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Abstract: | will discuss the construction of a holographic dictionary for theories with non-relativistic conformal symmetry, relating the field theory
to the dual spacetime. | will focus on the case of Lifshitz spacetimes, giving a definition of asymptotically locally Lifshitz spacetimes and discussing
the calculation of field theory observables and hol ographic renormalization.
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ondensed matter physics & holography

i pplication of holographic methods to gauge theories long studied.
Vhy condensed matter?

@ Rich system:

» CFTs arise as IR desc near critical points; often strongly coupled.
» Many different theories; can tune Hamiltonian in some settings.

@ AdS/CFT provides a useful new perspective:

» Few other methods for calculation at strong coupling.
» Gravity dual calculates observables like transport coefficients directly,
no quasiparticle picture.

@ Prompts new questions:

» Charge transport, phase transitions

» (Can have theories with an anisotropic scaling symmetry
D: x' = Ax'.t — Nt
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)Juantum critical point
'hase boundary at zero temperature.

. Quantum 2
critical

Insulator

igure from Sachdev, arXiv:0711.3015
@ Critical point described by a CFT;
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Vhat do we hope to do?

@ Not to construct a dual to CF Is studied in condensed matter or make
direct contact with lattice models. (Known examples of duality are
large N gauge theories.)

@ Proceed phenomenologically: construct bulk theories with qualitative
features of interest.

» Bottom-up: invent an appropriate classical gravitational Lagrangian
» Top-down: string theory construction.

@ Big question: range of theories/issues for which holography is useful.

» Matrix large N.
» Hierarchy in spectrum: As~> > As<o.
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dS /CFT review

? (ef ¢y _ Zstring|00] = e—lool

@ Calculate e.g. stress tensor as

(LI 5]
i
8]
[
e

n =
[
¥

where ds® =~ d" +r- h‘u et dx™

@ One-point functlons for arbitrary sources give full information: obtain
correlation functions by varying sources.
* Action S for boundary conditions fixing h,,,,

@ One-point functions will depend on both sources and states:
+ Space of 'asymptotically AdS’ geometries for a given boundary
condition.

@ [hermal states described by bulk black hole solutions.
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dS /CFT review

° {ef P00y Zstring| 0] = e—>lool

@ (Calculate e.g. stress tensor as

where ds® =~ d" r—hm,dx ax”

@ One-point functlonS for arbitrary sources give full information: obtain
correlation functions by varying sources.
» Action S for boundary conditions fixing h,,,,
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dS /CFT review

9 <Ef rjﬂ@) — Zﬂ,—;ng [Dg] ~ E_S[Dﬂ].

@ (Calculate e.g. stress tensor as

KT{I oy =

;o

where ds® =~ d" +r- h‘u L, dxH dx”

@ One-point functions for arbitrary sources give full information: obtain
correlation functions by varying sources.
= Action S for boundary conditions fixing h,,,,

@ One-point functions will depend on both sources and states:
+ Space of 'asymptotically AdS’ geometries for a given boundary
condition.

@ [hermal states described by bulk black hole solutions.
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nisotropic scaling

1 condensed matter, have theories with an anisotropic scaling symmetry
) x' — Ax'.t = A\t
'wo cases of interest:
e Lifshitz-like theories: D, H, P, Mj;
@ Schrodinger symmetry: add Galilean boosts K. z = 2 special.
Vant a holographic description as in AdS/CFT:

@ Spacetime with these symmetries

@ Prescription for calculating one-point functions in the presence of
sources.

@ Spacetimes with these asymptotics corresponding to interesting states
— in particular, black hole solutions.

or z =1, recover AdS/CFT. For z — oc, goes to AdS,; x R”.
1teresting example of extending holography
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tress-energy: field theory expectations

lon-relativistic theory: Stress-energy complex
@ Energy density &, energy flux &'

@ Momentum density P;, spatial stress tensor 1" ..

j
e Conservation equations ;€ — J;E' =0, 9, P; — J; HJF =31}
@ Scaling invariance implies z&€ + I_["; —f).
e £ dimensionz+d = &' ICifFT“EI"‘EiCr‘I 2z —d — 1.
P; dimension 1 -~ d = [V . dimension z — d.

Note z + d is marginal.)

@ Note no relation between £'.P;. (Can’'t come from a symmetric
tensor.

—~—
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tress-energy: field theory expectations

lon-relativistic theory: Stress-energy complex
@ Energy density &, energy flux £’

@ Momentum density P;, spatial stress tensor " .

f
e Conservation equations 9;€ + ;€' =0, 9;P; + 9, , = 0.
@ Scaling invariance implies z€ + 1", = 0.

ension 2z +d — 1.

@ &£ dimension z - d = &' dimel
P; dimension 1 -~d = [F.
(Note z + d is marginal.)

dimension z - d.

@ Note no relation between £'.P;. (an’'t come from a symmetric
tensor.
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ifshitz geometry

@ Simple deformation of AdS:

~

s —— T dt rdi - ———

@ Solution of a theory with a massive vector: Tayior

S = / d%ey/—a{R —2A— %Fm,F‘”' — %mZAMA“).
with A = —%(ZE + z+4), m*> = 2z. Lifshitz solution has
_ H=—1)

A= arfdt. o

Z
@ Finite temperature black hole solutions obtained numerically.

UrTiNgron

ol 330 LI o=

@ Analytic black holes in other theories. < o
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tress-energy: field theory expectations

lon-relativistic theory: Stress-energy complex
@ Energy density &, energy flux &'
@ Momentum density P;, spatial stress tensor I_lfj.
e Conservation equations J;€ + 9;€' =0, 9;P; + 0 Hj;. =
@ Scaling invariance implies z&€ + I_["; )
e £ dimension z - d = &' dimension 2z + d — 1.
P; dimension 1 -~ d = [} . dimension z - d.
(Note z + d is marginal.)
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ifshitz geometry

@ Simple deformation of AdS:

> > drz
ds® ——Tdi rde - ———

@ Solution of a theory with a massive vector:

_—;_:___-___.J.-. Mann Burr NEToNn

@ Analytic black holes in other theories.
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with A = —%(ZE + z 1+ 4), m*> = 2z. Lifshitz solution has
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ifshitz geometry
@ Simple deformation of AdS:

~y

) > P, . P
ds® = —r~dt° + rrdx® + —.

@ Solution of a theory with a2 massive vector:

o R Burringron

@ Analytic black holes in other theories.
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ifshitz in string theory

¥y
i

@ S' compactifications of M theory:

T e A
l " a3l Zd LWMTIELT

dsz; = dsz + €T (do + A)? + €Y Dv? + €2Y(ds? + ds2),

Fs = 4e’ 7V *YVolyA(do+A)+-ADUA KN . H = V2(do+—dk)AN(J—h).

Gives z = 2 massive vector theory + scalars.

@ Massive IIA on S* x H?/T: i

Reduction on S* gives 6D gauged massive supergravity, SU(2) X U(1)
gauge group. Allowing F3) flux on H2/I" gives 4D Lifshitz with
arbitrary z.

e Full 4D theory, asymptotically Lifshitz solutions?

Fiartmoll

L

° See 3]50 ;—:—: : K ’:’iii_
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ifshitz geometry

@ Simple deformation of AdS:

~

ds" ——rZdt" 4+ rrde 4 ——

@ Solution of a theory with a massive vector:

_;-.:-_, ;_F-_.-’_. '.IE""' _Jr "'._:_:r':

@ Analytic black holes in other theories.
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ifshitz in string theory

¥y
1

@ S' compactifications of M theory:

T il i
d gl g =l ‘“ad UNMTIEIT

ds?, = dsz + 2T (do + A)? + €2V Dy? + 2Y(ds? + ds2).

Fs = deT VY VolyAN(do+A)+-ADUAI A D H = V2(do+dk)A(Ji—Db).

Gives z = 2 massive vector theory + scalars.

@ Massive IIA on S* x H?/T: FUm—

Reduction on S* gives 6D gauged massive supergravity, SU(2) x U(1)
gauge group. Allowing F3) flux on H2/I gives 4D Lifshitz with
arbitrary z.

e Full 4D theory, asymptotically Lifshitz solutions?

grignglell Lonos

» Soxalon TSR S
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ifshitz geometry

@ Simple deformation of AdS:

@ Analytic black holes in other theories.

irsa: 11050007

-~ | o5 # d E
ds= —— 5" di" rdi 4 ’: .
2
@ Solution of a theory with a massive vector:
S — / d*xy/—alR—2A— %Fm, 2 — %mZAIHA’“).
with A = —%(ZE L z+4), m*> = 2z. Lifshitz solution has
2(z—1
PRIRE e T . |
z

@ Finite temperature black hole solutions obtained numerically.
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ifshitz in string theory

o
!

@ S' compactifications of M theory:
ds; = dsg + €21 (do + A)? + €Y Dv? + Y (ds? + ds2).

Fs = 4e’ V" *YVolyN(do+A)+ADUA KA. H = V2(do+dk) A(J— ).

Gives z = 2 massive vector theory + scalars.

Sregon

@ Massive lIA on S* x H?/T: "
Reduction on S* gives 6D gauged massive supergravity, SU(2) h>_<- U(l)
gauge group. Allowing F3) flux on H2/I gives 4D Lifshitz with
arbitrary z.

e Full 4D theory, asymptotically Lifshitz solutions?

grigagiall Llonos

@ Seealso °©

gy |
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ifshitz geometry

@ Simple deformation of AdS:

@ Analytic black holes in other theories.
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Sl e

de” —— = di™ -rdx® if
@ Solution of a theory with a massive vector:
5= / d%ey/—a({R—2A— 4Fm FHY — %mEAJ“A“).
with A = —%(ZE + z 1+ 4), m?* = 2z. Lifshitz solution has
A=ardt. o= 2(22_ L]

e Finite temperature black hole solutions obtained numerically.

e aalelielt=ls
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ifshitz in string theory

n
!

@ S' compactifications of M theory:

Naravan zauntlect

dsz; = dsz + €27 (do + A)? + €2Y Dy? + e2Y(ds? + ds2),

Fs = e VY VolyA(do+A)+ADUAI A D H = V2(do+dk)A(J1—Db).

Gives z = 2 massive vector theory + scalars.

@ Massive IIA on S* x H?/T: Paramesuaran

Reduction on S* gives 6D gauged massive supergravity, SU(2) y U(1)
gauge group. Allowing F3) flux on H2/I gives 4D Lifshitz with
arbitrary z.

e Full 4D theory, asymptotically Lifshitz solutions?

grignglell Lonos

» Hoxalgn SRS E
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symptotically locally Lifshitz spacetimes SFR & Sarem

Vant the leading-order metric at large r to locally take the form

;
dr=

r2

. y,

= —rZdt® + r’dx* +

ds

Work with an orthonormal frame e'?)_e'”). (a—0.1.2 1=1.2)

ly choice of gauge, e,EA) =0, el”) = %. Require that as r — o0,

0) z »(0)

el — r7eO(r. t.%). &) = rél(r.t.R).

where &% (r.t.%), &/(r. t.X) have finite limits as r — oc.
loundary data analogous to conformal metric on boundary. .. SO
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Lress tensor

loundary geometry e(ﬂ)(r. i Xx), é"(r. t.X) = sources for stress tensor.
lssume we have an action S finite on-shell, ©S = 0 for variations
reserving boundary data. Define 75 by (a=cxl.x%i=x.x?)

|

;55:/ dBX\;’ (TrBSE 7\ ﬁAq)
4 M

@ Variation at fixed As implies [ ag not a symmetric tensor.
» A; provides additional vector components; A; = 0 by choice of frame.
» Remaining scalar dof v = Aq — a.

@ Identify with stress tensor complex: T3 =E.&"; T =P;. |—[;

@ Invariance of S under boundary diffeomorphisms /(. x"). x’ (t. x")

implies conservation equations shibashi

Eastl

Marolf

VaT% — m*V3A, = 0.
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Lress tensor

loundary geometry é(ﬁ)(r. £ x), é"(r. t.X) = sources for stress tensor.
lssume we have an action S finite on-shell, 0S = 0 for variations
reserving boundary data. Define 75 by (a=cxl.x2i=x1.x?)

6S = / PxvV/—h(T%6eB) + 745A,).
4 M

@ Variation at fixed As implies [ ag not a symmetric tensor.

» A, provides additional vector components; A; = 0 by choice of frame.
» Remaining scalar dof v = Ag — a.

@ Identify with stress tensor complex: T3 =E.&"; T =P;. Hj

@ Invariance of S under boundary diffeomorphisms t/(t. x‘;).x’-’(t._xf)

implies conservation equations v

Marolf

VaT% — mV3Aq =0.
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tress-energy: field theory expectations

lon-relativistic theory: Stress-energy complex
@ Energy density &, energy flux &'

@ Momentum density P;, spatial stress tensor " .

7
@ Conservation equations ;€ + 9;&' =0, J;P; + 0, FIJ;. —1
@ Scaling invariance implies z€ + 1", = 0.

® £ dimension z+-d = &' dimension 2z +~d — 1.

P; dimension 1 +d = [V . dimension z + d.
(Note z + d is marginal.)

@ Note no relation between £'.P;. (an’'t come from a symmetric
tensor.
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Lress tensor

loundary geometry é(ﬂ)(r. £ Xx), é"(r. t.X) = sources for stress tensor.
lssume we have an action S finite on-shell, ¥S = 0 for variations
reserving boundary data. Define 75 by (a=c.xl.xZi=x1.x?)

5S = / d*xv/—h(T%6elB) + 75 A,).
J OM

@ Variation at fixed Aa implies [ ag not a symmetric tensor.

» A, provides additional vector components; A; = 0 by choice of frame.
» Remaining scalar dof v = Ag — a.

@ |dentify with stress tensor complex: T3 =¢&.&"; T% =P;. I_Ij

F

@ Invariance of S under boundary diffeomorphisms /(. x'). x" (. x’)

Moanas

implies conservation equations shibashi

| S0 =g |

Marolf

VaT% — m*V3A, = 0.
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oundary geometry

@ A non-relativistic theory has an absolute time: so as r — o0, expect a
foliation of boundary by a preferred family of surfaces.

@ For general &9 (r.t.X), &/(r.t.X), this is not what we get: preferred
vector field only defines preferred set of curves.

@ For surfaces, need (9 irrotational, 2(9 A 4209 —0 as r —+ .

@ Implies source for £ vanishes (up to diffeomorphisms). Adding a
source for an irrelevant operator modifies the UV behaviour, so not
surprising. Want to consider this source perturbatively.
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Lress tensor

loundary geometry é(ﬂ)(r. t, x), é"(r. t.X) = sources for stress tensor.
lssume we have an action S finite on-shell, ¥S = 0 for variations
reserving boundary data. Define 75 by (a=c.xl.x%i=x1.x?)

oS :/ d3xv/— h( B‘?e —,TAr_"TAA).
Joam

@ Variation at fixed As implies [ ag not a symmetric tensor.
» A, provides additional vector components; Ay = 0 by choice of frame.
» Remaining scalar dof v = Ag — a.

@ Identify with stress tensor complex: T3, =E.&"; T =P;. Hj

@ Invariance of S under boundary diffeomorphisms (. x‘;).x’-’(t. x')

implies conservation equations Ve

| S = |

Marolf

VaT% — m*V3A, = 0.
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symptotically locally Lifshitz spacetimes SFR & Sarem

Vant the leading-order metric at large r to locally take the form

2 )

2 i 9, —7)
— gt L rdsx 1-———-»-. ..

ds

Work with an orthonormal frame e'?)_e'”). (a—0.1.2 1=1.2)

ly choice of gauge, e,EA) — 0, el7) = %. Require that as r — o,

el0 — rzaO(r. t.%). &) = rél(r.t. ).

where &9 (r. t.x), &(r. t.X) have finite limits as r — .
loundary data analogous to conformal metric on boundary. . S
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Lress tensor

loundary geometry é(ﬂ)(r. £ Xx), é"(r. t.X) = sources for stress tensor.
lssume we have an action S finite on-shell, S = 0 for variations
reserving boundary data. Define 75 by (a=c.xl.x%i=x1.x?)

4.

a5 — / daxv —h( ﬂBF_‘;E‘F(B.} = I8 ,TAH;AA).
J IOM

@ Variation at fixed As implies T2 not a symmetric tensor.
» A, provides additional vector components; Ay = 0 by choice of frame.
» Remaining scalar dof v = Ag — a.

@ Identify with stress tensor complex: T3 =E.&"; T =P;. I_Ij

@ Invariance of S under boundary diffeomorphisms t/(t. x’-).x’-’(t._ x’)

implies conservation equations shibashi

| 0= |

Marolf

VaT% — m*V3A, = 0.
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oundary geometry

@ A non-relativistic theory has an absolute time: so as r —+ o0, expect a
foliation of boundary by a preferred family of surfaces.

e For general &9 (r.t.%), &/(r.t.X), this is not what we get: preferred
vector field only defines preferred set of curves.

@ For surfaces, need el9 irrotational, &% A d2(®) =0 as r — 0.

@ Implies source for £ vanishes (up to diffeomorphisms). Adding a
source for an irrelevant operator modifies the UV behaviour, so not
surprising. Want to consider this source perturbatively.
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e For general &9 (r.t.X), &/(r.t.X), this is not what we get: preferred
vector field only defines preferred set of curves.

@ For surfaces. need el? jrrotational. (%9 A d2l%9) —0 as r — .
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inearized results SFR gl

@ Ansatz

el® — 7 (1 + Eﬁﬁ)dr + rwyjdx’.

= P - i I M Ay M a M
e\ = rfwyidt +r(0'; + §h j)dxf. A" =a(l+3:)0y + aa oz .

=

@ Expected pattern of modes:

éf. hﬁ_— hj ~ dj.

i e rz_l Co; C3; & 5 rl_z Coj C3j
R ~ ; a3 3 2§ ™~ C4; =y
P37 p2z+H1 P37 p2z+H1

& 2jj

h{'f = hijj z+2

32 =(z+2)" +8(z—1)(z—2)
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inearized results % sniad

xpectation values:
@ Fast fall-off modes give expectation values as expected:

f- o
» For vectors, c; violates boundary condition for z > 4
P; P’ relevant: flow from fixed c4; to fixed o; PST

@ One remaining scalar degree of freedom: spatial vector part of A, was

used up in stress tensor.
@ Scalar operator @ dual to v’ has dimension A =

(&) =~ s

livergences:
@ Divergences in on-shell action, expectation values from sources.

@ Also divergences in &', O for z > 2 from fast fall-off modes.

@ Covariant local counterterms removed linear divergences, except in O

(z -2+ 3.),

N | b=t

Van Hess

o = >
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inearized results SFR g

@ Ansatz '
el® — 7 (1 + Ehr)dt + rwyjdx’.

AN - ; M A oM o on o
e\ = rfwo;dt +r(d'; + Ehj)dxf. A" =a(l+3;)0, + aa o5 .

@ Expected pattern of modes:

A A a2 a3 24
Fa ! il
31—. hﬁ-. hf- ~ En']_. "y 1 = 1 i
r rjtz——— iz ) rjf?—'—--— z)
=2 e rz_l Coj C3j - " rl_z Coj C3j
i ™~ q; : e 2; ~ C4; 5
37 p2z+1 P37 p2z+1
4 2

;| 3
A-—A{=4+ 2}y 8= )=z 3F)
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inearized results % sain

xpectation values:
e Fast fall-off modes give expectation values as expected:
E x ao, E' ox . p; X &;, I—I;;,' ® 2 Egrﬁ‘;j + Djj
» For vectors, ¢; violates boundary condition for z > 4
P; P’ relevant: flow from fixed c; to fixed o;

@ One remaining scalar degree of freedom: spatial vector part of A, was
used up in stress tensor.
@ Scalar operator @O dual to v’ has dimension A =

(O) ~ aa.

(z -2+ 3.),

N | b=t

livergences:
@ Divergences in on-shell action, expectation values from sources.

@ Also divergences in &', O for z > 2 from fast fall-off modes.

@ Covariant local counterterms removed linear divergences, except in O

3N Hess

oy =52
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inearized results | T

@ Ansatz

el) = Pwy;dt + r(r'_‘?"j

@ Expected pattern of modes:

A o A a2 a3 dA
=% hh—' h: = =12t Lioag 50 f-12:8)
r r2 i FINET=THz
i o G2 C3; - . C2; C3;
1§ ™ O3 = 21 ™~ ¢4, :
°T L2

32 =(z+2% +8(z—1)(z—2)
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inearized results

xpectation values:

e Fast fall-off modes give expectation values as expected:
& o ao, & ox . p; X £55;, I—lfj ¢ 3 334‘_“;] + Djj
» For vectors, ¢; violates boundary condition for z > 4
P; P’ relevant: flow from fixed c4; to fixed o; HPST
@ One remaining scalar degree of freedom: spatial vector part of A, was
used up in stress tensor.

@ Scalar operator O dual to v’ has dimension A = %(z +2— 32),
(O) ~ aa.
livergences:
@ Divergences in on-shell action, expectation values from sources.
@ Also divergences in &', O for z > 2 from fast fall-off modes. (.2n 2

@ Covariant local counterterms removed linear divergences, except in O
for z > 2.
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inearized results SFR g

@ Ansatz
(0) z 1A /
et/ =r (1+ Eh'n-)dt— rwy;dx’.

el") = Fwy;dt + r(f’-“;fj T H:j)dxj- AM = (1 + 3,)8g" + a3,03".

B ~ p 52 33 34
¢ hh‘.‘ hj el | | m 1 I
=1 rfiz—z_ -}:} rE(:_E_ ._}
& o C2; C3j - . C2; C3;
1F ™ €]j . — s P & R
F3 .-'“2‘" 1 !’3 rL 1
% i 2
hU = T1jj S =

32 =(z+2)" +8(z—1)(z—2)

Pirsa: 11050007 Page 51/71




inearized results

xpectation values:

@ Fast fall-off modes give expectation values as expected:
af S
& x &, & X C3;, p;‘ X Gy, I_l;j X a20jj +— Djj
» For vectors, ¢; violates boundary condition for z > 4
P; P’ relevant: flow from fixed c; to fixed o; HPST

@ One remaining scalar degree of freedom: spatial vector part of A,, was
used up in stress tensor.

@ Scalar operator O dual to ©' has dimension A = %(z +—2— ;).
(O) ~ ag.
livergences:
@ Divergences in on-shell action, expectation values from sources.
@ Also divergences in &', O for z > 2 from fast fall-off modes. (i2n r——

@ Covariant local counterterms removed linear divergences, except in O
for z > 2.
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inearized results s =
@ Ansatz '
el = FF(1+ Ehr_-)dt— rwy ; dx
¢ S d .;r' lj‘_,! d J AM’ B s p )‘TM A )1M
e\’ = r-wo; t—r(r_j-—3 j)ax. = a(l+3¢)0y + aa o3 .
@ Expected pattern of modes:
= A =5 a3 d4
af hn— hj ~ di a3 - T
= rftz—z— z) rj[f-'—z— z)
- c rz 1 €2i C3; - ¢ !’l > €2 C3;
1i ~ Cii ;e 2i ~ G4 55
- Djj
B2 = (z+ 2 +8(z—1)(z—2)
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inearized results % i

xpectation values:
@ Fast fall-off modes give expectation values as expected:

f- o

& ao, EF o C3;, p;‘ X Gy, ng X 320ji + Djj
» For vectors, c; violates boundary condition for z > 4

P; P’ relevant: flow from fixed c4; to fixed o; PST

@ One remaining scalar degree of freedom: spatial vector part of A, was
used up in stress tensor.

@ Scalar operator @ dual to v’ has dimension A =
(O) ~ ag.

livergences:
@ Divergences in on-shell action, expectation values from sources.

@ Also divergences in &', O for z > 2 from fast fall-off modes.

@ Covariant local counterterms removed linear divergences, except in O

(z+2+ 32),

N | =t

an Rees

oy =z 5> 2
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inearized results SFR g

@ Ansatz i
el® — 7 (1 + Eﬁr)dt + rwyjdx’.
- i ]_ A S = AN T L
) = Pwyidt + (0", + Sh)dd . AV = a(1+5)dy" + 03,63

@ Expected pattern of modes:

21 I 3 as d4
. B IE a3 : )
y Fhgiy £, Y Et2 Hz42- ;) Lz +2+8:)
- & r:«:—l €2; 3 W C !’1_* ice o
lf M 1! - jf B 4f
A7 2= el o
A~ [2jj
h,}l— = flfj j")
i e

7 ",
g —{= 2 -+ 8= 1= 2)
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inearized results

xpectation values:

@ Fast fall-off modes give expectation values as expected:
& x ao, &' o 3. Ip; X &, I"I,,;,- X a20jj +— Djj
» For vectors, ¢; violates boundary condition for z > 4
P; P’ relevant: flow from fixed c; to fixed o; HPST
@ One remaining scalar degree of freedom: spatial vector part of A, was
used up in stress tensor.

@ Scalar operator O dual to v has dimension A = 2(z+ 2+ 3,),
(O) ~ ag. .

livergences:

@ Divergences in on-shell action, expectation values from sources.

@ Also divergences in &', O for z > 2 from fast fall-off modes. (v2n r—

@ Covariant local counterterms removed linear divergences, except in O
for z > 2.
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inearized results Enia

xpectation values:

e Fast fall-off modes give expectation values as expected:
E ox a, & x c3;, P; x 64, I'IL,- X a20ji +— Djj
» For vectors, ¢; violates boundary condition for z > 4
PP’ relevant: flow from fixed ¢4 to fixed o; HPST
@ One remaining scalar degree of freedom: spatial vector part of A, was
used up in stress tensor.

@ Scalar operator O dual to v has dimension A = 3(z + 2 + 3.),
(O) ~ aa.
livergences:
@ Divergences in on-shell action, expectation values from sources.
@ Also divergences in &', O for z > 2 from fast fall-off modes. (vzn 2

@ Covariant local counterterms removed linear divergences, except in O
for z > 2.
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olographic renormalization

xtend beyond linear analysis: want to determine (T“), (O) for arbitrary
burces to all orders.

leed to solve eom in asymptotic regime r — 0.

|se functional differentiation approach: e

@ Introduce “dilatation generator”

5 A _ 0
On — 3 F (0) ' 1 atf) : — = i - r—
D /d S ey A e s L

- 'rl.} ef:l Ir-} Er_‘ ¥

expand in eigenvalues of dp rather than powers of r.
@ Regular expansion exists

» For arbitrary sources for z < 2
» For zero source for &', O for z > 2.

@ Expansion gives subleading terms in bulk as functions of sources.
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olographic renormalization

livergent terms in response functions (7T“), (O) from dilatation
xpansion can be cancelled by local counter-terms in action.

- 3 - & A (A) ss
@ Write S,,,_chett = fd xy/ —hA; since T = e, R

(-2 —=8p)A—=zTH +T5—(z1-2 =AW

@ Using this, Taog — mag + TaApB and constraint
1 , 1 a1 A 1 A L AaB_ 1 o, A
AR AR —— A — Vima) = R—-2A——FAgF7"° ——m~ A A" .
= 2 TAB > TA 2m2( A) 7 a8 = A

determine on-shell action in dilatation expansion: gives divergent
terms as functions of sources.

@ Term in A with dp = z + 2 undetermined; gives finite part of
expectation values.
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chrodinger geometry
ymmetry Galilean symmetry + anisotropic dilatation D.

mbed Galilean symmetry in ISO(d + 1.1) by light-cone quant: H = P
. — P.. K; = M_;, N = P_. Extend to embed Sch(d) in SO(d +2.2) by

—

D D—(Z—].)M__
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olographic renormalization

livergent terms in response functions (T“), (O) from dilatation
xpansion can be cancelled by local counter-terms in action.

, 3 L e A (A) ss
@ Write S,,,__<hetl = fd xy/—hA; since T'g = e, R

(-2 =8p)A—al Q-+ Thi—{z1-2 =AW

@ Using this, Taog — mag + TaApB and constraint
L », 1 ag 1 A 1 A sz 1 a8 L > A
A Y™, 7 =" S O, - > o VoaayY =R-2R—Fagl™ ——m Aa~X".

determine on-shell action in dilatation expansion: gives divergent
terms as functions of sources.

@ Jerm in A with dp = z + 2 undetermined; gives finite part of
expectation values.
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ymmetry Galilean symmetry + anisotropic dilatation D.

mbed Galilean symmetry in ISO(d +1.1) by light-cone quant: H = P..
. — P.. K; = M_;, N = P_. Extend to embed Sch(d) in SO(d +2.2) by

—

D=D-+(z—1)M__.
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chrodinger geometry

ymmetry Galilean symmetry + anisotropic dilatation D. i
mbed Galilean symmetry in ISO(d + 1.1) by light-cone quant: H =P,
' = P;, Ki = M_;, N = P_. Extend to embed Sch(d) in SO(d +2.2) by

D=D+(z—1)M__.

iravitational dual: deform AdS4.3 to

dr

~N o
e

.

ds” = —r*(dxT)? + rA(—2dx dx + dx?) +

@ Solution of a theory with a massive vector, A. = r.

@ N discrete implies x— periodic. Compact null direction?
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chrodinger holography

Schrodingery—» obtained in string theory by TsT from AdSs x §°

lpply to Schwarzschild-AdS: obtain asymptotically Schrodinger black hole.

@ [wo-parameter solutions: r.. 3: temperature, particle number.

22 4
¥ I 4

@ Slow falloffs: 1 + —+
i pply same prescription for stress tensor:
@ For black hole solution, £ = r?, I, = e T, p=285T

@ For solutions obtained by TsT from vacuum AdS solution, zgrees with
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chrodinger holography

ergy—» obtained in string theory by TsT from AdSs x §°

chrodin

N

{Ji |

lpply to Schwarzschild-AdS: obtain asymptotically Schrodinger black hole.

@ [wo-parameter solutions: r.. 3: temperature, particle number.

',-'}
J"r4

@ Slow falloffs: 1 + —*
lpply same prescription for stress tensor:
@ For black hole solution, £ = r?, I, = j T, p=28rr

@ For solutions obtained by TsT from vacuum AdS solution, agrees with

AdS stress tensor.
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chrodinger geometry

ymmetry Galilean symmetry + anisotropic dilatation D. i
mbed Galilean symmetry in ISO(d + 1.1) by light-cone quant: H =P,
- = P;, K = M_;, N = P_. Extend to embed Sch(d) in SO(d +2.2) by

D=D-+(z—1)M__

iravitational dual: deform AdS4.3 to

ds” = —r*(dx)* + r(—2dxTdx + dx?) + ool

N o
' s

-]

@ Solution of a theory with a massive vector, A. = r°.

@ N discrete implies x— periodic. Compact null direction?
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chrodinger holography

. : i \ £
erg—o» obtained in string theory by TsT from AdSs x S

Schrodin

Ug

@ [wo-parameter solutions: r.. 3: temperature, particle number.

32r4

@ Slow falloffs: 1 -

i pply same prescription ﬂ:}r stress tensor:

@ For black hole solution, £ =r%, M, = e . p=28%r

B
AdS stress tensor.

@ For solutions obtained by TsT from vacuum AdS solution, zgrees w
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lpply to Schwarzschild-AdS: obtain asymptotically Schrodinger black hole.

Ith



liscussion

NRCFT is an interesting and challenging extension of AdS/CFT.
Lifshitz has a simple spacetime dual, now embedded in string theory.
Holographic dictionary similar to familiar AdS/CF T case.

Pretty much under control for 1 < z < 2
For z > 2, some issues remain:

» (Check counterterms also cancel divergences from fast fall-off modes.
» Understand divergences in (O) for z > 2.
» Fow between boundary conditions for z > 4.
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Lress tensor

loundary geometry é(g)(r. £ x), é"(r. t.X) = sources for stress tensor.
lssume we have an action S finite on-shell, ¥S = 0 for variations
reserving boundary data. Define 75 by (a=c.xl.x%i=x1.x?)

;55:/ d*xvV/—h(T%56e'B) + 745A,).
J OM

@ Variation at fixed As implies [ 2 not a symmetric tensor.
» A, provides additional vector components; A; = 0 by choice of frame.
» Remaining scalar dof v = Ag — a.

@ Identify with stress tensor complex: T3 =E.&"; T =P;. I_[j

@ Invariance of S under boundary diffeomorphisms (. x‘;).x’-f(t. x")

implies conservation equations ishibashi

| S0= g

VaT% — m*V3A, = 0.
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symptotically locally Lifshitz spacetimes SFR & Sarem

Vant the leading-order metric at large r to locally take the form

i
dr=

..-’
r'—.

. )

= o di= - redx -+

ds

Work with an orthonormal frame e?)_e'”). (a—0.1.2 1=1.2)

ly choice of gauge, e,EA) — 0, elf) = %. Require that as r — o,

el — p7a0(r. t.%). &) = rél(r.t. ).

where &% (r.t.%), &/(r.t.X) have finite limits as r — oc.
loundary data analogous to conformal metric on boundary:. L S
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symptotically locally Lifshitz spacetimes SFR & Sarem

Vant the leading-order metric at large r to locally take the form

dr?

2
=

~

ds

S 59 o I
— Tt L rrdx- -

Work with an orthonormal frame ) _e'”). a—0.1.2 1=1.2)

ly choice of gauge, e,EA) =0, el") = %. Require that as r — o0,

el — r7eO(r. t.%). &) = rel(r.t.R).

where &% (r_t.%), &/ (r.t.X) have finite limits as r — oc.
loundary data analogous to conformal metric on boundary. L .
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