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Abstract: The quantum mechanical state vector is a complicated object. In particular, the amount of data that must be given in order to specify the
state vector (even approximately) increases exponentially with the number of quantum systems. Does this mean that the universe is, in some sense,
exponentially complicated? | argue that the answer is yes, if the state vector is a one-to-one description of some part of physical redlity. Thisis the
case according to both the Everett and Bohm interpretations. But another possibility is that the state vector merely represents information about an
underlying reality. In this case, the exponential complexity of the state vector is no more disturbing that that of a classical probability distribution:
specifying a probability distribution over N variables also requires an amount of data that is exponential in N. This leaves the following question:
does there exist an interpretation of quantum theory such that (i) the state vector merely represents information and (ii) the underlying reality is
simple to describe (i.e., not exponential)? Adapting recent results in communication complexity, | will show that the answer is no. Just as any realist
interpretation of quantum theory must be non-locally-causal (by Bell's theorem), any realist interpretation must describe an exponentialy
complicated reality.
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Introduction

Consider N classical systems, each of which has only two distinct states —abstractly

these are N classical bits.
Two states:

An example of 2 joint state:

A praobability
distribution
over the joint
states
involves 2N
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Introduction

» The classical probability distribution is a very complicated object, being specified
by 2" - 1 real parameters. Butit is not a real thing. It corresponds (depending on
one’s stance) to an infinite ensemble of sets of N systems, orto the beliefsof an
ideally rational agent.

» Thereal thing— the ontology — is simple. A specification of the underlying state

of the system does not even require ane real parameter. It needs a2 /inear number
of classical bits.
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The quantum case

» Consider N two-level guantum systems. Abstractly, these are N qubits.

* The number of real parameters required to specify a (pure or mixed) quantum stateis
exponential in N.

Purestate—22V-2
Mixed state—2N -1

* Doesthis mean thatthe universe is exponentially complicated?

* The answer is not obvious because it might depend on how we interpret the quantum
state. Ifthe quantum state is a real thing (alternatively: a mathematical objectin 1-1
correspondence to the physical state of a real thing), then the universe is exponentizlly
complicated. This is the case in the Everett, and de Broglie— Bohm theories. But
perhaps the quantum state is more like a2 probability distribution - with an underlying
simple reality.
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The quantum case
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The idea that the quantum state is best understood as an analogue of a classical
probability distribution—as encoding information about reality, rather than
describing reality directly —is the epistemic interpretation of the quantum state.

One maotivation has been described above — if an exponentially complicated
universe is implausible, an interpretation of quantum theory with an underlying
simple ontology is attractive.

Other motivations:

» Collapse of the quantum state —much more like updating a probability
distribution than a real dynamical process.

» Spekkenstoy theory.
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Ontic models for quantum theory

Suppose that
(i) Thereissome underlying reality (corresponding to the hidden, or ontic state)

(ii) A pure guantum state corresponds to a distribution over ontic states.

For a guantum system S, an ontic model defines:

» A space /l of possible ontic states.
* Foreach quantum state |v ), a probability distribution i,. (A) on /.
* Foreach hidden state A, measurement M, and outcome k, a response function &_,,(\)

on A such that & y(A) =Prob(k| M, A).

The maodel reproduces the quantum predictions if

U | Egml €)= 4 Sml(A) () A

i

Thisis the positive operator corresponding
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Part |

On the exponential character of the ontic state.
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A question

* Given N guantum systems, is there an ontic model such that an ontic state can be
identified with only a linear number of classical bits?

&

If sg, the ontic model would be very similar to the
classical analogue discussed above. The quantum
state would be complicated in the way that the

classical probability distribution is, but the ontology A nswer.
wauld be very simple. Given the antological . -
extravagance of the Everett and Bohm theories, the N O

existence of such a simple maodel would potentially
be a powerful argument against Everett and Bohm.
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The Ontological Excess Baggage Theorem
(Hardy)

For an ontic model to reproduce the predictions of a single qubit, the
cardinality of /1 must be infinite.

So the quantum case of N qubitsis not at all like the classical case of N bits and
probability distributions over N bits. Indeed, forget about scaling as the number of

systems increases — even for a single qubit, the number of hidden states must be
infinite.
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Another question P

* Instead of counting the number of hidden states (or the number of classical bits
required to identify a state), assume a continuum of hidden states and count the
number of real parameters required to identify one.

* Mare precisely, let the space /1 have some suitable structure (e.g., a differential
manifold) and let suitable continuity conditions hold (e.g, nearby hidden states on the
manifold make similar predictions). Does there then exist an onticmodel for N
quantum systems such that the number of real parameters required to identify a
hidden stateis linear (or polynaomial, or at least sub-exponential) in N?

This question was raised by A. Montina in Answer:
P 100 :0711.4770 Unknown




An alternative direction...
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The approximate case

Suppose we aonly require of an epistemic model that quantum probabilities are
reproduced up to a tolerance of € ?

v

Hardy’s result does not hold.

' 4

For a finite dimensional guantum system, can approximately reproduce the
quantum predictions with a finite number of ontic states.

Question: for fixed €, how quickly must the number of ontic states grow as the
number of systems increases’?
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Data tables

» Consider an experimental setup
consisting of r different ways of
preparing a system, and s different
measurements thatcan be
performed on the system, each with
t outcomes.

» For each preparation and each
measurement, there is 2 probability

of abtaining each cutcome.

» Represent the data in the form of
a table of probabilities...

k
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p

Pr(1|M,,P,)
Pr(Z|M,,P,)

Pr(t|M,,P,)
Pr(1|M,,P,)
Pr(Z|M,,P,)

Pr(t|M,,P,)

Pr(1|M,P,)
Pr(2Z|M_P,)

Pr(t|M,,P,)

Pr(1|M,,P,)
Pr(zl erPZ)

Pr(t|M,,P,)
Pr(1|M,,P,)
Pr(Z|M,,P,)

Pr(t|M,,P,)

Pr(1[M,,P)
Pr(2|M.,P))

Prit| M_P,)

Pr(1|M,,P,)
Pr(Z|M,,P)
Pr(tl MIFPr)
PriZ|M,,P.)

Pr(t|M,,P,)

Pr(1]M,,P)
Pr{2|M_P)

Pr{tTRIZB,)




Bounds on the classical dimension

PriL M, Pl Prit e, P _ Fizine )
= z PriZ N, P FriZi M, - FriZine
» Given a data table, suppose we want ': - » =
to construct an ontic model with the i e _ i
= = : T R Brit | ME Pl _ PrinimeP)
specific aim of reproducing the B i s
probabilities in that table. = E =z
3 Prich M P | Erit e, P _ PriviseF
y aars s e
z PriZ M NG P __ FrEieac P
£ :‘_'TtIMsF'-_- '—‘_-rrlhg:-": : BritinL 7

» Finiteset /A of onticstates, A={\_, A,, ..., Adc}
» Each preparation P, correspondsto a probability distribution over .

* Foreach hidden state A;, and for each measurement M, outcomek, thereisa
probability Pr{k | M;, A;).
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For a particular data table, what is the value of d_ = | A | in the most efficient model?
This question was raised by Harrigan and Rudolph in arXiv:0709.1149.

For a completely arbitrary data table, it may be a difficult question, but they give some
lower and upper bounds.
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Bounds on the quantum dimension

H TS T S T
1 Bria | n, Pl Pt AE P PriTime 73
2 Z  PriZlM.,F FriZ| M, F _ Frizie,
* Given a data table, suppose we want — - -
to construct a quantum model with S i
s : . I Pritiverd PriT | Na P _ PriineF)
the specificaim of reproducing the e ———m— o
N coiess  eoness  rome
probabilities of that table. = S - ~ -
| Privf M, P | Erini M P _ Priciaa
1 mEMRl PR A
z i | ML P Pr{Z ML P TIPS
;11:: L i M P —  FritiNLP

* Hilbert space H, dimension d,.
» Each preparation P, correspondsto a density matrix p; on H.
 Each measurement M, correspondstoa POVM{ E},,...,E,} onH.
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For a particular data table, what is the value of d; = dim (H) in the most efficient madel?
This question was raised by Wehner, Christandl and Doherty in arXiv:0808.3960.

For a completely arbitrary data table, it may be a difficult question, but they give a lower
bound.
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Final question

Can we find a sequence of datatablesD,, D,, ... of increasing size such that
i) Thenth table has a gquantum model with dim (H,) =n.

i) Themastefficient hidden variable model forthe nthtablehas || =0(2"), evenifa
fixed errore is tolerated.

Answer:
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Communication complexity

Klartag and Regev (arXiv:1009.3640) consider the following communication
complexity problem.

Classical description of a
projective measurement

Classical description of a d- i :
Either classical or onto two half spaces {H,,H.}

dimensional guantum state | v

guantum communication =
— —————e—————
Alice I Bob

v

Promise: either |v) € H, or |v) €H Outputeither H, or H,

T
T

* Thereis a trivial guantum solutioninvolving only log d qubits— Alice simply sends the

state |v) to Bob.
» Klartag and Regev show (this is the hard bit) that if Alice and Bob can only send classical

Ritstaone another, then they must send O(d) bits, even if approximation is allowed (they
can sometimes output the wrong answer) and even if a two-way conversation is allowed.




Applying the Klartag and Regev result

* |tis tailor-made for our problem!

» Construct data tables such that preparations are preparations of d-dimensional
quantum states, and measurements are 2-outcome projective measurements onto half-
spaces.

» Any ontic model for the data table corresponds to a strategy for the communication
complexity problem: Alice simply sends to Bob a classical description of the ontic state.

* The Klartag-Regev result shows that any ontic model for such a data table must have a
number of ontic states O(2°). Otherwise the corresponding strategy would solve the
communication complexity problem with only a small amount of classical
communication, which isimpossible.
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Can the no-go theorem be tested
experimentally?
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Part ||

On the epistemic character of the quantum state
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Reminder - ontic models for quantum theory

Suppose that

(i) Thereissome underlyingreality (corresponding to the hidden, or ontic state)

(ii) A particular methaod of preparing a system corresponds to a distribution over ontic
states.

For a guantum system S, an ontic model defines:

» A space / of possible ontic states.

» Foreach quantum state |v ), a probability distribution .. (A) on /.

» Foreach hidden state A, measurement M, and outcome k, a response function & ,,(A)
on A such that& (A) =Prob(k|M, A).

The model reproduces the quantum predictions if

C| Egml €)= [4 Soml(A) () A

i
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w-ontic models

Supp(zt,) — <2::S

Supp(it,)

=

» Suppose that far every pair of distinct quantumstates |o) and | v, the distributions
and i, do not overlap.

* In this case, the quantum state can be inferred from the ontic state. All the information
about the guantum state is contained in the ontic state.

* Call such a model v-ontic.
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w-epistemic models

Supp(i,) —

b, 8

Supp(zty,)

* If there exists some pair of quantum states | o) and | v), with overlapping distributions x_
and .. , then the model is v-epistemic.

» If the onticstate lies in the overlap region, e.g., A\, above, then itis not possible to infer
whether the quantumstate | o) or |v) was prepared.
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A no-go theorem for v-epistemic models

Suppase there are distinct quantum *1
states |o) and |v), and an ontic state

A, such that:
Supp(u,) -

Pr(\, | ©) > g>0,
Pr(\, | ) > g>0.

Supp(x.)

Letx = | (o|v)|* and choose positive n such that n > log, 1/3.

Consider the following three joint states of 2n systems. Each is a product state
and can be generated with 2n completely independent preparations.

A — | AV N
X1/ = 19
= A\ @2n
Pirsa: 11050028 \ 2/ = t __ —
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When, e.g., | x;) = |0)%?" is prepared, assume that the ontic state is a product of
ontic states for each system, and that the distribution over onticstatesis a product
distribution. This is very natural given that the 2n preparations may have nothing
to do with one another. There is then some chance that the onticstate A is
prepared every time:

=

| o) | o) |o) | o) | o) |o)

T ==

|
@)

PI'(J\D & /\G e ”\D I \1)

1V
oY)
TR

s

Similarly,

Pirsa:llosotgr(/\ﬂ : /\D S= /\D | \2) E (Q)zn
Pril x A X === x A | va) > (g)2"
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* Now here’s the problem...

* As long as we choose n large enough (n > log, 1/3 ), then | x.), | x> and | x5

are what Caves, Fuchs and Schack call incompatible state assigments.
C. M. Caves, C. A. Fuchs and R. Schack, PRA66,062111 (2002)

* More precisely, there exists a projective measurement M ={Q,, Q,, Q;, Q, }
across the joint system such that

x11Q|x:)=0
X2l Q| x2)=0
‘{3|O~3|.‘tz==0

XilQelx:i)=0, =123

* If the guantum state preparedis | x,), then thereis a non-zero probability that the
onticstateis A, x --- X A, Soif the ontic model is to recover quantum predictions, we
must have Pr(Q;|A, x --- X A,)=0

* Similarly Pr(Qg| A, X --- X A) =Pr(Q,|A, X --- X A,) =Pr(Qs|A, x --- X A,) =0.

*Sogiven A\, X --- X A, thereis no probability distribution over the outcomes of M that
PreidtBhsistent with the predictions of quantum theory:. S




Conclusion

If an ontic model is to reproduce the predictions of quantum theory, distinct
quantum states must correspond to non-overlapping distributions over ontic
states.
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* | have presented a simplified version of the argument.

* A better proof deals with continuum ontic states (wherewe can’t assume Pr{A) > 0 for
any individual A).

» The better proof also deals with the approximate case, where an ontic model only
need reproduce the predictions of guantumtheoryup toe.

Theorem (M. Pusey and J. Barrett, forthcoming):

Suppose that an ontic model approximately reproduces quantum predictions, with
probabilities for measurement outcomes within € of the quantum probabilities.
Consider quantumstates |o) and |v) withx= | (o] v) |2 Then

4 € 2 ( £ —¥ (/u.:::! HL*))Zn

with D the trace distance,andn>1,n > log, 1/3 .

Pirsa: 11050028 Page 32/35




Experimental challenge

 Forquantum states |o) and |v) with | (o]|v)|? as close to 1 as possible,
establish a lower bound for D(u_, 1£..) as close to 1 as possible.
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Conclusions

* In a hidden variable model that reproduces exactly the predictions of quantum
theory, there must be an infinity of ontic states. But how many real parametersare

needed to characterize an ontic state? Is it exponential in the number of systems? Don’t
know.

* |f a2 hidden variable model is only required to reproduce approximately the
predictions of quantum theory, it can be done with a finite set of ontic states. But then,

then number of classical bits needed to identify the hidden state underlying N quantum
systemsis exponential in N.

* If, given n independent preparations, the joint ontic state can be representedas a
Cartesian product, with a product distribution, then a genuinely epistemic
interpretation of the quantum state isimpaossible. All information about the quantum
state must be contained in the ontic state.
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These no-go theorems are not easy to evade.

Their assumptions are not strong.
Either: Somethmg pretty radical has to giv
Or: accept an exponential ontology/rea

=
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