Title: Communication cost Vs Bell inequality violation
Date: May 12, 2011 02:50 PM
URL: http://pirsa.org/11050034
Abstract: In 1964, John Bell proved that independent measurements on entangled quantum states lead to correlations that cannot be reproduced using local hidden variables. The core of his proof is that such distributions violate some logical constraints known as Bell inequalities. This remarkable result establishes the non-locality of quantum physics. Bell's approach is purely qualitative. This naturally leads to the question of quantifying quantum physics' non-locality. We will specifically consider two quantities introduced for this purpose. The first one is the maximum amount of Bell inequality violation, and the second one is the communication cost of simulating quantum distributions. In this talk, we prove that these two quantities are strongly related: the logarithm of the first is upper bounded by the second. We prove this theorem in the more general context of non-signalling distributions. This generalization gives us two clear benefits. First, the rich structure of the underlying affine space provides us with a very strong intuition. Secondly, non-signalling distributions capture traditional communication complexity of boolean functions. In that case, our theorem is equivalent to the factorization norm lower bound of Linial and Shraibman, for which we give an elementary proof.

## Bell Inequality Violation

 VS
## Communication Cost

## Marc Kaplan - Université de Montréal

Based on a work with Julien Degorre!, Sophie Laplante², Jérémie Roland ${ }^{3}$ 0804.4859<br>\author{ 'CQT - Univeristy of Singapore<br><br>${ }^{2}$ LRI - Université Paris-Sud XI<br><br>${ }^{3}$ NEC Research Lab, Princeton }

## Physical motivation

EPR Experiment (Einstein, Podolsky. Rosen, 1935) :


Bell's theorem (mid 60 ): the correlation of $a$ and $b$ is non-local
Can we quantify non-locality?

Uafoersite Pherts Soal
Lubennien ide whinte
intrint an

Univernite de Minetreal Caivertive de harn amdiahmatiq thennte ex eaveran:

Quantifier la non-localité

Julien Degarme

Ther premeiter pear vitemir is ande de
Deeterur em Sciences

| Nenius Cirl | Feliners | Rappertrer |
| :---: | :---: | :---: |
| Wuarsulis | Phalmer | Beppertiver |
| Satas leath | Dinnasa de Preberste | Deretere |
| Thenet Gilm | Relemer | monimere: |
| Lagheen Spilis | Phoberer | Exanimumar |
| Leme Alsed | Phimer | Danthainar |

## Communication Cost

Communication as a measure of non-locality


How much communication is required to simulate

## Communication Cost

- Simulating quantum correlations requires at most
- Maudlin 92: 1.17 bits on average
- Brassard, Cleve, Tapp 99:8 bits worst case
- Steiner 99: 1.48 bits on average
- Cerf, Gisin, Massar 00: I.I9 bits on average
- Toner, Bacon 03: I bit worst case

- Regev, Toner 07: 2 bits worst case, higher dimensions.


## Motivations

- From physics:
- Quantify quantum non locality
- Information theoretic perspective
- From computer science:
- Give a unified framework for various problems in complexity
- Better knowledge of the tool (communication complexity)

Understand the relation between nonlocality and computation

## Summary

I. The model of non-signaling distributions
2. Bell inequality violation
3. Lower bounds on communication cost
4. Gap between classical and quantum, upper bound on maximal violation of Bell inequalities
5. Upper bounds on communication cost

## Non-signaling distributions



Non-signaling condition:

$$
p(a \mid x, y)=p\left(a \mid x, y^{\prime}\right)
$$

$$
p(b \mid x, y)=p\left(b \mid x^{\prime}, y\right)
$$

## Local deterministic distributions

What can we do without any resource?


## Local deterministic

 distributionsAdd shared randomness


## Local distributions

## - Local distributions

$$
p(a, b \mid x, y)=\delta_{a=u(x)} \delta_{b=v(y)}
$$

## Quantum distributions

Give them entanglement


$$
p(a, b \mid x, y)=\ldots
$$

## Structure of non signaling distributions

- Local distributions
- Quantum distributions



## Structure of non signaling distributions

(2 Local distributions

- Quantum distributions
- Non signaling distributions

$$
\begin{aligned}
& p(a \mid x, y)=p\left(a \mid x, y^{\prime}\right) \\
& p(b \mid x, y)=p\left(b \mid x^{\prime}, y\right)
\end{aligned}
$$

## Structure of non signaling distributions

- Strict inclusions


## Structure of non signaling distributions

- Strict inclusions
- C is a polytope


## Structure of non signaling distributions

- Strict inclusions
- C is a polytope
- $C$ is the affine hull of $L$


## Structure of non signaling distributions

- Strict inclusions
- C is a polytope
- $C$ is the affine hull of $L$

Gemeral proof in various
contexts in
[KlayRandallFoulis 87 ] [wilce 92], [Barrettof]

## Writing boolean functions as a non-signaling distribution

For a boolean function

$$
f: X \times Y \rightarrow\{+1,-1\}
$$

Define the corresponding distribution,

$$
p_{f}(a, b \mid x, y)= \begin{cases}1 / 2 & \text { if } a b=f(x, y) \\ 0 & \text { otherwise }\end{cases}
$$

(Like an XOR game)

# Writing boolean functions as a non-signaling distribution 

Encoding the equality function:

$$
\begin{array}{l|cc}
\text { If } x=y: & \\
& b=-1 & b=1 \\
\hline a=-1 & 1 / 2 & 0 \\
a=1 & 0 & 1 / 2 \\
\text { If } x \neq y: & & \\
& b=-1 & b=1 \\
\hline a=-1 & 0 & 1 / 2 \\
a=1 & 1 / 2 & 0
\end{array}
$$

## Structure of non signaling distributions

$$
p_{f}(a, b \mid x, y)= \begin{cases}1 / 2 & \text { if } a b=f(x, y) \\ 0 & \text { otherwise }\end{cases}
$$



## Writing boolean functions as a non-signaling distribution

For a boolean function

$$
f: X \times Y \rightarrow\{+1,-1\}
$$

Define the corresponding distribution,

$$
p_{f}(a, b \mid x, y)= \begin{cases}1 / 2 & \text { if } a b=f(x, y) \\ 0 & \text { otherwise }\end{cases}
$$

(Like an XOR game)

## Structure of non signaling distributions

$$
p_{f}(a, b \mid x, y)= \begin{cases}1 / 2 & \text { if } a b=f(x, y) \\ 0 & \text { otherwise }\end{cases}
$$



## Communication Cost

Allow the players to communicate


How much communication is required to simulate a

## Bell inequality violation

Normalized Bell inequality:

$$
\forall p_{l} \in \mathcal{L}:|B(p)|=\left|\sum_{a, b, x, y} B(a, b, x, y) p(x, y \mid a, b)\right| \leq 1
$$

Bell inequality violation

$$
\nu(p)=\max \left\{B(p):\left|B\left(p_{l}\right)\right| \leq 1 \forall p_{l} \in \mathcal{L}\right\}
$$

## Bell inequality violation

- Bell ('64): Some violation exists
- Clauser Horne Shimony Holt ('69): CHSH inequality
- Tsirelson ('80): Upper bound on maximal violation
- Pérez-García Wolfe Palazuelos Junge ('07): unbounded violation of tripartite states
- Junge Palazuelos Pérez-Garcia Villanueva ('09): large violations of bipartite states
- Briët Buhrman Lee Vidick ('09): Iow violation of specific multipartite states
- Junge Palazuelos (' 10 ): large violation with low entanglement
9.10003. Buhrman Regev Scarpa deWolf ('II): Near optimal violations


## Lower bounds on communication

Theorem: $R_{0}(p) \geq \log \nu(p)$

Minimum amount of
communication
required to simulate $p$

## Lower bounds on communication

 the more communication it should require...- "Dilute" $p$ until it is local
- Use this local distribution in an affine model Preat incowar the original distribution

Diluting the distribution
Assume there is a t bit protocd ( $A, B$ ) for $p$ :
e The players pick a random transcript T, using shared randomness.

6 If $T$ is consistent with $x$, Alice outputs $A(T, x)$
(3) If $T$ is consistent with $y$, Bob outputs $B\left(T_{y} y\right)$
(3) Otherwise, they output according to their marginals.

$$
p^{\prime}(a, b \mid x, y)=\frac{1}{2^{t}} p(a, b \mid x, y)+\left(1-\frac{1}{2^{t}}\right) p(a \mid x) p(b \mid y)
$$

This distribution is local (doesn't require communication)

## Diluting the distribution

$$
p^{\prime}(a, b \mid x, y)=\frac{1}{2^{t}} p(a, b \mid x, y)+\left(1-\frac{1}{2^{t}}\right) p(a \mid x) p(b \mid y)
$$

## Diluting the distribution

$$
\begin{aligned}
& p^{\prime}(a, b \mid x, y)=\frac{1}{2^{t}} p(a, b \mid x, y)+\left(1-\frac{1}{2^{t}}\right) p(a \mid x) p(b \mid y) \\
& p(a, b \mid x, y)=2^{t} p^{\prime}(a, b \mid x, y)-\left(2^{t}-1\right) p(a \mid x) p(b \mid y)
\end{aligned}
$$

We get $p$ as an affine combination of local

## Lower bounds on communication

$$
\begin{gathered}
p(a, b \mid x, y)=2^{t} p^{\prime}(a, b \mid x, y) \subset\left(2^{t}-1\right) p(a \mid x) p(b \mid y) \\
\in \mathcal{L} \quad \in \mathcal{L}
\end{gathered}
$$

Distance to $L$ : sum of absolute values of coefficients

$$
\tilde{\nu}(p)=\min \left\{\sum_{p_{l} \in \mathcal{L}}\left|q_{l}\right|: p=\sum_{p_{l} \in \mathcal{L}} q_{l} p_{l}, \sum_{p_{l} \in \mathcal{L}} q_{l}=1\right\} \leq 2^{t+1}-1
$$

## $R_{0}(p) \geq \log \tilde{\nu}(p)$

## Lower bounds on communication

$$
\begin{aligned}
\tilde{\nu}(p) & =\min \left\{\sum_{p_{l} \in \mathcal{L}}\left|q_{l}\right|: p=\sum_{p_{l} \in \mathcal{L}} q_{l} p_{l}, \sum_{p_{l} \in \mathcal{L}} q_{l}=1\right\} \\
& =\min \left\{2 \alpha-1: p=\alpha p^{+}+(1-\alpha) p^{-}\right\}
\end{aligned}
$$



## Lower bounds on communication

$$
\begin{aligned}
\tilde{\nu}(p) & =\min \left\{\sum_{p_{l} \in \mathcal{L}}\left|q_{l}\right|: p=\sum_{p_{l} \in \mathcal{L}} q_{l} p_{l}, \sum_{p_{l} \in \mathcal{L}} q_{l}=1\right\} \\
& =\max \left\{B(p):\left|B\left(p_{l}\right)\right| \leq 1 \forall p_{l} \in \mathcal{L}\right\} \\
& =\nu(p)
\end{aligned}
$$

## Lower bounds on communication

$$
\begin{aligned}
\tilde{\nu}(p) & =\min \left\{\sum_{p_{l} \in \mathcal{L}}\left|q_{l}\right|: p=\sum_{p_{l} \in \mathcal{L}} q_{l} p_{l}, \sum_{p_{l} \in \mathcal{L}} q_{l}=1\right\} \\
& =\max \left\{B(p):\left|B\left(p_{l}\right)\right| \leq 1 \forall p_{l} \in \mathcal{L}\right\} \\
& =\nu(p)
\end{aligned}
$$

Direct proof by PGillanceva

## Lower bounds on

 quantum communication$$
\begin{aligned}
\boldsymbol{\chi}_{2}(p) & =\min \left\{\sum_{p_{l} \in \mathbb{X}}\left|q_{l}\right|: p=\sum_{p_{l} \in \mathbb{X}_{\mathcal{Q}}} q_{l} p_{l}, \sum_{p_{l} \in \underset{\mathcal{Q}}{\mathcal{X}}} q_{l}=1\right\} \\
& =\max \left\{B(p):\left|B\left(p_{l}\right)\right| \leq 1 \forall p_{l} \in \mathbf{X}_{\mathcal{X}}\right\}
\end{aligned}
$$

# Gap for boolean distributions with uniform marginals 

- Includes maximally entangled states, boolean functions.
- Gap between classical and quantum at most $K_{G}$
- Tisirelson's theorem: quantum strategy <=> inner product over real vectors,
- local deterministic strategy (classical) <=> inner product over +/-I vectors),
- Grothendieck's inequality


## Gap between $\nu$ and $\gamma_{2}$

Tsirelson inequality

- If p(a,b|x,y) over outcomes $A \times B$ $\nu(p) \leq O\left(A B \gamma_{2}(p)\right)$
- Cannot prove large gaps between classical and quantum.



## Gap between $\nu$ and $\gamma_{2}$

Tsirelson inequality

- If p(a,b|x,y) over outcomes $A \times B$ $\nu(p) \leq O\left(A B \gamma_{2}(p)\right)$
- Cannot prove large



## Gap between $\nu$ and $\gamma_{2}$

- Proof idea : reduce to affine combination of boolean distributions: $p=\sum p_{a b}-(A B-1) p_{\emptyset}$


By a composition principle,

$$
\nu(p) \leq O\left(A B \gamma_{2}(p)\right)
$$

## Gap between $\nu$ and $\gamma_{2}$

- Deutch-Josza equality problem [BCT98]:
- A, B given n-bit strings
- Output $a, b$ in [ $n$ ] such that $a=b$ if $x=y$, and $a \neq b$ if $d(x, y)=n / 2$
- Classical $\Omega(n)$, quantum $\mathrm{O}(\mathrm{I}), \gamma_{2}=O(1)$
- Best classical lower bound with our method is at most $O(\log (A B))=O(\log (n))$
- Example of distribution where rectangle bound is better than [LS07]


## Upper bounds

$$
\begin{aligned}
& R_{\delta}^{\|, p u b}(p)=O\left((A B)^{O(1)} \nu(p)^{2}\right) \\
& R_{\delta}^{\|, \text {ent }}(p)=O\left((A B)^{O(1)} \gamma_{2}(p)^{2}\right)
\end{aligned}
$$

## Some corollaries :

- Any quantum distribution can be approximated with constant communicaton [SZ08]
- $R_{\delta}^{\|, p u b}(f)=O\left(2^{2 Q_{e}^{*}(f)}\right) \quad[$ SZ08]
- Using Newman+fingerprinting, $Q_{\delta}^{1}(f)=O\left(\log (n) 2^{4 Q_{\varepsilon}^{*}(f)}\right) \quad[$ GKdW06]

Proof idea

$$
\begin{aligned}
& \nu(p)=\Lambda \\
& \quad p=q^{+} p^{+}-q^{-} p^{-} \\
& q^{+}+q^{-}=\Lambda, p^{+}, p^{-} \in \mathcal{L}
\end{aligned}
$$

Simultaneous protocol to approximate $p$ :
6 A and B send the referee enough" samples of $p^{+}, p^{-}$(Chernov, MCDiarmid inequality)
6. Referee estimates $p^{+}$and $p^{-}$and uses this to estimate $p$,

- Referee outputs according to this estimate


## Conclusion

- Lower bounds on classical, quantum communication for any non-signaling ditribution (arbitrary I/O, including marginals)
- Interpretation by Bell, Tsirelson inequality violations
- New proof of Linial and Shraibman's factorization norm lower bound (implies rank, Fourier method, discrepancy, etc...)


## Open Problems

- Quantitive approach for detector efficiency or other loopholes
- Improve the gap between the upper and lower bound (for specific classes of functions)
- What we have done:

Bell Inequalities VS Communication

- What we really want:

Bell Inequalities VS Information

## Upper bounds

$$
\begin{aligned}
& R_{\delta}^{\prod_{\delta}^{, p u b}}(p)=O\left((A B)^{O(1)} \nu(p)^{2}\right) \\
& R_{\delta}^{\|, \text {ent }}(p)=O\left((A B)^{O(1)} \gamma_{2}(p)^{2}\right)
\end{aligned}
$$

## Some corollaries :

- Any quantum distribution can be approximated with constant communicaton [SZ08]
- $R_{\delta}^{\|!\cdot p u b}(f)=O\left(2^{2 Q_{e}^{*}(f)}\right) \quad[$ SZ08]
- Using Newman+fingerprinting, $Q_{\delta}^{1}(f)=O\left(\log (n) 2^{4 Q_{\varepsilon}^{-(f)}}\right) \quad[$ GKdW06]


## Gap between $\nu$ and $\gamma_{2}$

- Deutch-Josza equality problem [BCT98]:
- A, B given n-bit strings
- Output $a, b$ in [ $n$ ] such that $a=b$ if $x=y$, and $a \neq b$ if $d(x, y)=n / 2$
- Classical $\Omega(n)$, quantum $\mathrm{O}(\mathrm{I}), \gamma_{2}=O(1)$
- Best classical lower bound with our method is at most $O(\log (A B))=O(\log (n))$
- Example of distribution where rectangle bound is better than [LS07]

