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Abstract: Usually, quantum theory (QT) isintroduced by giving alist of abstract mathematical postulates, including the Hilbert space formalism and
the Born rule. Even though the result is mathematically sound and in perfect agreement with experiment, there remains the question why this
formalism is a natural choice, and how QT could possibly be modified in a consistent way. My talk is on recent work with Lluis Masanes, where we
show that five simple operational axioms actually determine the formalism of QT uniquely. This is based to a large extent on Lucien Hardy's
seminal work. We start with the framework of & quot;general probabilistic theories& quot;, a simple, minimal mathematical description for outcome
probabilities of measurements. Then, we use group theory and convex geometry to show that the state space of a bit must be a 3D (Bloch) ball,

finally recovering the Hilbert space formalism. There will also be some speculation on how to find natural post-quantum theories by dropping one of
the axioms.
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|. Motivation

John A.Wheeler, New York Times, Dec. |2 2000:

,,Quantum physics [...] has explained the structure of atoms
and molecules, [...] the behavior of semiconductors [...] and
the comings and goings of particles from neutrinos to
quarks.

Successful, yes, but mysterious, too.
Why does the quantum exist?”
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|. Motivation

ANNALS OF PHYSICS 194, 136386 | 1989)

Testing Quantum Mechanics
StEVEN WEINBERG*

Theory Group, Department of Physics,
University of Texas, Austin, Texas 78712

Recetved March 6. 1989 |

This _paper presents a general framework for imtroducing nomiinear corrections into
ordinary quantum mechanics, that can serve as a pnde to experiments that would be sensitive i

to such correctioms. In the class of generalized theomnes described here, the equations that
determune the ume-dependence of the wave function are no lomger lincar, but are of
Hamiltoman type. Alse. wave functions that differ by a constant factor represent the same '
phiysicai state amd sansfy the same ume-dependence equations. As a resuit, there is no
difficuity in combining separated subsystems. Prescriptions are given for determining the !
stales in which observables have definite values and for calculating the expectation values of
ﬂhs:rvabies for g:m:ral states, but the calculation of probabilities requires detailed analysis

- TWIaT

o e T et A gty iw meecamtad of yEma oo
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|. Motivation

ANNALS OF PEYSECS 194, 136386 (| 1989)

dEEERIEIR
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Volume 143 sumber [ 2

PHYSICSLETTERS A

WEINBERG'S NON-LINEAR QUANTUM MECHANICS

AND SUPRALUMINAL COMMUNICATIONS

N. GISIN

Crroup on Appites P, Universty of Geneva, | 2] ] Geeneva 4. Swnrseriand

Recetwed 16 October | 989 accrpied for pubiicanos 3 Novemsber 1939

Commumcatsg by J.P. Vigier

We show with an cxampic that Wemberg 3 geocral framework for introducng non-hnear cormochions (40 QUaRIIM MECIImCS

allows. for artwtrandy fast commmEmcatons.

Recemtiy Weinberg has proposed a generzl frame-
work for imrodecing non-linear cormecnons into or-
dinarv quantum mechamcs [ [.2 |. Although we fully
mhlsmﬂ:ﬂsmth:immtmufms
guantum mechamics, we would hike in thes Letter 10
‘MEBL“‘LMIE

mau_dm Bdﬂw we show huw o con-
struct. withan Weinberg's framework, an arburaniy
fast telephone line. In ordinary quantum mechanics

.
Pirsa: llw_—

0 know what such an apparates 15... do vou know
what is inside vour phone?) [n order 1o simpiifv we
consider only a single-bui message. The wo direc-
tions z and u are in the x=-plane onhogonal to the
incoming flow of particles. and are 45° from =ach
other. The way the inhomogeneous magnetic field
acts on the particies is well-known from expenimen-
tal evidence. After the apparatus there are two
counters. For each parucie one of the counters will
click. This click will be amplified until all readers of
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Our results:

* A derivation of the full quantum formalism
from operational / physical axioms.

* Methods to construct natural consistent
modifications of quantum theory.
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Our results:

* A derivation of the full quantum formalism
from operational / physical axioms.
* Methods to construct natural consistent

modifications of quantum theory.

Builds on:
e L. Hardy, Quantum Theory From Five
Reasonable Axioms, 200 |

e B. Daki¢ and C. Brukner, Quantum Theory
and Beyond: Is Entanglement Special?, 2009

See also*
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|
Basic physical /
operational
assumptions

release button ~
ontcomes r and T

physical system

. T
e = il eoel

* States, transformations, and measurements
with outcome probabilities.
* Combined systems: no=-signalling.
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Basic physical / General

operational —) D robabilistic

assumptions theories

release button

ordered Banach spaces

outcomes r and T
physical system

W
- o

T
leel

* States, transformations, and measurements
with outcome probabilities.
* Combined systems: no-signalling.

* No Hilbert spaces, complex numbers....
* State spaces: arbitrary conveXx sets.
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* Many ways to combine systems.



Basic physical / General
operational — D robabilistic

assumptions theories

release button

B ordered Banach spaces
outcomes r and I

physical syvstem

o . T
ee* " leel

¢ States, transformations, and measurements
with outcome probabilities.
* Combined systems: no-signalling.

- The Axioms:
I. Local tomography
Il. Reversibility

I1l. Subspace axiom .
IV. Finite-dimensionality * No Hilbert spaces, complex numbers....

V All measurements allowed * State spaces: arbitrary convex sets.
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¢ States, transformations, and measurements
with outcome probabilities.
* Combined systems: no-signalling.

e |

The Axroms'
Determine

I. Local tomography CPT+QT

Il. Reversibility uniquely!

I1l. Subspace axiom .
V. Finite-dimensionality * No Hilbert spaces, complex numbers,..

V. All measurements allowed * State spaces: arbitrary convex sets.
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Basic physical / General
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¢ States, transformations, and measurements
with outcome probabilities.
* Combined systems: no-signalling.

v'_l';[EAY;oms_: - Determines
QT

I. Local tomography uniquely!
il Reversib.
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Basic physical / General
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assumptions theories
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" The Axioms:
Natural
I. Local tomography theories
Il. Reversibility beyond QT?
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IV. Finite-dimensionality * No Hilbert spaces, complex numbers....
V All measurements allowed * State spaces: arbitrary convex sets.
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IV. Finite-dimensionality * No Hilbert spaces, complex numbers....
V All measurements allowed * State spaces: arbitrary convex sets.
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What our results are not:

*® They offer no resolution of the
measurement problem.
®* No new interpretation of quantum theory.
®* We assume that probabilities exist.
® Only finite-dimensional QT so far:
® Only abstract QT, no mechanics / field theory.
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What our results are not:

*® They offer no resolution of the
measurement problem.
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What our results are not:

*® They offer no resolution of the
measurement problem.
* No new interpretation of quantum theory.
* We assume that probabilities exist.
® Only finite-dimensional QT so far:
® Only abstract QT, no mechanics / field theory.

Statistical Mechanics= Quantum Mechanics=
B L Abstract
= e +] Quantum
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2. The Physical Setup

release button ~
outcomes r and T

physical system

. ¥ 4
A = .
leel
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2. The Physical Setup

(Unnormalized) state w =

release button

OuLcomes I e,'il‘](,] I

physical system | list of all probabilities of ,,yes"-
3 e outcomes of all possible measurements.
= #Fh-\_’ = = e = T =
B leel s “ = \P1-P2-P3-P1-P5-P6- - - -)

Pirsa: 11050033 Page 26/121



2. The Physical Setup

release button ~
outcomes r and T

physical system

) T
a .
leel
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2. The Physical Setup

outcomes = and 2 | (Unnormalized) state w =
R e , list of all probabilities of ,,yes"-
P 1 outcomes of all possible measurements.

release button

T
leel : @ ' = (P1.P2.P3.P4-P5.

v
A =
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2. The Physical Setup

release button outcomes z and 2 | (Unnormalized) state w =
physical system list of all probabilities of ,,yes"-

= outcomes of all possible measurements.

leel

Y
SN 3

« = (P1-P2-P3-P1-P5-D6- - -

Sometimes, all W span a finite-dimensional subspace. Ex.: Qubit
* What's the prob. of ,,spin up* in X-direction?
* What's the prob. of ,,spin up* in Y-direction?
* What's the prob. of ,,spin up* in Z-direction?
* |s the particle there at all?
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2. The Physical Setup

release button outcomes z and 2 | (Unnormalized) state w =
physical system | | list of all probabilities of ,,yes™-
| outcomes of all possible measurements.

w = (p1,P2,P3,P4,P5,D6;---)

Sometimes, all W span a finite-dimensional subspace. Ex.: Qubit
 What's the prob. of ,,spin up“ in X-direction?
* What's the prob. of ,,spin up“ in Y-direction? | 2
* What's the prob. of ,,spin up* in Z-direction? ¢ w=(P1,P2,P3.P4) €R

® |s the particle there at all?

Axiom |V:All state spaces are finite-dimensional.
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2. The Physical Setup

release button ~
outcomes r and T

physical system

T

=7 leel

ﬂ Prepare state W or @ with prob. /2. Resultt 5w + 5¢

Pirsa: 11050033 Page 31/121



2. The Physical Setup

release button ~
outcomes r and T

physical system

. - x
e e B8 = leoel

¢
&

E Prepare state W or @ with prob. /2. Result

(Normalized) state spaces are convex sets.

IR Extremal points are pure states, others mixed.
w
F T ()
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2. The Physical Setup

release button B
outcomes r and T

physical system

5 2§
leel

Y .
s . #"“'\u’“—"

b | =

E Prepare state W or @ with prob. /2. Result

(Normalized) state spaces are convex sets.
Extremal points are pure states, others mixed.

Outcome probabilities are linear functionals E
with 0 < E(v) < 1 for all Y.
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2. The Physical Setup

release button B
outcomes r and T

physical system

y if
leel

Y

bo| =

(Normalized) state spaces are convex sets.
Extremal points are pure states, others mixed.

Outcome probabilities are linear functionals E
with 0 < E(v) < 1 for all .

-
ere E(P)=0.7 Measurements are (E1,E>,.... Fr)
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2. The Physical Setup

release button B
outcomes r and E

physical system | | Axiom V:All

' . measurements are
R S = e e = 1
. leel L2 physically possible.

-

" ere E(W)=1  (Normalized) state spaces are convex sets.
Extremal points are pure states, others mixed.
-
><;
.I_

-
37 ©
here E({))=0.7 Measurements are (E1,E>,.... Er)

o T A T T /5 1A .

Outcome probabilities are linear functionals E
with 0 < E(v) <1 forall Y.
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2. The Physical Setup

outcomes r and T
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2. The Physical Setup

release button

physical system A

ontcomes r and T

T
Il ool

L

U | e
£ S 2

Transformations T map (unnormalized) states to states, and are linear.

w
T @
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2. The Physical Setup

release button

physical system A

outcomes r and T

T
leel

Transformations T map (unnormalized) states to states, and are linear.

Reversible transformations form a group G 4. In quantum theory: 72— UpU'
They are symmetries of state space: 7(()4) = (4

f“-" o J
®
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2. The Physical Setup

release button _
outcomes r and T

physical svstem A

. T
ee® ¥ leel

Transformations T map (unnormalized) states to states, and are linear.

Reversible transformations form a group G 4. In quantum theory: 72— UpU'

They are symmetries of state space: 7(()4) = Q)
e ’ o
w Tw
1 >\ - ' \'I
o ) | - |
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2. The Physical Setup

release button B
ontcomes r and T

physical system A

-

| T
e ™ = leel

Qubit: 24 is the 3D unit ball,
G4 = 50(3) (no reflections!)
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2. The Physical Setup

release button

physical system A

outcomes r and T

-

v T
e ™ = il eoel

Qubit: 24 is the 3D unit ball,
Ga = SO(3) (no reflections!)

= A system is a pair (£24,G4).
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2. The Physical Setup
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Qubit: 24 is the 3D unit ball,
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2. The Physical Setup

release button

physical system A

outcomes r and T

-

W T
. = leesl

Not all symmetries have to be in G 4.

Qubit: 24 is the 3D unit ball,
G4 = SO(3) (no reflections!)

""i.'.'.'.f—,—_f—_:'- -. = A system Is a Pair (§24, g{)
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2. The Physical Setup

release button

outcomes r and F

physical system A _ Axiom Il (Reversibility):
P If © and W are ,then

there is a reversible T
with T@=wWw.

Qubit: 4 is the 3D unit ball,
G4 = SO(3) (no reflections!)
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2. The Physical Setup

release button

physical syvstem A

outcomes r and T

Axiom |l (Reversibility):
If © and W are ,then
there is a reversible T

with TQ=wWw.

Enforces some symmetry in state space:
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2. The Physical Setup

release button

physical svstem A

outcomes r and E

Axiom |l (Reversibility):
If © and W are ,then
there is a reversible T
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with TQ=w.
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2. The Physical Setup

release button
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2. The Physical Setup
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2. The Physical Setup
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2. The Physical Setup
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state on AB:
correlations
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2. The Physical Setup
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2. The Physical Setup
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physical system A / /

T
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correlations

Alice’s probabilities do not depend on
Bob’s choice of measurement.
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Axiom |:States on AB

are uniquely determined
by correlations of local
measurements on A,B.
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= ,,Local tomography™:
No non-local measurements
necessary.
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Axiom |:States on AB
are uniquely determined

by correlations of local
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Basic physical / General
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* No Hilbert spaces, complex numbers,...
* State spaces: arbitrary convex sets.
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* Combined systems: no-signalling.

" The Axioms:
I. Local tomography
Il. Reversibility

I1l. Subspace axiom .
IV. Finite-dimensionality * No Hilbert spaces, complex numbers....
V All measurements allowed * State spaces: arbitrary convex sets.
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Basic physical / General
operational — D robabilistic

assumptions theories

release button

outcomes r and T ordered Banach spaces

physical syvstem

)
”* ®

T

= leel

¢ States, transformations, and measurements
with outcome probabilities.
* Combined systems: no-signalling.

" The Axioms:
I. Local tomography #)
Il. Reversibility @)

I1l. Subspace axiom .
Y Finite—dimensiunalityo * No Hilbert spaces, complex numbers....

V.All measurements al[c}weda * State spaces: arbitrary convex sets.
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3. The Subspace Axiom

Some 3-level system:

o 'mpossible to put system in 3rd level

= find particle there with probab. C
E,—er—
1
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3. The Subspace Axiom

Some 3-level system:
mpossible to put system in 3rd level

Pa = find particle there with probab. 0
E,—e—

D e
QT: P = :: 8 — p"zi—(. .)
s ' 0 0 0 -
CPT: P® =(P,P,00 — P¥ = (P, Py)
D . A
) e

2-level system.
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3. The Subspace Axiom

Some 3-level system:
mpossible to put system in 3rd level

E3 = find particle there with probab. O
I s AE—

r-——m:er—
® 0 0 o o
. Yl e (2) _
— QT: » (0 08)_”’ (oo)
CPT:- P® =(P,P,,00 — PP —(P,.P)
v
) e —

2-level system.
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3. The Subspace Axiom

Some 3-level system:
[ P - Impossible to put system in 3rd level

= find particle there with probab. O
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2-level system.
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3. The Subspace Axiom

Axiom lll: Let 2y and €2x_; be systems with capacities
N and N-1.If (E4 E'n ) is a complete measurement

on Qy, then the set of states w with Ey(w) = 0 s
equivalent to Oyn_;.
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Axiom lll: Let 2y and 2x_; be systems with capacities
N and N-1.If (E; E'n) is a complete measurement

on {1y, then the set of states w with Ex(w) =01s
equivalent to Oy _;.

Capacity N of QQ = maximal # of perfectly distinguishable states.

(w1, . ..,wn) perfectly distinguishable, if there is a measurement
(El.; i iia En) such that E',i(wj) = (53‘?
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3. The Subspace Axiom

Axiom llI: Let 2y and €2x_; be systems with capacities
N and N-I.If (E; E'n) is a complete measurement

on {1y, then the set of states w with Ey(w) =0is
equivalentto Oy _.

Capacity N of QQ = maximal # of perfectly distinguishable states.

(w1, . ..,wn) perfectly distinguishable, if there is a measurement
(El.; L i En) such that E,i(wj) — (53‘?

If n = Nthen (E1,...,Ey) is complete.
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3. The Subspace Axiom

Axiom llI: Let 2y and 2x_; be systems with capacities
N and N-I.If (E;4 E'n) is a complete measurement

on {1y, then the set of states w with Ex(w) =0is
equivalent to Oy _.

Capacity N of QQ = maximal # of perfectly distinguishable states.

(w1, . ..,wn) perfectly distinguishable, if there is a measurement
(El, Li 55 Eﬂ) such that E;,(wj) — 53‘?

If n = Nthen (E1,...,Ey) is complete.

| T
Equivalent = same state spaces up to e
a linear map (incl. transformations!) tH =
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4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

capacity 2 (bit)

irsa: 11050033 Page 75/121



3. The Subspace Axiom

Axiom llI: Let 2y and £2x5_; be systems with capacities
N and N-I.If (E;4 E'n) is a complete measurement

on {1y, then the set of states w with Ex(w) =01s
equivalent to Oy _5.

Capacity N of QQ = maximal # of perfectly distinguishable states.

(w1, ...,wn) perfectly distinguishable, if there is a measurement
(Elr L ,Eﬂ) such that E:i(wj) = (53‘?

If n = Nthen (E1,-..,E,) is complete.
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4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

capacity 2 (bit)
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4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

(1-E, E) is complete measurement.
—_ {,J : E'.[...«..) = U} = {__'4-} ~ EZL

here E(w)=0

LY
capa&i@a 2 (bit)
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4. Derivation of the Hilbert space formalism
Why a bit is described by a ball:
(1-E, E) is complete measurement.

= {w: E(w) =0} ={wo} ~ 2.

here E(w)=0 = {}; contains a single state.

-
capat'q:y 2 (bit)

irsa: 11050033 Page 80/121



4. Derivation of the Hilbert space formalism
Why a bit is described by a ball:
(1-E, E) is complete measurement.

= {w : E(w) =0} ={wo} ~ .
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here E(w)=0 = {!1 contains a single state.

capatity 2 (bit)

-
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-~
-

E(w)=|

-~

“»
f there is a face, similar reasoning: *~_ .~
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2 contains co many states. ) o here E(w)=0
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4. Derivation of the Hilbert space formalism
Why a bit is described by a ball:
(1-E, E) is complete measurement.

= {w : E(w) =0} ={wo} ~ .
3 Ew)=0 = {1 contains a single state.
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4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):
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4. Derivation of the Hilbert space formalism
Why a bit is described by a ball:
(1-E, E) is complete measurement.

= {w : E(w) =0} ={wo} ~ .
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4. Derivation of the Hilbert space formalism
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4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):

* There is maximally mixed state ¢ with Ty = u forall T.
® tAB = HA Q UB.
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4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):

* There is maximally mixed state ¢ with Ty = u forall T.
® [tAB = HA @ UB.
® There are N pure distinguishable states w;..... w o With

1 N
EZT;M_

® capacity Vip = V4 Np and bit ball dimension
dim(Q) =2"—1€ {1.3.7.15.31....}.
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Prove step by step (using the axioms):

* There is maximally mixed state ¢ with Ty = u forall T,
® tAB = HA Q UB,
® There are N pure distinguishable states wy. ..., w with

1 N

® capacity NV.p = N4 Np and bit ball dimension

dim(Q) =2"—-1€{1,3,7.15.31... .}.

If dim(Q),) = 1 then the theory is CPT (easy):
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4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):

* There is maximally mixed state ¢ with Ty = u forall T
® UAB — A Q UB.
® There are N pure distinguishable states w;..... wn With

1 N
=5 L

® capacity V.ip = V1 Np and bit ball dimension
dim{Q:) =2" —1€ {1,3,7,15.31... .}
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4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):

* There is maximally mixed state ¢ with Tu = u forall T,
® UAB — A Q UB,
® There are N pure distinguishable states wy. ..., w with

1 N
e — T Z; g,

* capacity N.1p = NaNp and bit ball dimension

If dim(Q),) = 1 then the theory is CPT (easy):

Qo = V4 N
N= / | . Gny=permutation group.




4. Derivation of the Hilbert space formalism

By reversibility axiom, G- is transitive on

Generalized bit s the Sphere_

Pirsa: 11050033 Page 91/121



4. Derivation of the Hilbert space formalism

dim(€29) = 2 l:}l.j._l? Jl..,.}
& ]
By reversibility axiom, G- is transitive on
Generalized bit ), the: sphere.

Onishchik “63: Compact connected transitive groups on S9! :
* if d=even, then many possibilities (like SU(d/2)),

* if d=odd and d=7: only SO(d),
e if d=7: SO(7) and Lie group G..
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4. Derivation of the Hilbert space formalism

dm(0:) =2 —1€ {1,3,7,15.31, ..
P
By reversibility axiom, G- is transitive on
Generalized bit ), the: sphere.

Onishchik “63: Compact connected transitive groups on S9! :
* if d=even, then many possibilities (like SU(d/2)),

* if d=odd and d=7: only SO(d),
e if d=7: SO(7) and Lie group G..
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4. Derivation of the Hilbert space formalism

dim(2) =2"-1€{1,3.7,15,31,...}.
& o ]
By reversibility axiom, G- is transitive on
el Gy, O SpCTe

Onishchik “63: Compact connected transitive groups on S9! :

o T O=EvET e Ty possibilities-ike-SLId/2))

* if d=odd and d=7: only SO(d),
e if d=7: SO(7) and Lie group G..
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4. Derivation of the Hilbert space formalism

22 i s dimifids) =2 —1 € 41,37, 15.3L....}
WWEaeaEansy’ CPT
NS wEmB e By reversibility axiom, G- is transitive on

Generalized bit (), ST

Onishchik “63: Compact connected transitive groups on S9! :

* T a—cvem, Urerrany-possibiities-(ila-SLIdL2)). .
* if d=odd and d=7: only SO(d),
e if d=7: SO(7) and Lie group G..
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4. Derivation of the Hilbert space formalism

By reversibility axiom, G- is transitive on

Generalized bit 5 the Sphere-

Onishchik “63: Compact connected transitive groups on S9! :

o WO EvET eI Ty possibitities-(ike-SLUd/2))

* if d=odd and d=7: only SO(d),
e if d=7: SO(7) and Lie group G..
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4. Derivation of the Hilbert space formalism

dim(Qy) =2"-1€{1,3.7,15,31,...}.
CPT

By reversibility axiom, G- is transitive on

Generalized bit 5 the Sphere_

Onishchik “63: Compact connected transitive groups on S9! :
v [fm— bilities—(ilke-SLId/2).
* if d=odd and d=7: only SO(d),

e if d=7: SO(7) and Lie group G..

T bits: (GRG0 e (U
4 ) | S ¥, s 1 - y
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4. Derivation of the Hilbert space formalism

e
i
—

SS dim() =2"-1€{1,3,7,15,31, ...}
LTS

p s mam =L A
A & - 1 =
- - 7 | -

S A
Vae DS g g CP |

N By reversibility axiom, G, is transitive on

Generalized bit - the Sphere-

Onishchik "63: Compact connected transitive groups on S9! :

o T T=EvETT eI Ty possibilities-ike-SLi/2))

* if d=odd and d=7: only SO(d),
e if d=7: SO(7) and Lie group G..
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4. Derivation of the Hilbert space formalism

By reversibility axiom, G- is transitive on

Generalized bit 5 the Sphere_

Onishchik “63: Compact connected transitive groups on S9! :
v [fm— bilities—(ile-SLId/2)

* if d=odd and d=7: only SO(d),

e if d=7: SO(7) and Lie group G..
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4. Derivation of the Hilbert space formalism

| GBS —-; %), d#/7: Local transformations
Two bits: (7 @ G contain SO(d) ® SO(d).

-
B o [ T N i .
= - 4+ } s
I = |
- - - 'l “—
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4. Derivation of the Hilbert space formalism

0 /()

d#+7: Local transformations

Two bits: contain SO(d) ® SO(d).

Consider face (,,subspace®) generated by wy @ wy
and w; @ w1 (again, a bit!)
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4. Derivation of the Hilbert space formalism

0 oy

d=+/: Local transformations

Two bits: conain SO(d) ® SO(d).

Consider face (,,subspace®™) generated by wp @ wp
and w; @ wp (again,a bit!)

e Stabilized by SO(d —1) ® SO(d —1).
e Counting dimensions with group rep. theory:

if local transformations irreducible then orbit too large.
* But SO(d-1) is complex-reducible iff d=3 !
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4. Derivation of the Hilbert space formalism

) o

d+/: Local transformations

Two bits: contain SO(d) ® SO(d).

S

Consider face (,,subspace®) generated by wg &
and wi @ wi (again,a bit!)

‘—\.
I

e Stabilized by SO(d —1) ® SO(d —1).
* Counting dimensions with group rep. theory:

if local transformations irreducible then orbit too large.
® But SO(d-1) is complex-reducible iff d=3 !

Take-home message: Bloch ball 3-dimensional
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4. Derivation of the Hilbert space formalism

Map 3-vectors to Hermitian matrices: L(w) := '— (1 x Sf;:; WO )
* Facts on universal quantum computation,

* Wigner's theorem

* some other tricks

prove:
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4. Derivation of the Hilbert space formalism

n.»L.rIJ

| m J S ,__;: d#+7: Local transformations
Two bits: qx_l___,f Y ® M;H:;‘f/ contain SO(d) R SO(d)

Consider face (,,subspace®) generated by wy @ wy
and w; @ wi (again,a bit!)

e Stabilized by SO(d — 1) ® SO(d—1).
e Counting dimensions Wlth group rep. theory:

if local transformations irreducible then orbit too large.
* But SO(d-1) is complex-reducible iff d=3 !

Take-home message: Bloch ball 3-dimensional
because SO(d-1) is reducible only for d=3. ~
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4. Derivation of the Hilbert space formalism

Map 3-vectors to Hermitian matrices: L(w):= = (1 + Y., wio )
* Facts on universal quantum computation, |
* Wigner's theorem

* some other tricks

prove:
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4. Derivation of the Hilbert space formalism

Map 3-vectors to Hermitian matrices: L(w):= 5 ( i L5 \,,,;r;r,,_)
* Facts on universal quantum computation, |
* Wigner's theorem

* some other tricks

prove:

Theorem: Every theory satisfying Axioms |-V (rather than CP]
Is equivalent to (.G ), where

® () are the density matrices on CV.
* N is the group of unitaries, acting by conjugation,
* the measurements are exactly the POVMs.
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5.What's beyond quantum theory?

The Axioms:
I. Local tomography
Il. Reversibility

I1l. Subspace axiom
IV Finite-dimensionality
V.All measurements allowed
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4. Derivation of the Hilbert space formalism

Map 3-vectors to Hermitian matrices: L(w) =2 ( 1LY . WT)
* Facts on universal quantum computation, |
* Wigner's theorem

* some other tricks

prove:

Theorem: Every theory satisfying Axioms |-V (rather than CP]
Is equivalent to ({2 .Gy ), where

® )y are the density matrices on CV.
* G is the group of unitaries, acting by conjugation,
* the measurements are exactly the POVMs.
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4. Derivation of the Hilbert space formalism

Map 3-vectors to Hermitian matrices: L(w):= = (1 N o T)
* Facts on universal quantum computation, |
* Wigner's theorem

* some other tricks

prove:

Theorem: Every theory satisfying Axioms |-V (rather than CP]
Is equivalent to (2 .Gy ), where

® )y are the density matrices on CV.
* G~ is the group of unitaries, acting by conjugation,
e the measurements are exactly the POVMs.
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5.What's beyond quantum theory?

The Axioms:
I. Local tomography
Il. Reversibility

I1l. Subspace axiom
IV Finite-dimensionality
V.All measurements allowed
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5.What's beyond quantum theory?

* LI. Masanes, G. de la Torre (previous talk):
If local state spaces are balls of dim. d, then entanglement &
continuous reversibility for two balls only if d=3:only QT!

The Axioms:
I. Local tomography
Il. Reversibility

. SUuwspw—— 00"

IV Finite-dimensionality
V.All measurements allowed
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5.What's beyond quantum theory?

* LI. Masanes, G. de la Torre (previous talk):
If local state spaces are balls of dim. d, then entanglement &
continuous reversibility for two balls only if d=3:only QT!

* MM, O. Dahilsten,V.Vedral, Subsystem randomization as a universal
phenomenon (in preparation).
Dynamical state space = state space + transformation group.
(time evolution / computation)

The Axioms: General probabilistic versions of:

I. Lowa: tamegranhy e Purity, Pauli operators,
Il. Reversibility * Clifford group, H.S. inner product,

- = e mwr Py

. Sumwspecs =7 e formula for typical entanglement,

IV. Finite-dimensionality

V. All measurements allowed * decouplmg theorem.

Page 115/121




Thank you!
arXiv:1004.1483v2

See also: G. Chiribella et al.,arXiv:1011.6451v2
L. Hardy, arXiv: |1 104.2066v |
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5.What's beyond quantum theory?

* LI. Masanes, G. de la Torre (previous talk):
If local state spaces are balls of dim. d, then entanglement &
continuous reversibility for two balls only if d=3:only QT!

The Axioms:
I. Local tomography
Il. Reversibility

I1l. Subspace axiom
IV. Finite-dimensionality
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4. Derivation of the Hilbert space formalism

0 .w‘l_jl

d+/: Local transformations

Two bits: conain SO(d) ® SO(d).

Consider face (,,subspace®) generated by wp @ wy
and w; @ wi (again, a bit!)

e Stabilized by SO(d —1) ® SO(d —1).
e Counting dimensions with group rep. theory:

if local transformations irreducible then orbit too large.
* But SO(d-1) is complex-reducible iff d=3 !
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4. Derivation of the Hilbert space formalism
0 ..a.ru_

d#+/7: Local transformations

Two bits: contain SO(d) ® SO(d).

Consider face (,,subspace®™) generated by wy @ wy
and w; @ wi (again, a bit!)
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4. Derivation of the Hilbert space formalism
40 .-}

d=*=/: Local transformations

Two bits: conain SO(d) ® SO(d).

Consider face (,,subspace®™) generated by wy @ wy
and w; @ wi (again,a bit!)

e Stabilized by SO(d —1) ® SO(d —1).
e Counting dimensions with group rep. theory:

if local transformations irreducible then orbit too large.
® But SO(d-1) is complex-reducible iff d=3 !
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