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Abstract: In recent years, a number of observations have highlighted anomalies that might be explained by invoking dark matter annihilation. The
excess of high energy positrons in cosmic rays reported by the PAMELA experiment is only one of the most prominent examples of such anomalies.
Models where dark matter annihilates offer an attractive possibility to explain these

observations, provided that the annihilation rate is enhanced over the typical values given by conventional models of thermal relic dark matter
annihilation. An elegant proposal to achieve this, is that of a Sommerfeld mechanism produced by a mutual interaction between the dark matter
particles prior to their annihilation. However, this enhancement can not be arbitrarily large without violating a number of astrophysical
measurements. In thistalk, | will discuss the degree to which these measurements can constrain Sommerfeld-enhanced models. In particular,

| will talk about constraints coming from the actual abundance of dark matter and the extragalactic background light measured at multiple
wavelengths.
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Cosmic ray excesses and other anomalies

| "1 PAMELA, Adriani et al. 2009
. excess of e+ for E>10GeV

j E . - =% > 5 ‘-."‘_ .T'iv :
'''' e =i e T
o O g
INTEGRAL/SPI, Weidenspointner et al. 2006 = 10' - |
511 keV line, ~3x10*2 e+e- pairs/s annihilating = |

Fermi, Ackermann et al. 2010
e+e- not a clear excess
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Cosmic ray excesses and other anomalies

PAMELA, Adriani et al. 2009
excess of e+ for E>10GeV

INTEGRAL/SPI, Weidenspointner et al. 2006 = 10 -
511 keV line, ~3x10* e+e- pairs/s annihilating
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Fermi, Ackermann et al. 2010
e+e-_ not a clear excess
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Dark matter annihilation?

» WIMPs naturally provide the appropriate relic abundance

* |[nteraction with ordinary matter and self-interaction offer attractive
possibilities for detection

« WIMP annihilation can explain the anomalies but:

Large annihilation cross section mainly to leptons
Bergstrom et al. 2009, BF over “standard” value for correct cross section <ov>;=3x102cm’s”
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Adriani et al. 2009
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Dark matter annihilation?

» WIMPs naturally provide the appropriate relic abundance

* [nteraction with ordinary matter and self-interaction offer attractive
possibilities for detection

« WIMP annihilation can explain the anomalies but:

Large annihilation cross section mainly to leptons
Bergstrom et al. 2009, BF over “standard” value for correct cross section <ev>,=3x10%cm’s™
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» WIMPs naturally provide the appropriate relic abundance
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Sommerfeld enhancement

* Classical analog: Figs. from M. Cirelli, DMV, Cambridge 2011

\ r\fv.g‘-' ¢ later decays into SM particles
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/ ;f% If mf<2mp -> decay into antiprotons
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Sommerfeld enhancement

Simplified case, a scalar boson as a force carrier, Yukawa potential

1 &2U(r 3 e, :
: ir] + V(r)¥(r) = —m, B37¥(r) Vir) = _lr—’“v-'
My, dr= ' ' r
; Lattanzi_ and Silk 2009 , Coulomb approximation (m -> 0):
fe=t [ | | | = e
10°% ;g =90 GeV [~ S e (1 = f__—m}p_’.:i)
|4_'_.é‘ : | ':T j.
b 1000 | S | - 3 :
' AT AT AT S(B)x1/8 i B <« wa.
/ A _
— ] 4 ! \\_/ | \&!// FH.E_.___-;
/_ o : Arkani-Hamed et al. 2009

Yo =
-ﬂ'll' '\ il

10¢ > 3 ;
/ = H.‘g.-"rl_l . ( ]. / ,"‘ldl 2 ‘I-_1| — ]z-r-f y Ii 1,)
)

1 2 5 10 ) S 100

Moy (TeV) o
General behaviour:
1)if 32> mya./m, -> Coulomb case o | {8
2)if 3% « mya./m, ->bound states if m=4m,n/c
3) Close to “resonances” -> S(J) x 1/8 104

4) Saturation at very low velocities, finite life time of the bound
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Relic density constraints

dn,
dt

: 2
Boltzmann equation: +3ln, — — (o) (" *-i = (”_EQ) )

Change of variables: T = 171, ;"T = H_\;'!S

After freeze-out, the number density strongly departs from the equilibrium solution. For t>t_:
1/2

1 - 1 T = o g. (I)S(Ix) |
Y(zo) Y(z) Va5 X7 (m-}sL 2z o

S(B)x1/8 — S(z)xz?x1/0pa

(ov) = S(z) (ov) :
S Note that: S(j) - 1/32 — S(I] X EC 1/!73&1

. m = :
Q, oh* ~ 2.757 x 10° ( __"‘ ) Y (xg) Dark matter abundance: Qpyh” ~ 0.1143

2

Kinetic decoupling: after freeze-out, scattering with =~
SM particles keep T_=T, after kinetic decoupling T_ = ¢ .-

drops as 1/a’ (“colder” than radiation): ;

Bringmann 2009

r, =z for t<ikp
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Sommerfeld enhancement

Simplified case, a scalar boson as a force carrier, Yukawa potential

LT (r) ¥,

3 2 a F: — TR AT
- & + V(r)¥(r) = —m, 87¥(r) Vir) = _Tr m,

3 Lattanzi_ and Silk 2009 : Coulomb approximation (m_-> 0):
T a=t [ ] _ —

IF - - Y % — __ i &f_- ey T
- i '-!].; :I:;ﬂ_l (Jijl S 3 5 — - (1 = =¥ )
|!-.-'-_ _; j
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160 J vhh —
— : Arkani-Hamed et al. 2009
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General behaviour:
1)if 5° > mga./m, -> Coulomb case L

2)if 3% « mya./m, ->bound states if m=4m,n/c
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3) Close to “resonances” > 5(J) x 1/82 ‘ 0L

4) Saturation at very low velocities, finite life time of the bound




Relic density constraints

dn X
df

‘ 2
Boltzmann equation: + 3H Ly — — {(ov) (”-i = (”-EQ) )

Change of variables: I = 171, /fT ¥ = L!.X.JIIS

After freeze-out, the number density strongly departs from the equilibrium solution. For Bt_:

1/2

1 . 1 4 . g g. {IJS(I}_) _
Y(zo) Y(z;) V35 X"F (‘”')SL =

S(B)x1/8 — S(zr)x 72 x 1/0 e
S(B)x1/8? — S(r)xzroxl/o?

vel

{(ov) = S(x) (ov) 5 Note that:

, ./ m , .
Q, oh* ~ 2.757 x 10° ( ",) Y (xp) Dark matter abundance: Qpyh” ~ 0.1143

Kinetic decoupling: after freeze-out, scattering with =
SM particles keep T_=T, after kinetic decoupling T_ =

drops as 1/a’ (“colder” than radiation):

r, =z for t<itkgp

Bringmann 2009
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Sommerfeld enhancement
Simplified case, a scalar boson as a force carrier, Yukawa potential
1 E{E]I'{I-j = ¥ L (—ll — I & T
. & + V(r)¥(r) = —m, B8°¥(r) Vir)= —Tp o
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Relic density constraints

dn,
dif

Change of variables: I = 11, ;’IT r— H.U';.s

: 2
Boltzmann equation: + 3H Wy — {ov) (”-i e (”f@) )

After freeze-out, the number density strongly departs from the equilibrium solution. For t>t_:

1 1 s e gl’;?{r]S(It)
Y(zo) Y{I_f}+ 45" XP C‘”-}s/” r2 —

S(B)x1/8 — S(z)xz?x1/0pa
SB)x1/82 —» SE)xzxl/o?

vel

(ov) = S(zx) (ov) g Note that:

m E .
Q, oh* ~ 2.757 x 10® ( ~ ) Y (xo) Dark matter abundance: Qpyh2 ~ 0.1143

Kinetic decoupling: after freeze-out, scattering with =~ *:
SM particles keep T_=T, after kinefic decoupling T_ = ¢ n::-

drops as 1/a* (“colder” than radiation):

Bringmann 2009

r, =z for t<ikgp
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Relic density constraints

Dent et al. 2010

<ov>=3x10%cm’s™

Zavala et al. 2010
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« If S~1/o then Y~1/Inx for X>X
« If S~1/o” then Y~1/x for x>x
« <gV>; needs to be lower than the case without enhancement

(a factor of a few) to give the correct relic density

= Kinetic decoupling temperature is a relevant paramgiers,.dhe
larger it is, the stronger the suppression on the relic density
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Relic density constraints

BF - =0.0005

—20
= =
—
o m
N -
=1 ﬁ E
Z1 E =
= m
o.a .
== 1 2 3 4 5
m_(GeV)
o XDM e¥e™ p p~ x¥ =z (1:1:2), m; =900 MeV
BT 25 r-_tlﬂ < s —1.0
BF(relative to<ov>,=3x10%cm’s ") <100
for e<1072, mJ/my<103, my~100GeV
It is possible to have larger boosts %
in models with mass splitting =
Finkbeiner et al. 2011
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CMB constraints Zavala et al. 2010

g values

—2 8

CMB energy spectrum: energy injection at 10%*<z<10°
effectively produces a Bose-Einstein energy spectrum
with chemical potential « instead of the pure black body
spectrum (lllarionov and Sunyaev 1975). Limit by
COBE/FIRAS [u|<9x107. °f is the fraction thationizesand  —=°
heats the IGM.

dp. L [ ) o
Pr=14]"22a= 14f f’"{““"
P;r Iy p}f }-l]a

Injection at 10°<z<10* produces a y-type distortion to the  —*°
CMB (Hannestad and Tram 2011). Both are weak
constraints.

w=14

My /m,
W

GoO0 % T : ! ' " T p— | —5 e T _2a 1= 10
/ | —— | =
I | CMB power spectrum: e.g. Slatyer et al. 2009,
- o limits based on WMAPS:
g e | j'_,f‘ \ _]j hm, .glov = 120 ( my )
= = =1 , 3 x 10 26em3/s ~ f \1TeV
O E )
== I I ~ . _ f~0.25 for annihilation into SM particles,
- m ; w/\ /\ except electrons (~0.7) and neutrinos (f~0)
E j '.I lu.__.- = ‘.Jlr = I--1| —
D) _'Jf VSR 1 Finkbeiner et al. 2011, m ~m_
v --;. = k*uﬁ—_\ 4
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Relic density constraints

BF - =0.0005

BF(relative to<ov>;=3x10%cm’s ") <100
for <1072, mJ/my<103, my~100GeV

It is possible to have larger boosts
in models with mass splitting

Finkbeiner et al. 2011
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Boost Factor

Feng etal. 2010

"maximal” BF
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1 2 3 "
m_{(GeV)
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CMB constraints Zavala et al. 2010

p values

—2 0

CMB energy spectrum: energy injection at 10%°<z<10°
effectively produces a Bose-Einstein energy spectrum
with chemical potential « instead of the pure black body
spectrum (lllarionov and Sunyaev 1975). Limit by
COBE/FIRAS [u]|<9x107°. °f is the fraction thationizesand  —=°
heats the IGM.

op ., £ P ','I"
Pr—14 ‘”——d:—uf f’"{m"
Py h Py no Pyod

Injection at 10°<z<10® produces a y-type distortion to the ¢
CMB (Hannestad and Tram 2011). Both are weak
constraints.

—3
=
—5
—&
=
— 8

—10
—11

my [ !
W

w =14

G000 1 T g : : 2 I = —%Be 25 az o -15 -1a
11 o Dol arumu.a:_j: —“ — =
o\ fﬂtgyﬁﬂ -— |  CMB power spectrum: e.g. Slatyer et al. 2009,
—~ = ) _ limits based on WMAPS5:
g e | i.-; 1 i Ejml._g_ ov < 120 ( L, )
= = |\ _ 3 x 1006cm3/s ~ [ \1TeV
& ' '
e S | h 7, S f~0.25 for annihilation into SM particles,
g__ = m_; \ / | except electrons (~0.7) and neutrinos (f~0)
© i e ) _
w 1) ¥k T L 1 Finkbeiner et al. 2011, m ~m_
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CMB constraints Zavala et al. 2010

p values

20

CMB energy spectrum: energy injection at 10*<z<10°
effectively produces a Bose-Einstein energy spectrum
with chemical potential « instead of the pure black body
spectrum (lllarionov and Sunyaev 1975). Limit by
COBE/FIRAS |u|<9x107°. “f is the fraction thationizesand = —=°

heats the IGM. =
dp. L f s - -::__-:._ _3
e Tmaen T mas S 'fm‘{n_}f‘ =

p;r f p'_v h P],_I]ﬂ

Injection at 10°<z<10* produces a y-type distortion to the  *°
CMB (Hannestad and Tram 2011). Both are weak
consiraints. -

G000 - T T : : ' g T == —%e -25 —20 -15 -1i0
/| e — -
I\ e a—— CMB power spectrum: e.g. Slatyer et al. 2009,
- I ) ' J limits based on WMAPS5:
g 2000 - ;,';.-"rll A .Iijma:—ﬂ' o) - 120 ( m,{ )
= = L] _ 3x 10 26cm3/s ~ [ \1TeV
= /S
g < f_| a .. e | ~0.25 for annihilation into SM particles,
- —— : sk Y Y except electrons (f~0.7) and neutrinos (f~0)
E _'! ',IIJ i = -
w ! T LT A L T Finkbeiner et al. 2011, m ~m_
J -:,* NN - =
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CMB constraints Zavala et al. 2010

 values

—20

CMB energy spectrum: energy injection at 10°<z<10°
effectively produces a Bose-Einstein energy spectrum
with chemical potential « instead of the pure black body
spectrum (lllarionov and Sunyaev 1975). Limit by
COBE/FIRAS |u|<9x107°. “f is the fraction thationizesand  —=°
heats the IGM.

S n
Pr=14]f d—14ff’"{”"
ﬂ'_r Iy py I Pvl]a

Injection at 10°<z<10* produces a y-type distortion to the  —*°
CMB (Hannestad and Tram 2011). Both are weak
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I\ B e | CMB power spectrum: e.g. Slatyer et al. 2009,
- by _ limits based on WMAPS5:
g _ avel. jl,'l; i A EI{LL.__(_',1 ov) 120 r m, )
- = i " ! Ix I Tomd/s ™ | IV
= F % | 7025 for annihilation into SM particies,
- = — ;’ X except electrons (~0.7) and neutrinos (f~0)
-— W A% f \ 1
E 4 i = f __'.._ = Py Iu r
w ;’f T T A 1 Finkbeiner et al. 2011, m ~m_
N ] =
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Cosmic background radiation from dark matter
annihilation

 Energy of photons per unit area, time, solid angle and energy range received by an
observer located at z=0.

_ 1 - s » O g
I—_lﬁ/S(Eg(l—i—y).ﬁ)(l_l_:)LIE

« Contribution from all dark matter structures along the line of sight of the cbserver.

» In general, the volume emissivity of photons (energy of photons produced per unit
volume, time and energy range) can be written as:

= fwiup Ep, (7)?

2
» Properties of dark matter as a particle (WIMP factor):
F dN (ov)g
WIMP — :
dE m?

X
» The density squared dependence is connected to the gravitational interactions of dark

matter (astrophysical factor).
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Photon yield

In situ photons: Directly created in the annihilation process (annihilation channels).
Fig. from Scott et al. 2009

2 photors (or Z:photon):

Nty o lemesre
SECINNATY LT B A il . -
I RTErim FETRSSIVIGIITT . manochromatic ines

saffiery coatirunm SpecTrin =
' frargd camama-rey spoctrim

g g A L g A

£

Up-scatiered photons: Background photons gain energy through Inverse Compton
scattering with electrons and positrons produced in the annihilation: e+e- injection
specira — e+e- equilibium solution — photon background — final IC photon

spectrum.
High energy
i Lower energy

electron
\/ s

"\,

Pirsa: 11050057 Low energy Higher energy
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Photon spectrum

Main annihilation channel
Into leptons (PAMELA fit)

100.00
Up-scattered CMB
photons
. 10.00E
=~ c
Q
&
w
<
= 1.00
-
L
SUSY example:
m, 200 GeV
xx — bb
(ov) ~ 6.2 x 107 em’s ! :

Prompt emission

ete-
injection spectrum

e+e-

Pirsa: 11050057 I G-E 1 0_. 1 0-2 1 On 1 0:
| Zavala et al. 2011 arXiv-1103.0776 E(GeV)

equilibrium spectrum
(not normalized)



Same cosmology as Millennium |

100 Mpc'h box and s=1kpc/h

N =2160°, m  =689x10°Msun/h

Bound substructures found using
SUBFIND (Springel et al. 2001):

11x10° subs at z=0

M“ (min}~1_4x10°Msunvh

Millennium-I|
(Boylan-Kolchin et al, 2009)

D
=
®)
O
e
i =
=2
e
N
)]
B =
()
i =
-
o)
e
b
0

Anu

1)

irsa., 11050057

S



Astrophysical factor (DM halos)

« For a given region of volume V, the annihilation luminosity is proportional to:

E., ex

I

pi(T)d’

o V

EVS

. For a smooth DM halo (Springel et al. 2008): L= = f paew (r)dV = - =

« Formula agrees with summation over particle densities in high resolution simulations:

Virgo Consortium’s Aquarius Project (MW-like haloes), hi-res: m_ _~1500 Msun

Substructures within haloes have a
significant role for external observers.
Their contribution to the total luminosity
is ~200 times the contribution of the
smooth component for a MW-like halo.
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Astrophysical factor (DM halos)

» For a given region of volume V, the annihilation luminosity is proportional to:

L, x [ pl@d

- [ ,2 e | 5 = ]
« For a smooth DM halo (Springel et al. 2008): ’1_ / Pew (T)  GPrgas

« Formula agrees with summation over particle densities in high resolution simulations:

Virgo Consortium’s Aquarius Project (MW-like haloes), hi-res: m_ _~1500 Msun

— = /::

Substructures within haloes have a =% F | =
significant role for external observers. - 3 4 1
Their contribution to the total luminosity < 7L S =
Is ~200 times the coniribution of the = = =
smooth component fora MW-like halo. = 1
= , =

i 10 [ =
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Astrophysical factor (DM halos)

« For a given region of volume V, the annihilation luminosity is propartional to:

L., / P (T)d’x
s V

Lr = 2 d"_ 1-23"]-::31
« For a smooth DM halo (Springel et al. 2008): “= — / Prww (T)AV = Cro.

» Formula agrees with summation over particle densities in high resolution simulations:

Virgo Consortium’s Aquarius Project (MW-like haloes), hi-res: m_ _~1500 Msun

- //:/“"‘;

Substructures within haloes have a ' F =]
significant role for external observers. - | 1
Their contribution to the total luminosity < 157L =
iIs ~200 times the coniribution of the = L =
smooth component fora MW-like halo. = | / -
E. L = =]
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Simulating the past light cone

Value per pixel:

Z L”"firlE fl""'lx*HE

" hedq,,
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All-sky maps
(resolved structures up to z~10, E=10GeV)

—IL = e 3.0 Log (Lg)

N . =12(51 2Y~3x10° ang. res. ~ 0.115°

Extrapelation for unresolved halos down to earth masses (~2 orders of magnitude unceainty)



Isotropic component

my ~ 200 GeV , xx = bband (ov) ~ 6.2 x 10" em’s™
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Isotropic component (annihilation channel)
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Isotropic component
my ~ 200 GeV, yx — bband (ov) ~ 6.2 x 107 * cm’s
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Isotropic component (annihilation channel)
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Constraints on particle

“factoring out” the
astrophysical part of
the signal

_ c : : =
I(Ey) = —Eofwnap( Eo(l +27))
O
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Constraints on particle physics models
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)

- BF =300 5 =
> oif -
= - =
¥ -
|
Pirsa: 11050057 N
llm 5 5 " PR N R | £ u
0 100 1000

Benchmark no.| Anminlanon Channel mg (MeV)|m, (TeV) a,. JMeV) — ﬁ-,"i?b :.1:!—1
1 112 6= - p= - 7= 200 168 |004067 015 530
2 El2e= - pu~=:n= 300 152 |003725| 134 360
3 Elle - p= i v 580 155 |003523 149 437
4 EkEep" =n" 580D 1.20 D03D054 100 374
5 EEa" gt 350 133 |002643 1.10 339
6 = only 200 100 (001622 070 171
e :PAMEIADE
I BM 1 » New force carrier in the “dark sector”
XDMe® e, 'ty 2 1 (1:122)
m, =1.68 TeV « Annihilation cross section enhanced by a
m, =900 MeV Sommerfeld mechanism:

‘:f.gv} = (00)0S(0vel)
 Correct relic density
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« |C contribution dominates the photonryiedds



Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Pirsa: 110

50057

XDMe e, ptu. £« (1:12)

m, =158 TeV
m, =900 MeV
BF =500

oo

Benchmark no.| Anminilatnon Channel mg (MeV){m, (TeV) a,. I (MeV) — ﬁ;"l‘;e. ::;_ =

1 FI2e=-p=:-x™ SO0 168 004067 015 530
7. i 2e —p -w 00 152 003725 134 360
3 EEEs" - " 5380 155 003523 149 437
4 ket —n - xt 580 1.20 |003054! 100 374
5 -l e* - p* 350 133 |DO2643 110 339 :
6 e= only 200 1 00 001622 070 171

| : e e

| —=— PAME A Do

) BM 1 « New force carrier in the “dark sector”

« Annihilation cross section enhanced by a
Sommerfeld mechanism:

(ov) = (ov)0S(0vel)

- » Correct relic density

» Fit to the cosmic ray excesses measured by
PAMELA and Fermi

 Allowed by bounds on Smax from the CMB

« |C contribution dominates the photonryieids



Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Sommerteld-enhanced models fitting the cosmic
ray excesses (Finkbeiner et al. 2011)
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Summary and Conclusions

Sommerfeld-enhanced models can explain the cosmic-ray anomalies,
but they need to be consistent with independent astrophysical
constraints.

The local boost factors are less than ~100 for a scalar boson as the force
carrier and a Yukawa interaction (relic density constraint).

We have obtained predictions from the simulated all-sky maps of the
cosmic X- and gamma-ray background from DM annihilation including:

« Photon yield given by a WIMP model (in situ photons and up-
scattered photons of the CMB). Model-independent, can be used for
Sommerfeld-enhanced models.

« Dark matter spatial distnbution using Millennium-ll simulation,
uncertainty of ~2 orders of magnitude in extrapolation to unresolved
structures.

Isotropic component constrained by observations of the cosmic
background, and contributions from blazars and star forming galaxies:
although is not as clean as the CMB, it is more powerful to constrain the
intrinsic properties of dark matter.
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Sommerfeld-enhanced models fitting the cosmic
ray excesses
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