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Abstract: A seminal work by Cleve, H& Atilde;A f& Acirc;& cedil;yer, Toner and Watrous (quant-ph/0404076) proposed a close connection between
guantum nonlocality and computational complexity theory by considering nonlocal games and multi-prover interactive proof systems with entangled
provers. It opened up the whole area of study of the computational nature of nonlocality. Since then, understanding nonlocality has been one of the
major goals in computational complexity theory in the quantum setting. This talk gives a survey of thisexciting area.
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Quantum nonlocality

|Bell 64] [Clauser. Home. Shimonv, Holt 69]

Measurement i the quantum theorv cannof be
described by local hidden varnable model
In LHV model. if —1 <A,. A,. By. B; = 1, then
N\ L N\ .
<L‘\{:}B{}>_<LA.GB1,¢;_\..AIBO/_<¢AL1B1> —= :
In quantum theorv. it can be
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CHSH game

s 1€ 0.1} X {0.1} umf.

Accept it a®b=s/\ 1

Classical value o(G)=3 4
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CHSH game

s 1< 0.1 X 0.1} umf.

Accept it a®b=s/\1
Classical value o((G)= 34
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Entangled value ®*((G) = cos~('8)~=0.85




General form

of 2-player 1-round game

acs A4 h&JB

stESXT. distrib. &
Accept ift R(s.t.a.b)=1

Classical value o((G). Entangled value o™(G)
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General form

of 2-player 1-round game

S : - [

S. r@@dntub@
Accept 11@» t.a.b)=

Classical value o(G). Enmngled value ®*((G)
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Background in computational

complexity theory

Complexity theorv classifies problems
bv their inherent difficulty

il

Hamiltoman circuit problem:

-

| [nput: A graph G
T g ¥ _, Question: Does (& have
\ ~/ acircutt visiting every
g vertex exactly once”
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Example taken from http://en.wikipedia. ore/ wikiyHamiltonian path
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of 2-player 1-round game

S ‘ ‘ [

S.1 @@di:itrib@

Accept it@&ﬂa.h =1

Classical value (). Entangled value o™(G)
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Hamiltonian circuit problem:
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| [nput: A graph G
) v~ Question: Does (G have
\ ~/  acircuit visiting every
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—
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Background in computational

complexity theory

Complexity theorv classifies problems
bv their inherent difficulty

Hamiltoman circuit problem:
[nput: A graph &
Question: Does (7 have

a circuit visiting every
vertex exactly once”
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Example taken from http: en wikipedia ore wiki Hamultonian path




Background in computational

complexity theory

Complexity theorv classifies problems
bv their inherent difficulty

Hamiltonian circuit problem:
[nput: A graph &
Question: Does (7 have

a circuit visiting every
vertex exactly once”

NP-complete.

e T no efficient algorithms known
Example taken from hitp en wikipedia ore wiki Hamiltonian path




Background in computational

complexity theory

Complexity theorv classifies problems
bv their mherent difficulty

Hamiltoman circuit problem:
[nput: A graph G
Question: Does (7 have

a circuit visiting everv
vertex exactly once”

NP-complete.

=t no efficient algorithms known
Example taken from http- en wikipedia ore wiki Hamiltonian path




Background in computational

complexity theory

Complexity theorv classifies problems
bv their mherent difficulty

Hamiltoman circuit problem:
[nput: A graph &
Question: Does (7 have

a circuit visiting everv
vertex exactlyv once”

NP-complete.

=

== N no efficient algorithms known
E.-mn_ le taken from http oW lI- ipedha ore wiki Hamultonian path




Background in computational

complexity theory

Complexity theorv classifies problems
bv their mherent difficulty

| Hamiltoman circuit problem:
/ [nput: A graph &

/ \\ \, Question: Does (7 have

/ a circuit visiting everv

\\

vertex exactly once”

NP-complete.

== no etfficient algorithms known
E._mu_ le taken from http en ‘ﬂ- ipedia ore wiki Hamiultoman path




Background in computational

complexity theory

Complexity theorv classifies problems
bv their inherent difficulty
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Background in computational

complexity theory

Complexity theorv classifies problems
bv their inherent difficulty

Hamiltoman circuit problem:
[nput: A graph &
Question: Does (7 have

a circuit visiting everv
vertex exactlyv once”

NP-complete.
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P, NP, interactive proofs

P [nput

[f the correct answer 1s ves

— Accept

[f the correct answer 1s no
O — Reject

Accept Reject
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P, NP, interactive proofs

NP [nput
Certificate
[f the correct answer 1s ves
= — —accepted certificate
[t the correct answer 1s no
A — ¥ certificate 1s rejected

Accept Reject
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P, NP, interactive proofs

[P [Babai1 83] [Goldwasser. Micali. Rackoff "83]
[nput

_—

[f the correct answer 1s ves
>/ = dprover is accepted
with high prob.
[t the correct answer 1s no
= V prover 1s rejected
with high prob.
Accept Reject
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Multi-prover interactive proofs

| Ben-Or. Goldwasser. Kilian. Wigderson 88}
— =

e

— Accept/Reject
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Multi-prover interactive proofs

| Ben-Or. Goldwasser. Kilian. Wigderson 88]

MIP svstem defines a multi-plaver multi-round game
of exponential size for each input

Classical value = Maximum acceptance probability
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Results in the classical case

[Feige. Lovasz "92]
MIP = NEXP. even with 2 provers, 1 round.
exp-small 1-sided error

[n terms of games: Given a 2-plaver l-round game (&

with — 7 questions and — 7 answers. deciding whether
(O (_}} = ] Or (O (__?} ~ |l n

1s NP-complete

This 1s used to prove hardness results

formany approximation problems



Results in the classical case

[Feige. Lovasz 92]
MIP = NEXP. even with 2 provers. | round.
exp-small 1-sided error
[n terms of games: Given a 2-plaver l-round game (&
with - » questions and — 7 answers. deciding whether
o(G)=1 or o(G)<1/n
1s NP-complete

This 1s used to prove hardness results

formany approximation problems



Computational complexity

of entangled value of games
|Cleve. Hover. Toner. Watrous 04]

®((r)1s hard to compute. then what about ®™*((7)?

Naive thought: ®*(() looks at least
as hard as ®((r) to compute (= NP-hard).
because ®*((r) searches n the larger set

3

of strategies tor plavers..."

irsa: 11050046 Page 27/85




Computational complexity

of entangled value of games
|Cleve. Hover. Toner. Watrous 04]

®((7) 1s hard to compute. then what about ®™*(()?

Naive thought: ®*(() looks at least

as hard as ®((r) to compute (= NP-hard).
because ®*((7) searches n the larger set
of strategies tor plavers...? Wrong!

irsa: 11050046 Page 28/85




2-player XOR games

stE=S XT. distrib.

~ Accept ittt R(s.t.a®b)=1

e
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2-player XOR games

[Cleve. Hover. Toner. Watrous "04]

For 2-plaver XOR game G.
* ®*((r) can be computed efficiently
(to a polvnomial number of digits)
(based on [Tsirelson 80])
* Deciding whether ®((G) - 0.75 or ®(G) — 0.70
1s NP-complete (based on [Hastad 97])
This means: Allowing more power to plavers
=geymetimes makes the problem easier
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2-player XOR games

|Cleve. Hover. Toner. Watrous 04]

For 2-plaver XOR game G.
* ®*((r) can be computed efficiently
(to a polvnomial number of digits)
(based on [Tsirelson 80])
* Deciding whether o(G) = 0.75 or o(G) — 0.70
1s NP-complete (based on [Hastad 97])
This means: Allowing more power to plavers
=geymetimes makes the problem easier




Hardness of computing

entangled values

Theorem

[Kempe. Kobavashi. Matsumoto. Toner. Vidick "07]:
Given a 3-plaver I-round game G.

deciding whether ®*((7)=1 or not 1s NP-hard.

n computational complexity theoryv.
1ardness such as this theorem 1s proved by comparing

he ditficultv of two problems via a reduction.
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Reduction

| Kempe. Kobavashi. Matsumoto. Toner. Vidick "07]
Start with 2-plaver l-round game G-
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Reduction

| Kempe. Kobavashi. Matsumoto. Toner. Vidick 07]
Convert (5 to 3-plaver l-round game &

s 71 ¢

~ S01}

*» Send s or 1 at random to a
third plaver

* Check that the same questions
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lead to the same answers



Reduction

| Kempe. Kobavashi. Matsumoto. Toner. Vidick 07]
Prove o(G)=1 & o™(G =1
bv considering what a strategv n G
with acceptance prob. 1 looks like
Deciding whether ®*(( )=1 or not 1s as hard as
deciding whether @(()=1 or not
Since deciding whether o(()=1 or not
1s NP-complete. deciding whether o®™((G =1
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or not 1< NP-hard




NP -hardness via reductions

In general. proving the hardness of
computing o *((7) requires
suttable rransformations among games.
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Hardness of computing

entangled values

[Later improvements:
* NP-hard even with binarv answers
[Ito. Kobavashi. Preda. Sun. Yao 08]

* NP-hard even with 2 plavers
| [to. Kobavashi. Matsumoto 09]




Hardness of approximation

| Kempe. Kobavashi. Matsumoto. Toner. Vidick 07]

[t can be proved that

HG)= 12 = o*(G )~ l-cn? tor some ¢ 0
Since deciding whether o(G)y=lor o(G)— 12
1s NP-complete. deciding whether

o *(G =1 or ®*(G) — 1—¢ n?1s NP-hard

['he analogous results hold for 3-plaver I-bit-answer
zames and 2-plaver games [IKPSY 08] [IKM 094w
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2 provers vs 3 players

“Almost commuting vs. nearlyv commuting”
conjecture implies a better hardness result
tor 3-plaver l-round games [KKMTV 07]
1
However. no known reductions

are sufficient for a better hardness result
for 2-plaver 1-round games [IKM 09]

2 and 3 plavers mav be significantly different

wWhei the complexity of nonlocal games 1s concéfiied |
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No-signaling value
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No-signaling value

®,( () can be computed in polvnomial time
via linear programming

With 2 plavers and 1 round. 1t 1s even better than
merelv polv-time:

o, ((7) for exponential size game

can be computed n PSPACE [Ito 09]
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Embarrassing(?) open problem

Find some (even exponential-time or less etficient)
algorithm which decides whether ®*(()=1 or not
when given a nonlocal game &

(or prove that it 1s undecidable).

Anv computable upper bound on the required
dimension of shared quantum state will vield
such an algorithm.
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Parallel repetition /

Gap amplification

[t & 1s 2-plaver XOR game. repeating (& for 7 times
m parallel reduces 2o*((7)—1 exponentially mn 7

|Cleve. Slotstra. Unger. Upadhvayv 07]

Everv 2-plaver l-round game (& can be etficiently
converted to another 2-plaver l-round (& so that
o (G)=1 = o™(G =1 and

®*((G)0.99= &*(G )~ 0.01 [Kempe. Vidick "11]

irsa: 11050046 Page 83/85




The classical value of a game was verv well studied
in the complexity theorv and 1s important mn
various mapproximability results.

The complexity of computing approximating
the entangled value 1s still largely unknown.
although 1t 1s known m certain special cases.

The abilitv to control the game value bv
tansformationis the Kev to prove hardness resulfs.




Summary

The classical value of a game was verv well studied
in the complexity theorv and 1s important n
various mapproximability results.

The complexity of computing approximating
the entangled value 1s still largely unknown.
although 1t 1s known m certan special cases.

The ability to control the game value by
tausformationis the Kev to prove hardness resulis.




