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Abstract: In 1964, John Bell proved that independent measurements on entangled quantum states lead to correlations that cannot be reproduced
using local hidden variables. The core of his proof is that such distributions violate some logical constraints known as Bell inequalities. This
remarkable result establishes the non-locality of quantum physics. Bell's approach is purely qualitative. This naturally leads to the question of
guantifying quantum physics non-locality. We will specifically consider two quantities introduced for this purpose. The first one is the maximum
amount of Bell inequality violation, and the second one is the communication cost of simulating quantum distributions. In this talk, we prove that
these two quantities are strongly related: the logarithm of the first is upper bounded by the second. We prove this theorem in the more general
context of non-signalling distributions. This generalization gives us two clear benefits. First, the rich structure of the underlying affine space
provides us with a very strong intuition. Secondly, non-signalling distributions capture traditional communication complexity of boolean functions.
In that case, our theorem is equivalent to the factorization norm lower bound of Linial and Shraibman, for which we give an elementary proof.
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Physical motivation

EPR Experiment (Einstein, Podolsky, Rosen, 1935) .
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Bell's theorem mid s0): the correlation of a and b is non-local
Can we quantify non-locality?




Quantifier la non-localité
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Communication Cost
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How much communication is required to simulate
EPR like experiments?
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Communication Cost

@ Simulating quantum correlations requires at most

-

Maudlin 92: | .17 bits on average
Brassard, Cleve, Tapp 99: 8 bits worst case -
Steiner 99: | .48 bits on average '“;"
|
Cerf, Gisin, Massar 00: .19 bits on average =
Toner, Bacon 03: | bit worst case
Regev, Toner 07: 2 bits worst case, higher dimension
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Motivations

@ From physics: @ From computer science:
@ Quantify quantum non @ Give a unified
locality framework for various

problems in complexity

@ Information theoretic
perspective @ Better knowledge of the
tool (communication
complexity)

Understand the relation between non-
locality and computation




Summary

. The model of non-signaling distributions
Bell inequality violation
| ower bounds on communication cost

. Gap between classical and quantum, upper bound on
maximal violation of Bell inequalities

. Upper bounds on communication cost



Non-signaling distributions
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Non-signaling condition:
p(alz,y) = p(alz,y’)
p(blz,y) = p(blx’. y)




. ocal deterministic
distributions
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| ocal deterministic
distributions
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| ocal distributions

@ Local distributions Bell !




Quantum distributions

Cave TZHernr entanalersnrerd

pla,blx.y) = ...




Structure of non signaling
distributions

EPR experiment i \sOf\ .\nequ
@ Local distributions _
@ Quantum distributions™ .




Structure of non signaling
distributions

@ Local distributions

@ Quantum distributions

@ Non signaling
distributions

p(alz,y) = p(alz,y’)
p(blz,y) = p(blz’,y)



Structure of non signaling
distributions

@ Strict inclusions




Structure of non signaling
distributions

@ Strict inclusions

@ Cis a polytope




Structure of non signaling
distributions

@ Strict inclusions
@ Cis a polytope
@ Cis the affine hull of L




Structure of non signaling
distributions

@ Strict inclusions
@ Cis a polytope
@ Cis the affine hull of L




Writing boolean functions as a
non-signaling distribution

s 7 I sy p
For a booledrn +eenczion

f: X xY — {+1,-1}
Define Zhe C@rre\ﬁ:pand’:'nﬁ c{x'jz‘r;'éaz‘;'@nj

| L2 i ab—TFfiz.n

(a,blx.y) = { :
Ps | 0 otherwise

(Like an. XOR game)




WVriting boolean functions as a
non-signaling distribution

Encoding the equality function:




Structure of non signaling
distributions

1/2 if ab= f(x.y

prla. blx.y) = { _
0 otherwise
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VWVriting boolean functions as a
non-signaling distribution

For a boolecn fLenczZion

f: X xY —{+1,—1}
Define Zhe Cc:rrejpandr'rg df\'j’z‘r;}:;az‘;'@n}

12 abh—Ilz.

. NT-u) — {
P iy 0 otherwise

(Like an. XOR game)




Structure of non signaling
distributions

1/2 if ab= f(x.y

prla.blx,y) = { _
0 otherwise
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Communication Cost
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How much communication is required to simulate a
non signaling distribution?




Bell inequality violation

Normalized Bell inequality:
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Bell inequality violation

v(p) =max{B(p) : |B(p)| < 1Vp; € L}




Bell inequality violation

Bell (‘64): Some violation exists

Clauser Horne Shimony Holt ("69): CHSH inequality
Tsirelson ("80): Upper bound on maximal violation

Pérez-Garcia Wolfe Palazuelos Junge ('07): unbounded violation of
tripartite states

Junge Palazuelos Perez-Garaa Villanueva ('09): large violations of
bipartite states

Briet Buhrman Lee Vidick ('09): low viclation of specific multipartite
states

Junge Palazuelos (' 10): large violation with low entanglement

Buhrman Regev Scarpa deWolf ('] |): Near optimal violations



|l ower bounds on
communication




L ower bounds on
communication
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@ "Dilute” p until it is local

@ Use this local distribution in an affine model
for the original distribution




Diluting the distribution
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Diluting the distribution




Diluting the distribution
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L ower bounds on
communication

v(p) = min{ T qi

——

Y
Pl A




ir_hm [”

L ower bounds on
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L ower bounds on
communication
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|l ower bounds on
communication
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Lower bounds on
quantum communication
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Gap for boolean distributions
with uniform marginals

@ Includes maximally entangled states, boolean
functions.

@ Gap between classical and quantum at most Kg

@ Tlisirelson’s theorem: quantum strategy <=>
inner product over real vectors,

@ local deterministic strategy (classical) <=>
inner product over +/-| vectors),

@ Grothendieck’s inequality



Gap between » and >

Tsirelson inequality
@ If p(a,b|x,y) over Bell inequality Q-
outcomes A x B

v(p) < O(ABvy(p))

@ Cannot prove large
gaps between
classical and
quantum.




Gap between » and >

Tsirelson inequality

@ If p(a,blx,y) over Bell inequality Q-
outcomes A x B e e,

v(ip) < O(_;IB":(PJ J

@ Cannot prove large




Gap between » and v,

@ Proof idea : reduce to affine combination of
boolean distributions: p=S"p_, — (AB — 1)py
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By a composition
principle,

A a plab) 0

v(ip) < O(AB~y(p))
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Gap between » and 2
@ Deutch-Josza equality problem [BCT98]:

@ A, B given n-bit strings

@ Output a, b in [n] such that a=b if x=y, and
a#b if d(x,y)=n/2

@ Classical Q(n), quantum O(l), 72 = O(1)

@ Best classical lower bound with our method is at

most O(log(AB)) = O(log(n))

@ Example of distribution where rectangle bound
is better than [LS07]



—____ Upper bounds
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Some corollaries :

@ Any quantum distribution can be approximated
with constant communicaton [SZ08]

@ RI'P(f) =0(2>?-)) [sZ08]

@ Using Newman+fingerprinting,
Q5 (f) = O(log(n)2*“Y)) [GKdWO06]




Proof idea

.rjrt — fj' = _\_:‘J‘ J : 1__1

SenitllTneoiddsS protocol To arrroxsicie D

D A arnd B send Fhe referee

w

enccah
-

~

samples of p*, p~ (ChernovMcDiarrnd
fne? eal J‘Z‘i,/ )

D Keferee estimates P2 and pm and uses
/s Co estimate p,

@ Keferee oulpds ddCardr'lg o Zhs

esStimale




Conclusion

@ Lower bounds on classical, quantum communication
for any non-signaling ditribution (arbitrary 1/O,
including marginals)

@ |Interpretation by Bell, I sirelson inequality violations

@ New proof of Linial and Shraibman’s factorization
norm lower bound (implies rank, Fourier method,
discrepancy, etc...)




Open Problems

Quantitive approach for detector efficiency or other
loopholes

Improve the gap between the upper and lower bound
(for specific classes of functions)

What we have done:

Bell Inequalities VS Communication
What we really want:

Bell Inequalities VS Information



—____ Upper bounds
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Some corollaries :

@ Any quantum distribution can be approximated
with constant communicaton [SZ08]

3 RJ; .pub ~ }L —_—— :3:["}: f [SZ'DS]

@ Using Newman+fingerprinting,
Q5 (f) = O(log(n)2*?-Y))  [GKAWO06]




Gap between » and 2
@ Deutch-Josza equality problem [BCT98]:

@ A, B given n-bit strings

@ Output a, b in [n] such that a=b if x=y, and
a#b if d(x,y)=n/2

@ Classical Q(n), quantum O(1), 72 = O(1)

@ Best classical lower bound with our method is at

most O(log(AB)) = O(log(n))

@ Example of distribution where rectangle bound
is better than [LSO7]



