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Abstract: We propose an operationally motivated definition of the physical equivalence of statesin General Probabilistic Theories and consider the
principle of the physical equivalence of pure states, which turns out to be equivalent to the symmetric structure of the state space. We further
consider a principle of the decomposability with distinguishable pure states and give classification theorems of the state spaces for each principle,
and derive the Bloch ball in 2 and 3 dimensional systems.
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OUTLINE

1: General Probabilistic Theories
2: Motivations and Goal

3: SymmetricGPT
* Physical Equivalence of Pure States

4: Decomposability w.r.t. distinguishable Pure States
5: Obtain classical and quantum (Bloch Ball) in 3 dim.

6: What I don't know..
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GENERAL PROBABILISTIC THEORIES (GPT)

™

Mackey (1960), Araki (1961);1 udwig {1964-); Micinik(1968), Devies and | ewis (1970), Gudder (1973), =i

* Operationally Most General Framework for Probability

State + Measurement = Probability |

* Probabilistic Mixture of states (Convex Structure
Separation postulates for states and measurements
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. GENERAL PROBABILISTIC THEORIES (GPT)

Mackey (17 ) i

vV states pi1,p2 and p € [0, 1].

3 state p = (p: p1, pP2)

as a preparation of p; with p and p> with 1 — p:

* Operationally M
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|
' GENERAL PROBABILISTIC THEORIES (GPT)
|

Mackey (17

V states p;.p2 and p € [0, 1].

L _ 3 state p = (p; p1, p2)
Operationally M 55 a preparation of p; with p and p» with 1 — p:

Pr{M =m |[(p: p1.p2)} =

pPr{M =m | p1} + (1 — p)Pr{M =m | p2}
| for any measurement M
* Probabilistic Mixture of states (Convex Structure

= Separation postulates for states and measurements
Physical Topology measured by probabilities
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GENERAL PROBABILISTIC THEORIES (GPT)

Mackey (1960), Araki (1961);1 udwig {1964-);Micinik(1968), Devies and | ewis (1970)

* Operationally Most General Framework for Probability

1 Separation Postulate for states: dability
Y measurement M and outcome m.

Pr{m|M, p;} = Pr{m|M, p>}, then p; = p>

* Separation postulates for states and measurements
* Physical Topology measured by probabilities
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GENERAL PROBABILISTIC THEORIES (GPT)

Mackey (1960), Araki (1961);1 ndwig (1964

* Operationally Most General Framework for Probability

dability

1 Separation Postulate for states:
Y measurement M and outcome m.

Pr{m..’t[. ,(?1} = PI’{ITI‘_“.[. _,CJ_:-} then pP1 = P2

— —
— i
—_

= 5S¢ Daration | postulates for states ai

1-):Micimik{1968), Devies and | ewns (1970), Gudder (1973), ic

Topologp—————— |
2 Separation Postulate for measurements:
V states p,
Pr{m|Mi, p} = Pr{m|M>, p}¥m, then M,

= Physical

A

= M>
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GENERAL PROBABILISTIC THEORIES (GPT)

Mackey (1960), Arakl (1961);Ludwig (1964-); Micimk(1968), Devies and Lewis (1970), Gudder (1973), ic

* Operationally Most General Framework for Probability

State + Measurement= Probability

* State space S is embedded into 2 convex subset in 2 real vector sp.
s.t. (p:p1.p2) =pp1 + (1 —p)p2
“ Measurement is represented by effects:
E:=(e; €&)y,58.t.) .e; =u. ei(p) : prob. for ith output under p

* Physical Topology measured by probabilities

Pirsa: 11050041 Page 9/69



GENERAL PROBABILISTIC THEORIES (GPT)

Mackey (1960), Araki (1961);Ludwig (1964-);Micimk(1968), Devies and Lewis (1970), Gudder (1973), =ic

* Operationally Most General Framework for Probability

State + Measurement= Probability

* State space S is embedded into 2 convex subset in 2 real vector sp.
s.t. (p:p1.p2) = pp1 + (1 —p)p2
“ Measurement is represented by effects:

E=(ecl)l, . st) e =n e rob. for ith output under p

- jhy-gica}_f_jnﬂip,ﬂ” malaksls H"E."i DL r"m.*“.h;‘.f‘“-iii

e € £: effect on S:
& e: 8 — [0,1] affine:
e(pp1 + (1 — p)p2) = pe(p1) + (1 — p)e(p2)
A S
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GENERAL PROBABILISTIC THEORIES (GPT)

Mackey (1960), Araki (1961);1 udwig {1964-); Micinik({1968), Devies and | ewis (1970), Gudder (1973), =ic

* Operationally Most General Framework for Probability

State + Measurement= Probability

% State space S is embedded into a convex subset in 2 real vector sp.
s.t. (p:p1.p2) = pp1 + (1 —p)p2
% Measurement is represented by effects:

E:=(e; €€&)y,8t.) .e; =u, ei(p) : prob. for ith output under p

* Physical Topology measured by probabilities

Weakest topology s.t.
all effects are continuous on S.
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GENERAL PROBABILISTIC THEORIES (GPT)

Mackey (1960), Araki (1961);1 udwig {(1964-);Micinik({1968), Devies and | ewis (1970), Gudder (1973), eic

* Operationally Most General Framework for Probability

State + Measurement = Probability

w State space S is embedded into a (pre)compact convex subset in 2
locally convex HausdorfT topological vector space V.
% Measurement is represented by effects:

E:=(e; €&),.5.t.) .e; =u. ei(p) : prob. for ith output under p

.

Physical Topology measured by probabilities

Weakest topology s.t.
all effects are continuous on S.
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GENERAL PROBABILISTIC THEORIES (GPT)

Mackey (1960), Araki (1961);1 udwig {1964-);Micinik(1968), Devies and | ewis (1970), Gudder (1973), =ic

* Operationally Most General Framework for Probability

State + Measurement= Probability

 State space S is embedded into a (pre)compact convex subset in a
loczally convex HausdorfT topological vector space V.
% Measurement is represented by effects:

E:=(e;€&),58t.) .e; =u. ei(p) : prob. for ith output under p

* Physical Topology measured by probabilities

Theory of Convex Set and Affine Function
(PreCompact Convex Set in Locally Convex Hausdorff Topological Vector Space)
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GENERAL PROBABILISTIC THEORIES (GPT)

= rf RS =l £ 10T =1 1 O . L I s Tm, & o, T, TP S ot — Loy e et
Mackey (1960 ), Arakl { 1961 ;1 udegi( 1964 Mieimki 1968 ), Devies and Lewas (1970), Guader { 1973), eic

HS=d< o

S is a compact (i.e. closed bounded) convex of E¢
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GENERAL PROBABILISTIC THEORIES (GPT)

fS=d<

S is a compact (i.e. closed bounded) convex of E¢

Any compact convex set you imagine,

e L .. : _____‘_,_//.f
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GENERAL PROBABILISTIC THEORIES (GPT)

Mackey (19260), Arakl (19261);1L udwig (1964-);Micinik(1968), Devies and | ewis (1970), Gudder (1973), =ic

Pure State

£ State which cannot be prepared by probabilistic mixtures of different states.

& Extreme Point of State Space
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EXAMPLES OF GPTII

* Quantum System: §9 .= {pc L(Hq) : p>0, trp=1}
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EXAMPLES OF GPTI

% Classical System: P, := {p=(pi,.-.. pi) ER® | p: >0, Y. p; =1}

| | L 4
d=2
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EXAMPLES OF GPTII

% Quantum System: 3{‘}3 ={pecL(Hs) : p>0, trp=1} |
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EXAMPLES OF GPTIII

* Hyper Cuboid System: Ca = {z € R? |0 < z; < 1}

Pirsa: 11050041 Page 20/69



EXAMPLES OF GPTIII

% Hyper Cuboid System: Cy = {z €R? |0< z; < 1}
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EXAMPLES OF GPTIII

Classical

N

N

Ny ={zeR? |0<z; <1}

—
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d bit
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Z° XIreme Foints
= =

* Affine Dimension d
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EXAMPLES OF GPTIII

N
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Classical
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* 2¢ Extreme Points
* Affine Dimension d
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EXAMPLES OF GPTIII

y={zeR? |0< z; <1}

Classical

010/0011110101100

— e
— i

HC Ny | d bit

Prop: Hyper Cuboid system Cd can be realized by a
d bit classical system by restricting to 1 bit measurement
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EXAMPLES OF GPTIII

N

Classical

HC

b

. h

Yy={xzeR? |0<z; <1}
i

| 010/0011110101100]

[ —

— i

d bit

Prop: Hyper Cuboid system Cd can be realized by a
d bit classical system by restricting to 1 bit measurement

Thm: [Holevo 1982] Any GPT can be realized

* 2¢ Extreme Points by a Classical System
* Affine Dimension d with an appropriate restriction on measurements
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INFORMATION THEORY BASED ON GPT

* Classical Prob. Theory = Classical Information Theory
* Quantum Theory = Quantum Information Theory

ALSRY GPT => GPT Information Theory

" Motivations

o Seek for Physical Principles of Quantum Theory
In terms of information languages

. Understand logical connections between
physical principles and information processings.

= Preparation for “post” quantum

o (Classical/Quantum )Information theory under Measurement restrictions
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Reality

SED ON GPT
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physical principles and information processings.
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|1 Hardy (2001); arXiv:quant-ph/0101012v4

1 Dakic and Brukner (2009); arXiv:0911.0695v1

Masanes and Muller (2010); arXiv:1004.1483v2

] Chiribella, D"'Ariano, and Perinotti (2010); arXiv:1011.6451v1

EENE

" Motivations

o Seek for Physical Principles of Quantum Theory
in terms of information languages
> Understand logical connections between
physical principles and information processings.

> Preparation for “post” quantum

> (Classical/Quantum )Information theory under Measurement restrictions
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THIS TALK...

“Natural” Physical Principles:

*1 Physical Equivalence of Pure States
< Symmetricity of State Space (Davies)
< Reversible Connections of Pure States (Hardy etc.)

*2 Decomposability w.r.t. Distinguishable Pure States

— (Classification of GPTs for each Principle

FFEN *= Kimura, Nuida, Imai (2010); arXiv:1012.5361%2
* Kimura. Nuida. (2010): arXiv:-1012.5350v2



THIS TALK...

What We also Assume:

* Existence of Objective (Classical) World
* Causality
* All Mathematically Well-defined Measurements:

(e;sc&)ist ) .ez—=a
are physically realizable.
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SYMMETRICITY OF STATE SPACE

[P1] Group of Affine Bijection on S acts transitivelyon 8S

(Davies 1974)

& [P1'] Any pure states are connected by Reversible Transformation

(Hardy, ...)
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& [P1’] Any pure states are connected by Reversible Transformation
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* Causality
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SYMMETRICITY OF STATE SPACE

[P1] Group of Affine Bijection on S acts transitively on 8S

(Davies 1974)

< [P1'] Any pure states are connected by Reversible Transformation

(Hardy, ...)
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SYMMETRICITY OF STATE SPACE

[P1] Group of Affine Bijection on S acts transitively on aS
(Davies 1974)
& [P17] Any pure states are connected by Reversible Transformation

(Hardy, ...)

N

& [P17] Any pure states are Physically Equivalent
meaning that there are no “special” Pure States
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SYMMETRICITY OF STATE SPACE

[P1] Group of Affine Bijection on S acts transitivelyon aS
(Davies 1974)
& [P1’] Any pure states are connected by Reversible Transformation

(Hardy, ...)

Fimh ®

& [P17] Any pure states are Physically Equivalent
meaning that there are no “special” Pure States
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PHYSICAL EQUIVALENCE OF STATES

State s1 and s2 have physically the same properties if

* For any measurement E1,
there uniquely exists measurement E2 s.t.
prob. dist of E1 under s1 equals prob. dist. of E2 under s2
* The correspondence should preserves
probabilistic mixture of measurements
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PHYSICAL EQUIVALENCE OF STATES

State s1 and s2 have physically the same properties if

* For any measurement E1,
there uniquely exists measurement E2 s.t.
prob. dist of E1 under s1 equals prob. dist. of E2 under s2
* The correspondence should preserves
probabilistic mixture of measurements

'Def] State s; and s> are phvsicallv equivalent iff there exists unit preserving
| ] 1 2 p : i P o
affine bijection A on &£ such that

e(s1) = Ale)(s2) Ve &€

* Physical Equivalence is an equivalence relation
* Physical Equivalence in QM is unitary equivalence:
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PHYSICAL EQUIVALENCE OF STATES

Lem| For any affine functionaol @ : £ — [0. 1] satisfying ®(u) = 1 and ®(0) = 0,
there uniquely exists a state s € § such that ®(e) = e(s) for any e € £.

'Thm| State s; and ss are physically equivalent iff there exists an affine bijection
¥ on § such that s; = ¥(s2).

[P1"] Any pure states are connected by Reversible Transformation

& [P17] Any pure states are Physically Equivalent

We call Symmetric GPT if it satisfy [P1] ([P1'] or [P1"])
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CLASSIFICATION OF SYMMETRIC GPTS

‘'Thm| State Space of Symmetric GPT with finite numbers of pure states is
isomorhic to Isogonal Figure
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CLASSIFICATION OF SYMMETRIC GPTS

‘'Thm| State Space of Symmetric GPT with finite numbers of pure states is
1somorhic to Isogonal Figure

a4 s
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CLASSIFICATION OF SYMMETRIC GPTS

‘'Thm| State Space of Symmetric GPT with finite numbers of pure states is
isomorhic to Isogonal Figure

a4 s

'Thm| State Space of 2-dimensional Symmetric GPT with infinite numbers of
pure states is isomorhic to a disk.
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CLASSIFIC

ATION OF SYMMETRIC GPTS

'Thm| State Space of Symmetric GPT with finite numbers of pure states is
1somorhic to Isogonal Figure

'Thm| State Space of 2-dimensional Symmetric GPT with infinite numbers of
pure states is isomorhic to a disk.

Thm| State Space of 3-dimensional Symmetric GPT with infinite numbers of
pure states 1s either a ball or a circular cylinder.

N T . DimS =3 ‘ or ’ page 44169



DIMS=3

Classical Sys.

Quanitum Sys.
(Bloch Ball)
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DIMS =3

Classical Sys.

Quanitum Sys.
(Bloch Ball)
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DIMS=3

ol A A R

Classical Sys.

Pirsa: 11050041
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Quanitum Sys.
(Bloch Ball)

> [P2] Decomposability w.r.t. Distinguishable Pure States
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ANOTHER PRINCIPLES

[P2] Decomposability w.r.t. Distinguishable Pure States:

For any state s. there exists a set of distinguishable pure states {s;}; such that
s = » . p;si with some probability dist. (p;);

Any state can be prepared as an ensemble of distinguishable pure states

In QM, this corresponds to Eigenvalue Decompaosition of Density Op.
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ANOTHER PRINCIPLES

[P2] Decomposability w.r.t. Distinguishable Pure States:

For any state s, there exists a set of distinguishable pure states {s; }; such that |
s = ) . p;si; with some probability dist. (p;);

Any state can be prepared as an ensemble of distinguishable pure states

In QM, this corresponds to Eigenvalue Decompaosition of Density Op.

[P3] Dynamical Generation of State Space by Classical System:

S = Uacg A(Simplex)
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ANOTHER PRIN(

[P2] Decomposability w.r.!

For any state s. there exists|
s = ). p;si; with some probd

.._ __ |.__”_

Any state can be prepg
In QM, this correspondsSTto Eigenvalue Decomposition of Density Up.

[P3] Dynamical Generation of State Space by Classical System:

S = Uacg A(Stmplex)
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ANOTHER PRIN( M &

[P2] Decomposability w.r.! Bl
Transformation
For any state s, there exists / i

§ = Z; pis; with some probd

'..ul\""IhLIL
= _|._ —— —.I__ ——

Any state can be prepa

In QM, this correspondsSTo Eigenvalue Decomposition of Density Up.-

[P3] Dynamical Generation of State Space by Classical System:

S = Uacg A(Stmplex)
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SYMMETRIC GPT WITH [P2] (OR [P3])

'Prop| GPT with finite numbers of pure states satisfving [P2] is a simplex.
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ANOTHER PRIN( M

[P2] Decomposability w.r.) Rl ‘
Transformation B

For any state s, there exists y e ?'%_ t

s = » . p;si; with some prob4 H‘\E ‘

Any state can be prepé

In QM, this correspondsSTo Eigenvalue Decompaosition of Density Up.-

[P3] Dynamical Generation of State Space by Classical System:

S = Urec A(Simplex)
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SYMMETRIC GPT WITH [P2] (OR [P3])

'Prop| GPT with finite numbers of pure states satisfving [P2] is a simplex.
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'Prop| GPT with finite numbers of pure states satisfyving [P2] is a simplex.

i T
Sl -,
3 b

" - Fs
I 1 2.

' |

——— I_F-F i.
Pl

Classical Sys.
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'Prop| GPT with finite numbers of pure states satisfving [P2] is a simplex.

409 9

Classical Sys.

[Prop| (Dim S = 3) Circular Cylinder does not satisfy [P2].
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'Prop| GPT with finite numbers of pure states satisfving [P2] is a simplex.

Classical Sys.

[Prop| (Dim S = 3) Circular Cylinder does not satisfy [P2].

3 ¢
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WHAT | DON'T KNOW...

* Complete Classification of Symmetric GPT in arbitrary Dimension
* Complete Classification of GPT with [p2] in arbitrary Dimension
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SYMMETRIC GPT WITH [P2] (OR [P3])

[Prop] GPT with finite numbers of pure states satisfying [P2] is a simplex.

Classical Sys.

'Prop| (Dim S = 3) Circular Cylinder does not satisfy [P2].

3 ¢

'Thm| 3-dimensional Symmetric GPT with [P2] is either classical or quantum
(Bloch Ball)
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ANOTHER PRIN( = ;

[P2] Decomposability w.r.!

For any state s. there exists
s = ). pisi; with some prob4

Any state can be prepa |

In QM, this correspondsTto Eigenvalue Decomposition of Densi

[P3] Dynamical Generation of State Space by Classical System:

S = Uacc A(Simplex)
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ANOTHER PRINCIPLES

[P2] Decomposability w.r.t. Distinguishable Pure States:

For any state s, there exists a set of distinguishable pure states {s; }; such that |
s = > . p;si; with some probability dist. (p;);

ﬁ Any state can be prepared as an ensemble of distinguishable pure states

In QM, this corresponds to Eigenvalue Decompaosition of Density Op.

[P3] Dynamical Generation of State Space by Classical System:

S = Uacc A(Simplex)
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'Prop| GPT with finite numbers of pure states satisfving [P2] is a simplex.

Classical Sys.

[Prop| (Dim S = 3) Circular Cylinder does not satisfy [P2].
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SYMMETRIC GPT WITH [P2] (OR [P3])

[Prop] GPT with finite numbers of pure states satisfying [P2] is a simplex.

Classical Sys

[Prop| (Dim S = 3) Circular Cylinder does not satisfy [P2].

3 ¢

'Thm| 3-dimensional Symmetric GPT with [P2] is either classical or quantum
(Bloch Ball)
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WHAT | DON'T KNOW...

* Complete Classification of Symmetric GPT in arbitrary Dimension
* Complete Classification of GPT with [p2] in arbitrary Dimension
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WHAT | DON'T KNOW...

* Complete Classification of Symmetric GPT in arbitrary Dimension
* Complete Classification of GPT with [p2] in arbitrary Dimension

* To obtain QM with Infinite Dimension
or Quantum Field Theory with Infinite Numbers of Degrees
* Operational Approach..
-- Identification of states and the use of affinity seems not universal
-- Is there any massage for interpretation of QM?
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WHAT | DON'T KNOW...

* Complete Classification of Symmetric GPT in arbitrary Dimension
* Complete Classification of GPT with [p2] in arbitrary Dimension

* To obtain QM with Infinite Dimension
or Quantum Field Theory with Infinite Numbers of Degrees
* Operational Approach..
-- Identification of states and the use of affinity seems not universal
-- Is there any massage for interpretation of QM?

Thank you for your attention

: 11050041 Page 69/69



