Title: Data tables, dimension witnesses, and QKD

Date: May 13, 2011 02:50 PM

URL: http://pirsa.org/11050045

problem testing the dimensionality Abstract: address of classical and of quantum systems â€ÂÂ~black-boxâ€Â™ scenario. Imagine two uncharacterized devices. The first one allows an experimentalist to prepare a physical system in various ways. The second one allows the experimentalist to perform some measurement on statistics, â€ÂÂ~data collecting enough experimentalist obtains After the a tableâ€Â™, featuring the probability distribution of the measurement outcomes for each choice of preparation (of the system) and of measurement. Here, we develop a general formalism to assess the minimal dimensionality of classical and quantum systems necessary to reproduce a given data table. To illustrate these ideas, we provide simple examples of classical and quantum â€ÂÂ^{*}dimension witnessesÃ¢Â€Â™. In general quantum systems are more economical than classical ones in terms of dimensionality, in the sense that there exist data tables obtainable from quantum systems of dimension d which can only be generated from classical systems of dimension strictly greater than d. By drawing connections to communication complexity one can find data tables for which this classical/quantum separation is dramatic. Finally, these ideas can also be used to demonstrate security of one-way QKD in a semi-device-independent scenario, in which devices are uncharacterized, but only assumed to produce quantum systems of a given dimension.

Pirsa: 11050045 Page 1/41

Data tables, dimension witnesses and QKD

Nicolas Brunner

Joint work with: Rodrigo Gallego, Chris Hadley, Antonio Acin Jonathan Barrett, Christian Gogolin Marcin Pawlowski

Setup

Setup

Pirsa: 11050045 we make a device-independent (DI) statement about the dimensionality of px?

 $P(b_1^i x, y)$

Data Table

	m	1	m		
	+1	-1	+1	-1	
P1	P(+1¦1,1)	P(-1:1,1)	P(+1¦1,2)	P(-1¦1,2)	
P2	P(+1¦2,1)	P(-1:2,1)	P(+1¦2,2)	P(-1 ¹ 2,2)	

Given a data table, can we find useful bounds on the classical and quantum dimensions?

Separation between classical and quantum systems for a given dimension

Is this quantum advantage interesting/useful?

Pirsa: 11050045 Page 5/41

Here...

- Present simple formalism to handle data tables
 Method for DI tests of classical and quantum dimension
- · Foundational interest, e.g. ontological models (cf talk of Jon Barrett)
- Application in QKD

Pirsa: 11050045 Page 6/41

Testing classical systems

 Λ_x is a classical state of dimension d, ie a probability distribution over dits

Experiment = se \vec{E} of correlator: $E_{xy} = P(b=+1|x,y) - P(b=-1|x,y)$

Testing classical systems

 Λ_{x} is a classical state of dimension d, ie a probability distribution over dits

Experiment = se
$$\vec{E}$$
 of correlator: $E_{xy} = P(b=+1|x,y) - P(b=-1|x,y)$

Dimension witness
$$\vec{W} \cdot \vec{E} = \sum_{x,y} w_{xy} E_{xy} \leq C_d$$
 (~Bell inequality for data tables)

Geometry

Each $\exp \vec{E}$ nent can be viewed as vector in \mathbb{R}^{Nm}

Simple observation: if N<=d then all experiments can be reproduced classically

N > d (more preparations than tested

Pirsa: 11050045 Page 9/41

Testing classical systems

 Λ_x is a classical state of dimension d, ie a probability distribution over dits

Experiment = se
$$\vec{E}$$
 of correlator: $E_{xy} = P(b=+1|x,y) - P(b=-1|x,y)$

Dimension witness
$$\vec{W} \cdot \vec{E} = \sum_{x,y} w_{xy} E_{xy} \leq C_d$$
 (~Bell inequality for data tables)

Pirsa: 11050045 Page 10/4

Geometry

Each $\exp \vec{E}$ nent can be viewed as vector in \mathbb{R}^{Nm}

Simple observation: if N<=d then all experiments can be reproduced classically

N > d (more preparations than tested

Pirsa: 11050045 Page 11/41

Geometry

Each $\exp \vec{E}$ nent can be viewed as vector in \mathbb{R}^{Nm}

Simple observation: if N<=d then all experiments can be reproduced classically

Testing classical systems

 Λ_x is a classical state of dimension d, ie a probability distribution over dits

$$\text{Experiment} = \operatorname{se}\vec{E} \quad \text{ of correlator:} \\ E_{xy} = P(b = +1|x,y) - P(b = -1|x,y)$$

Dimension witness
$$\vec{W} \cdot \vec{E} = \sum_{x,y} w_{xy} E_{xy} \leq C_d$$
 (~Bell inequality for data tables)

Pirsa: 11050045 Page 13/41

Geometry

Each $\exp \vec{E}$ nent can be viewed as vector in \mathbb{R}^{Nm}

Simple observation: if N<=d then all experiments can be reproduced classically

Geometry

Set of experiments possible with classical systems of dim d is a polytope

Facets = Tight classical dim-witness

$$\vec{W} \cdot \vec{E} = \sum_{x,y} w_{xy} E_{xy} \le C_d$$

Quantum dimension witness

Example

Simplest case: 3 preparations and 2 measurements

$$E_{13} \equiv |E_{11} + E_{12} + E_{21} - E_{22} - E_{31}| \leq 3$$
. Tight classical 2-dim witness

	M1	M2		
P1	+	+	<	3 (bit)
P2	+	-		
P3	-		<	5 (trit)

Example

Simplest case: 3 preparations and 2 measurements

$$I_3 \equiv |E_{11} + E_{12} + E_{21} - E_{22} - E_{31}| \leq 3$$
. Tight classical 2-dim witness

	M1	M2		
P1	+	+	<	3 (bit)
P2	+	-		
P3	-		<	5 (trit)

With qubits: $I_3 \leq 1 + 2\sqrt{2} \approx 3.8284$

Pirsa: 11050045

Page 17/41

Importance of 3rd preparation: CHSH is not a witness (Leggett-Garg not DI)

Quantum advantage

What can we do with this quantum advantage?

- Exponential separation (communication complexity)
- Security proof for 1-way QKD

Pirsa: 11050045 Page 18/41

Exponential separation

Family of data tables leading to exponential separation i.e. feasible with quantum systems of dim d
Unfeasible (even with small errors) with classical systems of dim less than 2^d

Communication complexity (e.g. Klartag & Regev 2010)

No-go theorem for ontological models (cf talk of Jon Barrett)

Pirsa: 11050045 Page 19/41

QKD

QKD

Semi-Discenario Non-characterized devices, but systems of bound

Security proof against individual attacks

Based on the violation of a dimension witness

Not based on entanglement or nonlocality (First proof that applies to the one-way case)

BB84

4 qubit preparations (¦+z>, ¦-z>, ¦+x>, ¦-x>) and 2 measurements (Z,X)

	M1	M2	
P1	+1	0	
P2	0	-1	
P3	0	+1	
P4	-1	0	

Does not violate any 2-dim classical witness!

Can be reproduced by sending a classical bit

No security in a semi-Discenario

Pirsa: 11050045 Page 22/41

BB84

4 qubit preparations (¦+z>, ¦-z>, ¦+x>, ¦-x>) and 2 measurements (Z,X)

Does not violate any 2-dim classical witness!

Can be reproduced by sending a classical bit

No security in a semi-Discenario

Strategy λ =0: Alice sends m=a0+a1, Bob outputs b=m+y lf y=a0, then b=a1 else b=a1+1

Page 23/41

λ=1. Alice sends m=a1 Rob outputs h=m=a1

	M1	M2	
P1	+	+	
P2	+	-	<=4 (for classical bits)
P3	-	+	, (ioi diaddidai bilo)
P4	-	-	

Pirsa: 11050045 Page 24/41

a0 a1		M1	M2	
au a i				
0 0	P1	+	+	
0 1	P2	+	-	<=4 (for classical bits)
1 0	РЗ	-	+	(ioi diaccidal bita)
1 1	P4	-	-	

This witness corresponds exactly to a 1-out-of-2 random access code (RAC)

		M1	M2	
a0 a1				
0 0	P1	+	+	
0 1	P2	+	-	<=4 (for classical bits)
1 0	P3	-	+	
1 1	P4	-	-	

This witness corresponds exactly to a 1-out-of-2 random access code (RAC)

Individual attacks: Csiszar & Korner (197I(A:B) > I(A:E)

$$P_B > P_E$$
 Positive key rate

Proof based on a result by R. König (PhD thesis)

 ${\cal F}_n$: set of balanced boolean functions on n-bit strings

Alice receives a (uniformly chosen) n-bit string; Bob receives a function in ${\cal F}_n$ Alice sends s qubits to Bob. Bob's probability of guessing is bounded by

$$P_n \le \frac{1}{2} \left(1 + \sqrt{\frac{2^s - 1}{2^n - 1}} \right)$$

We have n=2, s=1
$$P_B(a_0) + P_B(a_1) + P_B(a_0 \oplus a_1) \leq \frac{3}{2} \left(1 + \frac{1}{\sqrt{3}}\right)$$

Assume Bob and Eve collaborate

$$P_{BE}(a_0) + P_{BE}(a_1) + P_{BE}(a_0 \oplus a_1) \ge 2P_B(a_0) + 2P_E(a_1) - 1$$

$$P_{BE}(a_0 \oplus a_1) \ge P_{BE}(a_0, a_1)$$

 $\ge P_{BE}(a_0) + P_{BE}(a_1) - 1$

$$P_{BE}(a_i) \ge P_B(a_i)$$

$$P_B(a_0) + P_E(a_1) \le \frac{5 + \sqrt{3}}{4}$$
 $P_B + P_E \le \frac{5 + \sqrt{3}}{4}$

$$P_B > P_E$$
 when $P_B > rac{5+\sqrt{3}}{8} pprox 0.8415$

We have n=2, s=1
$$P_B(a_0) + P_B(a_1) + P_B(a_0 \oplus a_1) \leq \frac{3}{2} \left(1 + \frac{1}{\sqrt{3}}\right)$$

Assume Bob and Eve collaborate

$$P_{BE}(a_0) + P_{BE}(a_1) + P_{BE}(a_0 \oplus a_1) \ge 2P_B(a_0) + 2P_E(a_1) - 1$$

$$P_{BE}(a_0 \oplus a_1) \ge P_{BE}(a_0, a_1)$$

 $\ge P_{BE}(a_0) + P_{BE}(a_1) - 1$

$$P_{BE}(a_i) \ge P_B(a_i)$$

$$P_B(a_0) + P_E(a_1) \le \frac{5 + \sqrt{3}}{4}$$
 $P_B + P_E \le \frac{5 + \sqrt{3}}{4}$

$$P_B > P_E$$
 when $P_B > \frac{5 + \sqrt{3}}{8} \approx 0.8415$

Security

Qubits can reach $P_B = \cos^2(\pi/8) \approx 0.8536$

a0 a1		M1	M2	
0 0	P1	+	+	
0 1	P2	+	-	<=4 (for classical bits)
1 0	P3	-	+	(101 01001001 0110)
1 1	P4	-	-	

This witness corresponds exactly to a 1-out-of-2 random access code (RAC)

We have n=2, s=1
$$P_B(a_0) + P_B(a_1) + P_B(a_0 \oplus a_1) \leq \frac{3}{2} \left(1 + \frac{1}{\sqrt{3}}\right)$$

Assume Bob and Eve collaborate

$$P_{BE}(a_0) + P_{BE}(a_1) + P_{BE}(a_0 \oplus a_1) \ge 2P_B(a_0) + 2P_E(a_1) - 1$$

$$P_{BE}(a_0 \oplus a_1) \ge P_{BE}(a_0, a_1)$$

 $\ge P_{BE}(a_0) + P_{BE}(a_1) - 1$

$$P_{BE}(a_i) \ge P_B(a_i)$$

$$P_B(a_0) + P_E(a_1) \le \frac{5 + \sqrt{3}}{4}$$
 $P_B + P_E \le \frac{5 + \sqrt{3}}{4}$

$$P_B > P_E$$
 when $P_B > \frac{5+\sqrt{3}}{8} \approx 0.8415$

Security

Qubits can reach $P_B = \cos^2(\pi/8) \approx 0.8536$

Is this semi-DI approach relevant?

Alice is Semi-DI (preparations are of given dimension but non-characterized)
Bob is fully DI
Relaxation compared to usual security proofs

Works for 1-way configuration

Security only against a specific type of attacks (what about more general ones?)

Pirsa: 11050045 Page 32/41

- Data tables
- DI tests of classical and quantum dimension
- Ontological models; exponential separation
- Semi-DI security of 1-way QKD

Pirsa: 11050045 Page 33/41

- Data tables
- DI tests of classical and quantum dimension
- Ontological models; exponential separation
- Semi-DI security of 1-way QKD

Open Questions

- Connection to contextuality (preparation contextuality)
- Generalized models
- Connection to nonlocality (RAC, Information Causality)

Pirsa: 11050045 Page 34/41

- Data tables
- DI tests of classical and quantum dimension
- Ontological models; exponential separation
- Semi-DI security of 1-way QKD

Pirsa: 11050045 Page 35/41

a0 a1		M1	M2	
au ai				
0 0	P1	+	+	
0 1	P2	+	-	<=4 (for classical bits)
1 0	P3	-	+	
1 1	P4	-	-	

This witness corresponds exactly to a 1-out-of-2 random access code (RAC)

Pirsa: 11050045 Page 37/41

- Data tables
- DI tests of classical and quantum dimension
- Ontological models; exponential separation
- Semi-DI security of 1-way QKD

Open Questions

- Connection to contextuality (preparation contextuality)
- Generalized models
- Connection to nonlocality (RAC, Information Causality)

Pirsa: 11050045 Page 38/41

Pirsa: 11050045 Page 39/41

BB84

4 qubit preparations (¦+z>, ¦-z>, ¦+x>, ¦-x>) and 2 measurements (Z,X)

	M1	M2	
P1	+1	0	
P2	0	-1	
P3	0	+1	
P4	-1	0	

Does not violate any 2-dim classical witness!

Can be reproduced by sending a classical bit

No security in a semi-Discenario

Geometry

Set of experiments possible with classical systems of dim d is a polytope

Facets = Tight classical dim-witness

$$\vec{W} \cdot \vec{E} = \sum_{x,y} w_{xy} E_{xy} \le C_d$$

Quantum dimagration witness