« Matter Oscillations

Matter introduces extra potential in Hamiltonian due to forward
scattering of electrons and neutrinos, the MSW potential:

H'!IL.lT'-'l = j[’L \‘ =" *\-— )

* Collective Oscillations

High neutrino gensities in the core-collapse supernava environment
leads to appreciable neutrino-neutrino forward scattering
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interaction angle closes ~1/r?

differential neutrino flux ~1/r°



Neutrino Oscillations

* Hamiltonians give equations of motion of the system
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* Evolution is complicated due to non-linear coupling of
neutrino and antineutrino fields




Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail

Mode! s15 @ 250ms, r=150.3km = Mode! s15 @ 250ms, r=150.3km
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail

Mode! s15 @ 250ms, r=150.3km = Modet s15 @ 250ms, r=150.3km

Anu_e and \nu_\mu Spectra




Neutrino Evolution

* As an example of oscillations, here is @ movie showing the
evolution of the v spectra from the v-sphere out in radius

 Will describe simulations in more detail
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

 Will describe simulations in more detail
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Neutrino Evolution

* As an example of oscillations, here is @ movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail

Model s15 @ 250ms, r=284.6km Mode! s15 @ 250ms, r=Z284.6km
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Neutrino Evolution

* As an example of oscillations, here is @ movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail

Aal =1 E /& TEN e |y al =t 5 @& IEN e [y |
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

 Will describe simulations in mare detail
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Neutrino Evolution

» As an example of oscillations, here is @ movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail

Model s15 @ 250ms, r=347.5km _ Model s15 @ 250ms, r=347.5km
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail
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Model s15 @ 250ms, r=401.3km _ Mode! s15 @ 250ms, r=401.3km
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

 Will describe simulations in more detail
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Neutrino Evolution

* As an example of oscillations, here is @ movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail
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Neutrino Evolution

» As an example of oscillations, here is @ movie showing the
evolution of the v spectra from the v-sphere out in radius

» Will describe simulations in more detail

Model s15 @ 250ms, r=484.1km : Model s15 @ 250ms, r=484.1km
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

» Will describe simulations in more detail

A i

| =15 & TEN =507 \ c1E & I5Nme 5N ]
Mode!l s15 @ 250ms, r=502.2km _ Modet s15 @ 250ms, r=502.2km




Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

 Will describe simulations in more detail
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

» Will describe simulations in more detail

al =15 & IEN 07 0 el =t T TEN 07 0l
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Neutrino Evolution

» As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

» Will describe simulations in more detail
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

» Will describe simulations in more detail

del =15 @ 750 r=710 7km del <15 @ 750 r=710 7km
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Neutrino Evolution

* As an example of oscillations, here is @ movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail
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Neutrino Evolution

* As an example of oscillations, here is @ movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simu_lah’ons in more detail
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Theory of Neutrino Heating

* Neutrinos diffusing from

core have a net energy —_ \

deposition in the = g net heating
postshack region, the so
called gain region

i —
|

* The neutrino |
mechanism warks by f t— f
having sufficient | |
heating in the gain ' _ —
region to reenergize i .;Rddm:. kil
the shock

Ly
de/dt 1077 ergs g




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burrows, A. et al. 2006

* Use 11.2 Msun
progenitor from Woaosley
et al. 2002 and the Shen,
H. et al. 1998 EQOS

* Extract neutrino spectra
at v-sphere and run
through dynamical
neutrino evolution taking
into account collective
oscillations




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burrows, A. et al. 2006

* Qscillation radii are large )
due to high neutrino
luminosities and large
neutrinosphere radii

&

* Even though oscillations
being inside shock, not
camplete until well |
outside. = _ e

Radius [km|

* Significant heating will
accur only if ascillations ) 005 01 0I5 02 025 03 035
accur befare gain radius = Lhounee |




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burrows, A. et al. 2006

* Use 11.2 Msun
progenitor from Woasley
et al. 2002 and the Shen,
H. et al. 1998 EQS

* Extract neutrino spectra
at v-sphere and run
through dynamical
neutrino evolution taking
into account collective
oscillations













The Role of Collective Neutrino

Flavor Oscillations in Core-Collapse

Supernova Shock Rexval
arXiv:1106:1167, submitted toPK
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Exploratory simulations with VULCAN/ 2D

Livne, E. 1993 Burrows, A. et al. 2006

o QOscillation radiiarelarge ™[]
due to high neutrino '
luminosities and large
neutrinosphere radii

* Even though oscillations
being inside shock, not
complete until well
outside.

Radius [km]

* Significant heating will
accur only if oscillations
occur before gain radius




Exploratory simulations with VULCAN/2D

Livne, E. 1993, Burrows, A. et al. 2006

* Use 11.2 Msun
progenitar from Woosley ok ]
etal. 2002 and the Shen, __ =——
H. et al. 1998 EQS _ W HShenEOS

S 100 =

+ Extractneutrinospectra =z
at v-sphere and run g 300r T, Y
through dynamical = b/ : G
neutrino evolution taking B
into account collective 0of- /=
oscillations '




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burrows, A. et al. 2006

* QOscillationradiiarelarge "]
due to high neutrino = | ' i ]
luminasities and large T = o
neutrinosphere radii e ‘*w 20§
;.‘J_'II:_I
* Eventhoughoscillations =
being inside shack, not S 3001
complete until well = &
outside. B _ }
* Significant heating will £ =
accur anly if ascillations 0005 01 0I5 02 i

occur before gain radius




Theory of Neutrino Heating

* Neutrinos diffusing from
core have a net energy

deposition in the i | et heating
postshock region, the so f’{
called gain region

———

* The neutrino
mechanism works by
having sufficient |
heating in the gain ' _ —
region to reenergize = Il}gddm:l:mi_ :
the shock

(ne2£nuhng
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Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

 Will describe simulations in more detail

Mode! s15 @ 250ms, r=150.3km o Mode! s15 @ 250ms, r=150.3km




Theory of Neutrino Heating

* Neutrinos diffusing from

corehaveanetenergy  — \

deposition in the > net heating
pastshack region, the so Eﬂ
called gain region g

| 2]

!_
| net cooling

|

* The neutrino
mechanism waorks by
having sufficient
heating in the gain = b e
region to reenergize .“Rudm:likmi_ —
the shock

: (= cl®

I : 1
de/dt [1077 ergs. g




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burraws, A. et al. 2006

* Use 11.2 Msun
progenitor from Woasley

et al. 2002 and the Shen, : ——
H. et al. 1998 EQS _ S0F  HShenEOS
; Ll | —
« Extract neutrino spectra =
at v-sphere and run T 3001 ", o
i . ~ i / o 1\ Y
through dynamical = h
_ . . Ll VA
neutrino evolution taking |
into account collective 100 ]
oscillations :
| 2 0325 0 | 0.4




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burrows, A. et al. 2006

* QOscillation radii are large e 3
due to high neutrino
luminasities and large _

neutrinosphere radil S0

* Even though oscillations
being inside shock, not
complete until well — ==
outside. b - v ey

Radius [km|

* Significant heating will
accur only if oscillations 005 01 015 02 02
occur befare gain radius




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burrows, A. et al. 2006

* Use 15 Msun progenitor _
from Woosley et al. 2007 !
and the Shen, H. et al. =

1998 EQS 0\ | ]

=

* Higher accretion rates
suppress SASI and keep
shock at lower radii

Radius |[km|

* Neutrino oscillations
accur at roughly same
location as 11.2 maodel, 0005 0. 015 02 SRS S
little affect on heating :




Expected Heating Enhancement
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Take home message, collective neutrino oscillations
do not help explode CCSNe




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burraws, A. et al. 2006

* Use 15 Msun progenitor P
from Woosley et al. 2007 ==
and the Shen, H. et al. =

1998 EQS | ]

* Higher accretion rates
suppress SASI and keep
shock at lower radii

Radius [kim|

* Neutrino oscillations
accur at roughly same
location as 11.2 model,
little affect on heating




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burraws, A. et al. 2006

» Qscillation radii are large N
due to high neutrino

G |
luminosities and large :
= \ 112 '».--_“: 12 I
ﬂE!UtrIn{Jsphere radii = pea 1H HShen EOS
—E 400
* Eventhough oscillations =
being inside shock, not g 300
2 4

complete until well
outside.

* Significant heating will
accur only if oscillations
occur befare gain radius




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burrows, A. et al. 2006

* Use 11.2 Msun
progenitor from Woosley = 1
etal. 2002 and the Shen, =
H. et al. 1998 EQS _ W HShenEOS
2 4 —
* Extract neutrino spectra E '
at v-sphere and run e S SN
through dynamical = 4 € A
neutrino evolution taking i j %
into account collective 100F- ]
oscillations ” ;
5 | )2 025 0 04




Theory of Neutrino Heating

* Neutrinos diffusing from

core have a net energy \

depaosition in the e | net heating
postshock region, the so j

called gain region /
f ]
| net cooling |
|

|

l

i

L]

* The neutrino
mechanism works by
having sufficient
heating in the gain : _ —
region to reenergize ——= ..;Rddm:.:m”_ ”
the shock

I : 1
de/dt [ 1077 crgs g




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993, Burrows, A. et al. 2006

» Use 11.2 Msun
progenitor from Woosley -
et al. 2002 and the Shen, §E=— — '
H. et al. 1998 EOS S

S a0l —

* Extract neutrino spectra E
at v-sphere and run T 300F _J_L_*,j'-l %
through dynamical = e " ERAN
neutrino evolution taking ™
into account collective 100f- / 3 ;
oscillations :




Expected Heating Enhancement

1000
Jiatten ! Tbiotine: — 1 =

- 3 i
= [ |
Eé k : i * Hypothetical situation
2 f o g | where oscillations
I IF e 4 .. |
I R —— i complete before gain
_i; II:_ -—— TWHWO2 q Iﬂl. ml_ : rad[us
. g . » ,f" v/ 'l.: J Iil :_a..'”\ﬂ |
= I!' El_/ “‘m‘ ﬂﬂ * Actual heating

/‘ enhancement is much
| less, < 1%

JJJJJJ

Lad i
———
£l
Ly
e —
K

Take home message, collective neutrino oscillations
do not help explode CCSNe




Multiangle suppression of Oscillations

see also Chakraborty et al. 2011ab)

* |n single angle approximation one can rotate’ away the matter potential
* Recent gevelopment in multiangle collective neutrino osciliations leads to a
suppression of oscillations until the electron density < neutrino density
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Should we expect this to be relevant in improved
models/EQS/codes/dimensions/neutrinos...?

* Madels with higher accretion rates not only suppress SASI but
lead to higher v-sphere radii and neutrino densities. We
chose low mass-range models for this reason (...0-Ne-Mg?)

s \P {‘D,HP )

+ Different EQS do not significantly changeR or®
* 3D may lead to larger shock radii, however need to get
oscillations deep down below gain radius to see significant

effect — that's hard




Should we expect this to be relevant in improved
madels/EQS/codes/dimensions/neutrinos...?

Results here in single-angle approximation, multiangle may lead
to larger swap radii:

* multiangle matter effects (Chakraborty et al. 2011)

* multiangle treatment of neutrino evolution
* If® ~®  then multiangle decoherence, spectra equilibrate
» Full Boltzmann treatment of neutrino oscillations (lingering
matter effects)

* Some as-of-yet unknown collective neutrino physics

* Collective neutrino Oscillations still will influence observed signal




Should we expect this to be relevant in improved
models/EQS/codes/dimensions/neutrinos...?

Results here in single-angle approximation, multiangle may lead
to larger swap radii:

* multiangle matter effects (Chakraborty et al. 2011)

* multiangle treatment of neutrino evolution
* If® ~®  then multiangle decoherence, spectra equilibrate
* Full Boltzmann treatment of neutrino oscillations (lingering
matter effects)

* Some as-of-yet unknown collective neutrino physics

* Collective neutrino Oscillations still will influence observed signal




Exploratory simulations with VULCAN/ 2D

Livne, E. 1993 Burrows, A. et al. 2006

* Use 15 Msun progenitar
from Woosley et al. 2007
and the Shen, H. et al. = -_
1998 EQS =\ - ]

* Higher accretion rates
suppress SASI and keep
shock at lower radii

Radius |km|

* Neutrino oscillations
accur at roughly same
location as 11.2 model, 0005 01 015 02 S S -
little affect on heating :




Theory of Neutrino Heating

* Neutrinos diffusing from

core have a net energy - \

deposition in the . net heating
postshock region, the so
called gain region

* The neutrino | ..
mechanism works by rf' e
having sufficient y |
heating in the gain . | S
region to reenergize = Rq d:’u:l -
the shock

I :
de/dt [ 1077 ergs g




Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

* Will describe simulations in more detail

Model s15 @ 250ms, r=150.3km = Mode! s15 @ 250ms, r=150.3km
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Exploratory simulations with VULCAN/ 2D

Livne, E. 1993 Burrows, A. et al. 2006

o

» Qscillation radii are large -
due to high neutrino =
luminosities and large E " e
neutrinosphere radii

* Even though oscillations
being inside shock, not
complete until well
outside.

Radius [km|]

* Significant heating will
occur only if oscillations et
occur befare gain radius
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| Spectra

u_a and \nu__\Imu

Neutrino Evolution

* As an example of oscillations, here is a movie showing the
evolution of the v spectra from the v-sphere out in radius

 Will describe simulations in more detail

Moget s15 @ 250ms, r=150.3km == Mode! s15 @ 250ms, r




