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Abstract: We will explore generalisations of the Shannon and von Neumann entropy to other probabilistic theories, and their connection to the
principle of information causality. We will aso investigate the link between information causality and non-local games, leading to a new quantum
bound on computing the inner product non-locally.
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Introduction

= The ability to quantify information and uncertainty using entropies
has proved very valuable in understanding quantum and classical
theory, and their information-processing capabilities.

= Can the notion of entropy be extended to other probabilistic
theories?

= AJS, S. Wehner, New J. Phys. 12 03302 (2010)

« H. Barnum, J. Barrett, L.O. Clark, M. Leifer, R. Spekkens,
N. Stepanik, A. Wilce and R. Wilke, New J. Phys. 12 033024 (2010)

= @G. Kimura, K. Nuida, H. Imai, Rep. Math. Phys. 66, 175 (2010)
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General probabilistic theories

= We consider a general probabilistic framewark for physical thearies
based on operational notions (as in many previous works...).

= The framewark we use is more general than some, as we do not
assume

= That all mathematically possible measurements/transformations
are implementable

« That compaosite systems can be completely characterised by local
measurements. (i.e. Local tomography)
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Overview of framewaork (not including lots of d
= Each system (or collection of systems) has a set of allowed states S

« Any mixture can be prepared, and is represented by

'sri?.-*::c = p‘gl E (1 = p )‘g“‘

hence state sets are convex

= |f we independently prepare system A in state s, and system B in
state s;, we generate a well-defined product state of the

compasite AB denoted by 5,9 sg

= States are separable if they are equal to a mixture of product
states and entangled otherwise.
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= For each system, there is some set of allowed measurements E
= Each measurement e has a finite set of outcomes

= Each outcome r is associated with an affine effecte.: S— [0,1]
such that e (s) is the probability of obtaining result r on state s.

€=' ( '5'.:.135':-: ) = per' (‘SI )_ (1 = p ){_’)" ( 51 )
= The sum aver all effects in a measurement is the unit effect u

satisfying u(s)=1 for all states.

= We assume that we can independently measure two systems to
perform a well-defined product measurement e,® e,
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* |f one measurement gives strictly more information than another
we call it a refinement

(eg {ey, &} > {e,, &5, , &} where e,_+e,—e, and e, , #Ccey,)

Fa -

= We call a measurement fine-grained if it has no refinement.

» The set of fine-grained measurements is denoted by E*—E
= We assume that E* is non-empty.

Similarly, if one measurement gives strictly less information than
another we call it 3 coarse-graining.

= We assume that E is closed under coarse graining.

For clarity, when dealing with entropies of states we will
sometimes write H(s,) as H(A), H(s,g) as H(AB), etc.
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= For each system, there is some set of allowed measurements E
« Each measurement e has a finite set of outcomes

= Each outcome ris associated with an affine effecte : S— [0,1]
such that e (s) is the probability of obtaining result r on state s.

es,.)=pels )+(1—ple.ls,)

= The sum aver all effects in a measurement is the unit effect u
satisfying u(s)=1 for all states.

= \We assume that we can independently measure twao systems to

perform a well-defined product measurement e, eg
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* |f one measurement gives strictly more information than another
we call it a refinement

(eg {e;, &} > {e,, &, , e} Wwhere e,_+e,=e, and e, =cey).
= We call a measurement fine-grained if it has no refinement.
» The set of fine-grained measurements is denoted by E*CE
= We assume that E* is non-emptyv.

= Similarly, if one measurement gives strictly less information than
another we call it a coarse-graining.

= \We assume that E is closed under coarse graining.

* For clarity, when dealing with entropies of states we will
sometimes write H(s,) as H(A), H(s,g) as H(AB), etc.
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= (Classical probability theory
» States are finite probability vectors p.

» Effectsare e(s)=2.q.'p. forqg'<s[0,1]

* Quantum theary
« States are finite-dimensiaonal trace 1 positive aperatars p

= Effects are e (s)=tr(E. p) forO<E_<I
= Fine-grained measurements are POVMs with rank 1 elements.

= Restricted quantum/classical thearies
= some subset of allowed states / measurements
* Real quantum theory
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Box world

= A generalised probabilistic theory that has received a lot of
attention is box-world , previously called Generalised Nan-
Signallling Theory’ [J. Barrett (2005)].

= The state of a single system is given by a conditional probability
distribution P(a|x). All such distributions are allowed states.

- Intuitively, x represents an input (a choice of measurement)
and a an output (the measurement result).

. Different types of system have different finite input and

output sets =

(a¥]
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= Multipartite states are represented by joint conditional probability
distributions P(a, 3, ... 3. |x; X5 ... X ).

« All distributions satisfying the no-signalling condition are
allowed states.

Z P(a,---a_|x,---x_) 1sindependentof x,

« An important state in box-world is the entangled PR-box state
|S. Popescu, D. Rohrlich(1994)] where a,b,x,y are binary

["'ﬁ -

/12 if a®Bb=xy

A M S v ) . [
_]~4--E:-ili)--}:-. _______ 18 ] R_:_? { L{h —le} —

E v 0 if a@b+xy
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= A generalised probabilistic theory that has received a lot of
attention is box-world , previously called Generalised Non-
Signallling Theory’ [J. Barrett (2005)].

= The state of a single system is given by a conditional probability
distribution P(a|x). All such distributions are allowed states.

- Intuitively, x represents an input (a choice of measurement)
and a an output (the measurement result).

. Different types of system have different finite input and

output sets =
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= Multipartite states are represented by joint conditional probability
distributions P(a; 3, ... 3. |%x; X5 ... X ).

« All distributions satisfying the no-signalling condition are
allowed states.

E P(a,---a_|x,---x_ ) 1sindependentof x,

« An important state in box-world is the entangled PR-box state
[S. Popescu, D. Rohrlich(1994)] where a,b,x,y are binary

Y2 if a®b=xy

= ﬂ” _______ (o j P, (ab| xv)=-

* L0 if a®bzxy

4
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* |n box world all mathematically well-defined measurements and
transformations are allowed.

* The allowed measurements E include putting an input x in the
box, and obtaining result @, but also mixtures of these things.

= On bipartite systems all measurements can be performed only
using the box inputs and outputs. E.g.

e
|.
"__l/—’/’f’ -

* However there exist nan-trivial tri-partite measurements, that
cannot be performed in this way. [AlS, J.Barrett (2010)]
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Generalised e_rEropy

= Qur aim is to define an entropy that is meaningful for any
operational theary, yet reduces to the Shannon and Von-Neumann
entropy in classical and quantum theory.

= The more properties of the usual entropy that our definition
maintains, the better.

= To preserve the valuable intuitions we have developed

= To allow the passibility of lifting proofs from the quantum to the
general case
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= Many definitions are possible, and we will consider another natural
alternative later (the decompaosition entropy)

= However, a good definition is :

H(s) Einfe £ HL(E{\))

= H_is the classical Shannon entropy 7.(&(s)) = ~§c’.fﬁ'llog~ e (s)

.

= |Intuitively, H(s) is the minimal outcome uncertainty for any fine
grained measurement on the system.
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1) Reduction: Crucially, H(s) reduces to the von-Neumann entropy in
guantum theory, and the Shannon entropy in classical theory

» |n the quantum case, the optimal fine-grained measurement is
a projective measurement in the eigenbasis of p.

2) Pasitivity and Finiteness: |et d be the minimal number of
outcomes of a fine grained measurement. Then it is easy to see

that
0< H(s)<logd
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3) Concavity:

H(s,__)> pH(s, )+(1-p)Hl(s,)
Proof: Suppaose the infimum is attained for ecE™, then

> pH _(els, ))+(1—p)H _(els,))
> pH{s, )+ (1—p)H|s, )

» Two additional properties hold with weak additional assumptions.
In particular, they hold in classical theory, quantum theory and box-
waorlid

irsa: 11050048 Page 19/42




4) (Limited) Subadditivity: Suppose that a product of two fine
grained measurements is also fine-grained. That is

eck, fecE,>eQfcE,

then
H(A)+H(B)> H(AB)

n

(Limited) Continuity: Suppose that for a given system, restricting
E” to measurements with a bounded number of autcomes does
not change the entropy. Then the entropy is continuous on states
with the natural distance measure (distinguishability using E)
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(Limited) Coding theorem

= |deally , we would like an operational understanding of our entropy
in terms of data compression

= With additional (relatively strong) assumptions, which hald in
guantum and classical theory, we can prove such a result - that the
entropy gives an achievable compression’ rate.

= |n particular, we assume that all relevant measurements are

= Repeatable - Repeating the measurement yields the same
result

= Weakly disturbing - If a measurement result is almost certain to
occur, abtaining that result doesn’t change the state much.
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* |deally , we would like an operational understanding of our entropy
in terms of data compression

= With additional (relatively strong) assumptions, which hald in
guantum and classical theary, we can prove such a result - that the
entropy gives an achievable compression’ rate.

= |n particular, we assume that all relevant measurements are

= Repeatable - Repeating the measurement yields the same
result

= Weakly disturbing - If a measurement result is almost certain to
occur, abtaining that result doesn’t change the state much.
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Given H(s), we can also define other entrapic quantities
analogously to the quantum case

= Conditional entropy: [1(A4| B)=H(AB)—H(B)

» Mutual Information: [(4A:B)=H(A)+H(B)—H(AB)

= However, these do not maintain their intuitive properties as nicely
as the entropy itself. For example, the conditional entropy is not
subadditive in box-waorld.
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= There are many alternative definitions of the entropy which we
could have chosen. One example is the decompasition entropy
Hy(s), which measures the mixedness of a state

* Denote the extreme points of S by S . Call these pure states, with
all other states being mixed. The decompasition entropy of s is the
minimal Shannon entropy of the probability distribution over pure
states, for all pure state decompaositions of s
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= Like H(s), it can be praved that Hy(s) reduces to the van-Neumann
and Shannaon entropy in classical and quantum theary respectively.

« The fact that these two conceptually different entropies are the
same in quantum theory is intriguing (Barnum et al.)

* However, examples from box warld illustrate that H,(s) is neither
concave or subadditive in general.

= Hy(s) also has a number of other counterintuitive properties in box
waorld. E.g.

» The decampasition entropy of a maximally random binary-
input/output box is 1.

= However, the decompasition entropy of two random boxes is
also 1 (as they are an equal mixture of PR and anti-PR).
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Information causality

= A useful arena in which to try out our generalised entropy is
information causality [Pawlowski et al, Nature 461, 1101 (2009)]

N randam bits X, ... X,

m classical bits

a

, b (Bob’s best

N
( Z ”t 2b| = /{)‘i_: i Guess of x,)
=
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* |[nformation causality is respected by gquantum and classical theory,
but violated in box-warid.

= |n particular, for the case in which N=2 and m=1, using a single PR-
box state, Baob can perfectly discover whichever of Alice’s bits is
requested, achieving

lzz I[(x :bly=k)<m=1

* The proaof of information causality depends on manipulating the
guantum mutual information.

= By following the same steps using our generalised mutual
information, we can see where the proof fails for box world.
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* The failure actually happens for the state after Alice has sent the
message a, which is separable

| 0 otherwise

= The next step of the proof uses the data processing ineguality to

deduce that
Itx, - xal)>ix, —al)
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= However, this relation does not hald in box warld. Indeed, for the
state given it is easy to compute that

0=I(x,-xal) 2 I(x, -af) =]

* Applying our usual intuitions about the mutual information, this
would suggest that forgetting’ x, gives mare information about x,

= This shows that our general entropy does not satisfy strang
subadditivity in box waorid

H(ABC)+H(C) < H(AB)+H(AC)
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= |nterestingly, given any theory which includes classical systems
(and some natural transformations), information causality will hold

if there exists any entropy function H-(s) for states in that theory
satisfying

Classical reduction: H (s)=H_(s) when s is a classical system

Data processing: For any joint system AB, and any
transformation on A

AH ,(AB) > AH (A)

(this is equivalent to I(A:B) = I(T[A]:B), and is satisfied by the
Shannon and von Neumann entropy)
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= The fact that quantum theary admits an entropy which shares
many of the paowerful properties of the Shannon entropy is

surprising, and may be very special in the set of thearies.

= Information Causality seems to be a conseguence of this.

= Can we find other interesting tasks for which there is a classical

entropic bound, and see if they hald in quantum theory but not in
general?

= Entropies are strange non-linear functions

» Surprisingly hawever, Information causality can be used to
derive part of the boundary of the set of quantum carrelations
|Pawlowski et al, and Allcock et al (2009)]. How?
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Information causality as a non-local game

* The proof of Tsirelson’s bound from information causality invalves
only 1 bit of communication, which is added to Bab’s guess (maod 2).
Hence we can think of it as a non-local game.

N randam bits x, ... X, Randomy<{1,...N}

(
l | Task: a@h:le

a .
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= For non-local games, the normal figure of merit is the probability of
success P_,__.... Quantum theaory can do better than classical in this

b L e B

case (e.g. For N=2 we get the same probabilities as CHSH)

= Define P, as the probability of success when Baob is given y, and the
corresponding bias B =2P, —1

» \When proving Tsirelson’s bound from Information causality

= A quadratic bound on the entropy is used to derive 3
probabilistic bound on this game given by

is_f <2In2

= Can we derive a similar bound directly from quantum theory?
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* For non-local games, the narmal figure of merit is the probability of
success P_,__.... Quantum theary can do better than classical in this
case (e.g. For N=2 we get the same probabilities as CHSH)

= Define P, as the probability of success when Baob is given y, and the
caorresponding bias B =2P —1
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= A quadratic bound on the entropy is used to derive a
probabilistic bound on this game given by

iBf <2In2

= Can we derive a similar bound directly from quantum theory?
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= For any quantum strategy

- 11 Z {_f‘:{zflg(—l'}h;"_;' lw)

= Using similar techniques to those in the nan-local computation
paper |[Linden et al (2007)] we define

@)= _Tl—l] Q| x &)= _Ti—lr )@ x

vZ vz

and note that
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* The quantum bound

Y B<1

is easily saturated classically, by answering one question perfectly.

» Hence with this figure of merit guantum theory is no better
than classical. Yet in box-waorld the sum can equal N

= Note that this also gives a bound on the probability of success

= 1 : l .*'/ .\,
_P_i_'r:i“_njli_”?? i _F 1__ B_ | 1 é ‘ ]-__ |

l

which is saturated when N is a power of 2
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= For any quantum strategy

B = _11_\,- Z &W]( _1_}_;____.-:__ +x, ‘f,.fff_}"’

= Using similar technigues to those in the non-local computation
paper |[Linden et al (2007)] we define

1 . i S
a)=——Y (-)*|w)®|x b )=—— E (-1 7w)®|x
_— _‘_‘.\
x .-. \‘— ..-.

S Th

and note that
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* The quantum bound

> B <]

is easily saturated classically, by answering one question perfectly.

» Hence with this figure of merit guantum theary is no better
than classical. Yet in box-worid the sum can equal N

= Note that this also gives a bound on the probability of success

which is saturated when N is a power of 2
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= \We can use essentially the same proof to get a quantum bound for
the inner product game (with Bab’s input having any distribution)

N bits y; ... yy

Alice

. . e e e e R e e e e e T O

Task: a@hzxyi |

a 3 ) D

= \When Bob’s bit string is restricted to contain a single 1, this implies
the information causality result. When N=1, it yields Tsirelson’s
bound, and the stronger quadratic version [Uffink 2002]
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= \We can use essentially the same proof to get a quantum bound for
the inner product game (with Bab’s input having any distribution)

N random Dits X, ... X :
Y BX<I

o i o O T e e e e T O

‘ | Task: a®b=xy

a .

R
[& 3

= \When Bob’s bit string is restricted to contain a single 1, this implies
the information causality result. When N=1, it yields Tsirelson’s
bound, and the stronger quadratic version [Uffink 2002]
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Open questions

= Quantum theary has an entropy with many of the intuitive
properties of the Shannon entropy. Can we find other theories like
this?

= Are there aother interesting informational principles which hald in
guantum theory but not in general?

= |s there a connection to statistical physics?

= Can we find quadratic bounds for other non-local games?
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