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Abstract: The gauge/gravity duality may give a nonperturbative formulation of superstring/M theory, and hence, if one can study the
nonperturbative dynamics of the gauge theory, it would be useful to understand the nonperturbative aspects of superstring theory. Although
researches in this direction were not successful for long time because of the notorious difficulties in lattice SUSY, however, recent progress made it
possible; nonperturbative formulations free from the parameter fine-tuning were proposed, some of them are confirmed to work numerically, and
nontrivial evidence for the validity of the gauge/gravity duality has been obtained. In these talks | review the state of the art in thisfield. | start with
reviewing basics of the Monte-Carlo. Then | explain how to put supersymmetric theories on computer and show actual numerical results. 1st talk :
basics of Monte-Carlo simulation. 2nd talk : 1d SYM (matrix quantum mechanics). 3rd talk : how to put 2d, 3d and 4d SYM on computer. In the
talks | concentrate on basic ideas and omit technical details (e.g. agorithms to accelerate simulations). They will be explained after the talks if
people are interested in. References: 1st talk : standard textbooks e.g. Heinz J. Rothe, & quot;L attice Gauge Theories. An Introduction& quot;, Third
Edition, World Scientific. 2nd talk : 0706.1647 [hep-lat], 0707.4454 [hep-th], 0811.2081 [hep-th], 0811.3102 [hep-th], 0911.1623 [hep-th],
1012.2913 [hep-th]. 3rd talk : hep-1at/0302017, hep-1at/0311021, 1010.2948 [hep-lat] (2d SYM); hep-th/0211139 (3d SYM); 1004.5513 [hep-lat],
1009.0901 [hep-lat] (4d SYM)
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Monte Carlo approach to
the gauge/gravity duality
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Plan

® What can be done? (or what | want to do)

Itoday ® What is “Monte Carlo™?

e Difficulty of lattice SUSY and its cure

® Some numerical results
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Q.

What is quantum gravity?
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Q.

What is quantum gravity?

A.

Superstring theory
may give the answer...
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Q.
What is ‘superstring’?
Did anybody give
the nonperturbative formulation?
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Q.
What is ‘superstring’?
Did anybody give

the nonperturbative formulation?

A.
Not yet, but several proposals.

the most concrete :
AdS/CFT or
- (Gauge/Gravity correspbondence



Maldacena, hep-th/971 1200

“In principle, we can use this duality to give a
definition of M/string theory on flat spacetime
as (a region of) the large N limit of the field
theories. Notice that this 1s a non-perturbative
proposal for defining such theories, since the
corresponding field theories can, in principle,
be defined non-perturbatively.”
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Is it only of conceptual
importance!?
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Q.
Is it only of conceptual
importance’

A.

It is a practical tool for
explicit calculations.

One of the goals of this talk is
to make you convince this point!
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SYM STRING

large-N,

strong coupling SUGRA
large-N, Classical string
finite coupling (SUGRA+Q)
finite-N, Quantum string

finite coupling (gstring>0)
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SYM difficult

large-N,
strong coupling

large-N,
finite coupling

finite-N,

finite coupling

00000

STRING

SUGRA
easier

Classical string
(SUGRA+X')
more difficult

Quantum string
(gsmng>0)
very difficult
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SYMarcue  STRING

large-N, SUGRA
strong coupling easier
== Classical string

——> (SUGRA+Q)

finite coupling more difficult

Quantum string
(gsmng>0)
very difficult

finite-N,
finite coupling —_—

00000 The opposite direction of the dictionary ...
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Q.
How can we study
the strongly coupled theory?
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Q.
How can we study
the strongly coupled theory?

A.
Monte-Carlo simulation!
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Example: |d SYM(DO brane)

3
1 . 1 .
= LV/ dtTr{i(Dth)z = I[Xt‘X_}}z
0 _;

5. =
+59T°Dyyp — ST [ X3, ¥])

SYM thermodynamics

Black hole (black 0-brane)
thermodvnamics
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The dictionary

Gravity
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Keywords

® Markov Chain

® detailed balance condition

® importance sampling

John von Neumann
1903-1957

® Metropolis algorithm
® ‘Dynamical fermion’ vs ‘Quench’

® Sign problem
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Pirsa:

The principle of Monte-Carlo

® Consider field theory on Euclidean spacetime
with the action S[9] .

® Generate field conﬁgurattons with
probability e S19] Then,

| [do] 0[(;5]6 5[“"’] =
(0) = Tiddle Z} O[]

® Such a set of configurations can be

generated as long as ¢ 59 >
oooooooo (not ‘probability’ otherwise...)



Algorithm

® generate a chain of field configurations with
the transition probability P[C' — C”]

Cg—>01—>02—>---

® ‘Markov chain’ : transition probability from
Ck to Ci+1 does not depend on C,...,Ci-

wy.|C : probability of obtaining C at k-th step
wi41[C] = ) wi[C']P[C’ — C]
Cf

Choose P[C — ('] so that
= lim wi[C] x e 5IC



€
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Algorithm (cont'd)

Cf
¥ oa
e Sl = Z e_S[C’]P[C’ — C| necessary
Cf
Tsum over C a stronger

condition

—Slp[Cc - ' =5 P[C’ - C]

the detailed balance condition




Algorithm

® generate a chain of field configurations with
the transition probability P[C' — C]

Co—>Ci —-Cy —---

® ‘Markov chain’ : transition probability from
Ck to C«+1 does not depend on C,,...,Ci-i

wy.|C : probability of obtaining C at k-th step
wi1[C] = ) wi[C']P[C" — C]
Cf

Choose P[C — ('] so that
T lim wg[C] x e 5C!



€
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Algorithm (cont’d)

wk+1[C] = 2:'w'k[C"']ID[C”r =) C]

Cf
¥ oa
e 5lCl = Z e_S[C’]P[C’ — C| necessary
Cf
15um over C’ a stronger

condition

—Slp[c - ¢’ =S¢ PIC’' - C]

the detailed balance condition
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Algorithm (cont'd)

Ergodicity : for any C and C’, there is a finite
transition probability with finite steps. (As
long as C’ exists with nonzero probability,
of course.)

-

Theore

If a Markov chain satisfies the detailed
balance condition and the ergodicity,

—S[C]

lim wi|C| o< e




Algorithm (cont'd)

‘algorithm’ = choice of P[C — (']

* Metropolis

simplest & the basis of all others _
useful for fermions

» Hybrid Monte Carlo (HMC) <

 Rational Hybrid Monte Carlo (RHMC)

Pirsa: 11050062
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Metropolis algorithm
(Metropolis-Rosenbluth-et al, 1953)

* Consider the Gaussian integral,

.’L'2 00 Sz
Slz| = 5 5= dze :

(1) vary the ‘field’ x randomely:
r — r+ Az, —0.5< Az < 0.5

(2) accept the new ‘configuration’ with a probability

where AS = S[z + A:z:] - S |z}
‘Metrobolis test’
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Algorithm (cont'd)

‘algorithm’ = choice of P[C — (']

* Metropolis

simplest & the basis of all others _
useful for fermions

» Hybrid Monte Carlo (HMC) <,

* Rational Hybrid Monte Carlo (RHMC)
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Metropolis algorithm
(Metropolis-Rosenbluth-et al, 1953)

* Consider the Gaussian integral,

$2 00 _ Sz
Slz] = 5 _— dze .

(1) vary the ‘field’ x randomely:
r — x+ Az, —0.5< Az < 0.5

(2) accept the new ‘configuration’ with a probability

where AS = Sz + A:z:] S' |z}
‘Metrobaolis test’
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Algorithm (cont'd)

‘algorithm’ = choice of P[C — (']

* Metropolis

simplest & the basis of all others _
useful for fermions

» Hybrid Monte Carlo (HMC) <

* Rational Hybrid Monte Carlo (RHMC)

P = 1
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Metropolis algorithm
(Metropolis-Rosenbluth-et al, 1953)

* Consider the Gaussian integral,

Slz] = 3; ? Z =[ dze Sl

(1) vary the ‘field’ x randomely:
r — + Az, —0.5 < Az < 0.5

(2) accept the new ‘configuration’ with a probability

where AS = S[z + Az| — S|[z]

Pirsa: 11050062 Page 36/1
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Metropolis (cont’d)

® Ergodicity is satisfied.

® Detailed balance is also OK:

0 (|Az| > 0.5)
Plz 5>z + Az| = 1 (JAz| <0.5 and AS <0)
e 25 (|Az| < 0.5 and AS > 0)

0 (|1Az| > 0.5)
Plz+ Az > z]={ e®° (|Az| <0.5 and AS < 0)
1 (|JAz| < 0.5 and AS > 0)

eSSl o — E*S‘:J.-h.&rj -0
—SEPlz >z +Az]= eSEl.1 = o Stad HAS 3 _ o SEHAplh Az o]
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Metropolis algorithm
(Metropolis-Rosenbluth-et al, 1953)

* Consider the Gaussian integral,

g :E2 = 00 = —S[::c]
x| = 5 Z = xe .

(1) vary the ‘field’ x randomely:
r — x+ Az, —0.5< Az < 0.5

(2) accept the new ‘configuration’ with a probability

where AS = Sz —|—A:L'] S[:r]
‘Metrobolis test’
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Metropolis (cont’d)

® Ergodicity is satisfied.

® Detailed balance is also OK:

0 (|Az| > 0.5)
Plz >z + Az| = 1 (JAz| < 0.5 and AS < 0)
e 25 (|Az| < 0.5 and AS > 0)

0 (|Az| > 0.5)
Plz+ Az > z]={ e™° (|Az| <0.5 and AS < 0)
1 (JAz| < 0.5 and AS > 0)

e—SEl g
—SEPlz >z +Az]= e Skl .
Pirsa: 11050062 E_-S'.I - E—AS
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e Siz+Azx]  +AS = E—$:+M1PEI + Az —> I}
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Metropolis algorithm
(Metropolis-Rosenbluth-et al, 1953)

* Consider the Gaussian integral,

:L'2 00 _ Sz
Slz| = 5 == dze .

(1) vary the ‘field’ x randomely:
r — x+ Az, —0.5< Az < 0.5

(2) accept the new ‘configuration’ with a probability

where AS = S[z + A:r] - S |z}
‘Metrobolis test’
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Metropolis (contd)

® Ergodicity is satisfied.

® Detailed balance is also OK:

0 (lAz| > 0.5)
Plzr 5>z + Az| = 1 (JAz| <0.5 and AS <0)
e 25 (|Az| < 0.5 and AS > 0)

0 (|Az| > 0.5)
Plz+ Az > z]={ e®° (|Az| <0.5 and AS < 0)
1 (lAz| < 0.5 and AS > 0)

eSH= . g
_s:—r;Pf:: —z+ Az|= e—S= 1
Pirsa: 11050062 E_S': . E—M

Page 41/110
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Numerical example

(Gaussian integral)
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Metropolis (cont’d)

® Ergodicity is satisfied.

® Detailed balance is also OK:

0 (|lAz| > 0.5)
Plz 5>z + Az| = 1 (JAz| <05 and AS <0)
e 25 (JAz| < 0.5 and AS > 0)

0 (|Az| > 0.5)
Plz+ Az > z]=¢ et®° (|Az| <0.5 and AS < 0)
1 (|JAz| < 0.5 and AS > 0)

e Sk .9
—SEPlz 5 z+Az] = e—SEl g
Pirsa: 11050062 E-S'I B e—AS

imn
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Numerical example

(Gaussian integral)
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Initial condition : x=0

I 1“11’
s | n
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100
~ samples

1000
samples

10,000
samples
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Initial condition : x=0

3r
By

1 /] ] ]
4] 1000 2000 3000 4000 500C
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100 | 1000
" samples -7 samples

10,000 - 100,000
samples .« samples
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Initial condition : x=0
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100
~ samples

10,000
samples
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Initial condition : x=0
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100
~ samples

10,000
samples
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100,000
samples

Page 52/110




100 | - 1000
~ samples - samples

10,000 100,000
samples .« samples
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100 | - 1000
" samples | samples

~ converges to the correct

‘path-integral weight’

10,000 -~ 100,000
samples .« samples
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Note In typical YM simulations, with better algorithm,
reasonable results can be obtained from 100 -
1000 configurations, if the theory does not
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100
~ samples

10,000
samples
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Initial condition : x=0

|
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100 | | 1 1000
"~ samples - samples

10,000 100,000
samples .« samples
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Algorithm (cont’d)

® FErgodicity : for any C and C’, there is a finite
transition probability with finite steps. (As
long as C’ exists with nonzero probability,
of course.)

r ™

Theorem

If a Markov chain satisfies the detailed
balance condition and the ergodicity,

—S[C]

lim wk[C] X €
S k—oo J
Pirsa: 11050062 " Page 63/110




Pirsa:

The principle of Monte-Carlo

® Consider field theory on Euclidean spacetime
with the action S|9] .

® Generate field conﬁguratzons with
probability e 519l Then,

| [do] O[cb]e S[‘I’
(O> f[d@] = ; O @z]

® Such a set of configurations can be

generated as long as ¢ 519 >
oooooooo (not ‘probability’ otherwise...)
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samples
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0
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04

Note In typical YM simulations, with better algorithm,
reasonable results can be obtained from 100 -
1000 configurations, if the theory does not
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Initial condition : x=10

/ \/ quickly ‘thermalizes’

use only these configurations

of to calculate the expectation value.
r‘ .

*jﬂﬂ% u“* OMWE i' Hh" F«H’ 1'44

‘1
5 =0 2000 2000 P 00
after the thermalization, configuration
with small weight never appears in practice

— “imbortance sambline”’

J
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FERMIONS




S =S+ SF, N — /d4:172/;Dd)

D =~+"(0u — 1Ay)

Fermions appear in a bilinear form.
(if not.. make them bilinear by introducing auxiliary fields!)

== can be integrated out by hand.
[1aAaviesoA=5a4 ~ [1aa]det Dla] =514

So, simply use the ‘effective action’,
SerrlA] = S|A| — logdet D[A]

S— (crucial assumption : det D > 0)



Fermion is expensive

cost for calculating Ss : N3V
cost for det D :
N3V3(fundamental fermion)
N&V3(adjoint fermion)
size of D is NVxXNV (fundamental),
( N2V xN2V(adjoint)

For this reason, until recently
‘quench approximation’ was popular.
‘quench’ (or ‘probe approximation’) : fermion is not take

into account when generating configurations.
Exact in the ‘t Hooft large-Nc limit (Ns fixed).
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S =5+ SF, e /d43:1;Dw

D =~+"(0u — 1Ay)

Fermions appear in a bilinear form.
(if not.. make them bilinear by introducing auxiliary fields!)

== can be integrated out by hand.
/ [dA][dy]e5BlAI-SFlAY] — / [dA] det D[A] - e SBl4A

So, simply use the ‘effective action’,
Serf|A] = S|A] — logdet D[A]

S— (crucial assumption : det D > 0)



Fermion is expensive

cost for calculating Ss : N3V
cost for det D :
N3V3(fundamental fermion)
NéV3(adjoint fermion)
size of D is NVxNV (fundamental),
( N2VxN2V(adjoint)

For this reason, until recently
‘quench approximation’ was popular.
‘quench’ (or ‘probe approximation’) : fermion is not take

into account when generating configurations.
Exact in the ‘t Hooft large-Nc limit (Ns fixed).
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Fermion is expensive

cost for calculating Ss : N3V
cost for det D :
N3V3(fundamental fermion)
N&V3(adjoint fermion)
size of D is NVxXNV (fundamental),
( N2V xN2%V(adjoint)

For this reason, until recently
‘quench approximation’ was popular.
‘quench’ (or ‘probe approximation’) : fermion is not takel

into account when generating configurations.
Exact in the 't Hooft large-Nc limit (Nr fixed).

0000000000000



® Quench is not appropriate for SYM.

® |n order to perform the dynamical fermion
simulation, we should use better algorithms
developed in lattice QCD. The most

powerful is the rational Hybrid Monte-
Carlo (RHMC) algorithm.

(I can explain later, if somebody is interested in.)
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Sign problem

® ‘Probability’ must be real positive.

® Life is sometimes hard... path integral
weight e can be complex! (after the Wick rotation)

* Chern-Simons term (pure imaginary!)
* Finite baryon chemical potential

* Yukawa coupling ¢\\

» Super Yang-Mills «—— det D is complex

Such path integral measures cannot be generated



‘reweighting method’

® Use the ‘phase-quenched’ effective action

Ses£lA] = Sp[A] — log | det D[A]|

® Phase can be taken into account by the
‘phase reweighting’ :

~ JldA]ldetD-e 52 -0
= [[dA]det D - e=55
= f[dAI(PhGSE) - | det D| - e 58 . O/I[dA“ det D) - e—SB

[1dA](phase) - | det D| - e—55 [|dA]|det D| - e—55

_ ({(phase) - O)phase quench
Pirsa: 11050062 ((phﬂSE)) phase gquench




usually the reweighting does
not work in practice...

» violent phase fluctuation
— both numerator and denominator
becomes almost zero. 0/0 = 7?

* vacua of full and phase-quenched model can disagres

‘overlapping problem’

Pirsa: 11050062



‘reweighting method’

® Use the ‘phase-quenched’ effective action
Se;7[A] = Sp[A] — log| et D[A]|

® Phase can be taken into account by the
‘phase reweighting’ :

~ JldAldetD-e 52 -0
(@)= [[dA] det D - =S5
— f[dA](phase) . ]det, D| - e'SH : O/f{dA” dEtDI ) E_SB

f[dA](PhGSG) . |det D| . E_SB/I[dA“det; Dl .e—SB

((phase) - O)phase quench
Pirsa: 11050062 ((Phase)) phase quench




usually the reweighting does
not work in practice...

» violent phase fluctuation
— both numerator and denominator
becomes almost zero. 0/0 = ??

* vacua of full and phase-quenched model can disagres

‘overlapping problem’
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‘reweighting method’

® Use the ‘phase-quenched’ effective action

Ses7lA] = Sp[A] — log | det D[A]

® Phase can be taken into account by the
‘phase reweighting’ :

~ JIdA]det D - e S8.0
()= [IdA]det D - e=S=
_ JldA](phase) - | det D| - e=52 - O/ [[dA]| det D| - e~

[[dA](phase) - | det D| - eS8/ [[dA]|det D| - e—Ss

((Phﬂﬂe) 2 O)pha.se gquench
Pirsa: 11050062 ((pha-ﬂen phase gquench




usually the reweighting does
not work in practice...

» violent phase fluctuation
— both numerator and denominator
becomes almost zero. 0/0 = 7?

* vacua of full and phase-quenched model can disagres

‘overlapping problem’
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usually the reweighting does
not work in practice...

» violent phase fluctuation
— both numerator and denominator
becomes almost zero. 0/0 = 7?

* vacua of full and phase-quenched model can disagres

‘overlapping problem’

ARA

Miracles happen in SYM!
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Tomorrow :
application to SYM
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Keywords

® Markov Chain

® detailed balance condition
® importance sampling

® Metropolis algorithm

® ‘Dynamical fermion’ vs ‘Quench’

® Sign problem
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Tomorrow :
application to SYM

Pirsa: 11050062
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The principle of Monte-Carlo

® Consider field theory on Euclidean spacetime
with the action S[9] .

® Generate field configurations with
probability e °'?/ Then,

® Such a set of configurations can be

generated as long as ¢ 519 >
oooooooo (not ‘probability’ otherwise...)



simulation result (I d)
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usually the reweighting does
not work in practice...

» violent phase fluctuation
— both numerator and denominator
becomes almost zero. 0/0 = 7?

* vacua of full and phase-quenched model can disagres

‘overlapping problem’

AT A

Miracles happen in SYM!
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‘reweighting method’

® Use the ‘phase-quenched’ effective action
S.;7(A] = Sp[A] — log| det D[A]

® Phase can be taken into account by the
‘phase reweighting’ :

~ J[dA]detD-e 52 -0
o= [[dA]det D - e=55
= f[dAI(PhGSE) . !det D} - e'sﬂ . O/I[M“ dEt.D| g E_SB

f[dA](PhGSE) . |det Dl . e-sﬂf f[dAHdet D| .e—SB

((phase) - O)phase quench
Pirsa: 11050062 ((phﬂse)) phase quench
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Initial condition : x=10

/ \/ quickly ‘thermalizes’

use only these configurations
. to calculate the expectation value.

i 1 N

0 1000 2000 3000 2000 5000
after the thermalization, configuration
with small weight never appears in practice
— “imbortance sambling”’
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Metropolis (cont'd)

® Ergodicity is satisfied.

® Detailed balance is also OK:

0 (|Az| > 0.5)
Plz >z + Az| = 1 (JAz| < 0.5 and AS < 0)
e 25 (|Az| < 0.5 and AS > 0)

0 (|Az| > 0.5)
Plz+ Az > z]=¢ ™5 (|Az| <0.5 and AS < 0)
1 (]Az] <05 and AS > 0)

eSE .

e FiPlz 5>z + Az] = i B |
Pirsa: 11050062 E_Se_I_ 3 E—AS
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Metropolis algorithm
(Metropolis-Rosenbluth-et al, 1953)

* Consider the Gaussian integral,

2 o0
Slz] = e Z =/ dze Sl

= ==

(1) vary the ‘field’ x randomely:
r— r+ Az, —0.5< Az < 0.5

(2) accept the new ‘configuration’ with a probability
min{1, e_AS} where AS = S[z + Az] — S|z]
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‘Metrobolis test’



Initial condition : x=0
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Metropolis (cont'd)

® Ergodicity is satisfied.

® Detailed balance is also OK:

0 (|Az| > 0.5)
Plzr 5>z + Az| = 1 (JAz| < 0.5 and AS < 0)
e 35 (|Az| < 0.5 and AS > 0)

0 (|Az| > 0.5)
Plz+ Az > z]=¢ ™5 (JAz| <0.5 and AS < 0)
1 (lAz| < 0.5 and AS > 0)

E_SEI.: -0
e ot Pz >z + Az| = S |
Pirsa: 11050062 E_STI' = E_M
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Initial condition : x=0
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100 .- - 1000
“ samples | samples

~ converges to the correct

‘bath-integral weight’

10,000 -~ 100,000
samples .« samples
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Fermion is expensive

cost for calculating Ss : N3V
cost for det D :
N3V3(fundamental fermion)
N&V3(adjoint fermion)
size of D is NVxXNV (fundamental),
( N2V xN2%V(adjoint)

For this reason, until recently
‘quench approximation’ was popular.
‘quench’ (or ‘probe approximation’) : fermion is not takei

into account when generating configurations.
Exact in the ‘t Hooft large-Nc limit (Ns fixed).
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Initial condition : x=10

/ \/ quickly ‘thermalizes’

use only these configurations
. to calculate the expectation value.
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0 1000 2000 3000 2000 5000
after the thermalization, configuration
with small weight never appears in practice
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Numerical example

(Gaussian integral)




Metropolis algorithm
(Metropolis-Rosenbluth-et al, 1953)

» Consider the Gaussian integral,

172 OO _ Szl
Slz] = 5 Z= dze .

(1) vary the ‘field’ x randomely:
r— x+ Az, —0.5 < Az < 0.5

(2) accept the new ‘configuration’ with a probability

where AS = S[z + Az] — S|z]
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Metropolis algorithm
(Metropolis-Rosenbluth-et al, 1953)

» Consider the Gaussian integral,

2 OO0
S[z] = = Z = / dze 5l

= =

(1) vary the field’ x randomely:
r— r+ Az, —0.5< Az <0.5

(2) accept the new ‘configuration’ with a probability
where AS = S[z + Az] — S|[z]

Pirsa: 11050062 Page 110/110

‘Metrobolis test’



