Title: Holography for non-relativistic theories

Date: May 17, 2011 11:30 AM

URL: http://pirsa.org/11050007

Abstract: I will discuss the construction of a holographic dictionary for theories with non-relativistic conformal symmetry, relating the field theory to the dual spacetime. I will focus on the case of Lifshitz spacetimes, giving a definition of asymptotically locally Lifshitz spacetimes and discussing the calculation of field theory observables and holographic renormalization.

Pirsa: 11050007 Page 1/71

Holography for non-relativistic theories

SFR & Saremi, 0907.1846 & work in progress

Simon Ross

Centre for Particle Theory, Durham University

PI, 17 May 2011

Pirsa: 11050007 Page 2/71

Holography for non-relativistic theories

SFR & Saremi, 0907.1846 & work in progress

Simon Ross

Centre for Particle Theory, Durham University

PI, 17 May 2011

Pirsa: 11050007 Page 3/71

utline

- Motivation, review of Lifshitz
- Stress tensor complex for non-relativistic theories
- Asymptotically locally Lifshitz spacetimes
- Stress tensor, boundary geometry
- Linearised theory
- Holographic renormalization
- Discussion

ondensed matter physics & holography

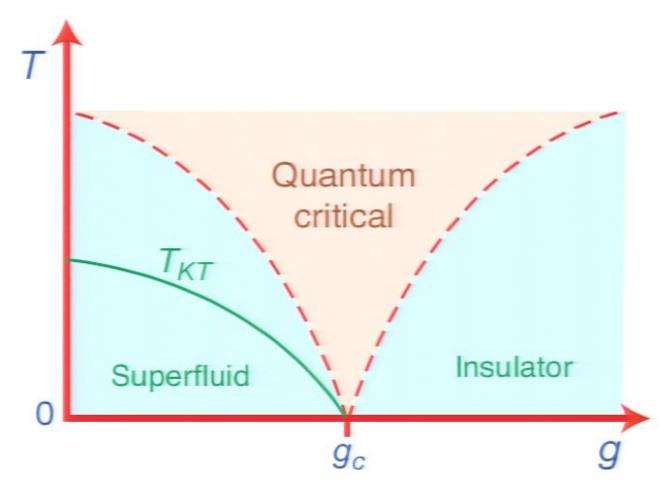
opplication of holographic methods to gauge theories long studied.

Why condensed matter?

- Rich system:
 - CFTs arise as IR desc near critical points; often strongly coupled.
 - Many different theories; can tune Hamiltonian in some settings.
- AdS/CFT provides a useful new perspective:
 - Few other methods for calculation at strong coupling.
 - Gravity dual calculates observables like transport coefficients directly, no quasiparticle picture.
- Prompts new questions:
 - Charge transport, phase transitions
 - Can have theories with an anisotropic scaling symmetry $D: x^i \to \lambda x^i, t \to \lambda^z t$.

uantum critical point

hase boundary at zero temperature.



igure from Sachdev, arXiv:0711.3015

Critical point described by a CFT;
 Pirsa: 11050007 finite region described by finite-temperature CFT.

ondensed matter physics & holography

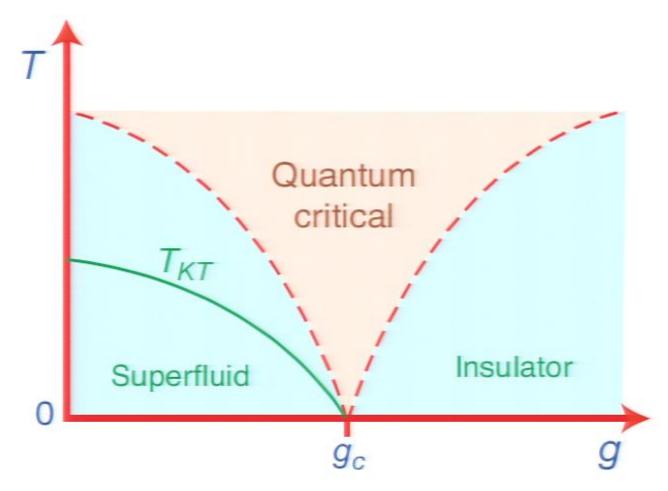
application of holographic methods to gauge theories long studied.

Why condensed matter?

- Rich system:
 - CFTs arise as IR desc near critical points; often strongly coupled.
 - Many different theories; can tune Hamiltonian in some settings.
- AdS/CFT provides a useful new perspective:
 - Few other methods for calculation at strong coupling.
 - Gravity dual calculates observables like transport coefficients directly, no quasiparticle picture.
- Prompts new questions:
 - Charge transport, phase transitions
 - Can have theories with an anisotropic scaling symmetry $D: x^i \to \lambda x^i, t \to \lambda^z t$.

uantum critical point

hase boundary at zero temperature.



igure from Sachdev, arXiv:0711.3015

Critical point described by a CFT;
 Pirsa: 11050007 finite region described by finite-temperature CFT.

- Not to construct a dual to CFTs studied in condensed matter or make direct contact with lattice models. (Known examples of duality are large N gauge theories.)
- Proceed phenomenologically: construct bulk theories with qualitative features of interest.
 - Bottom-up: invent an appropriate classical gravitational Lagrangian
 - Top-down: string theory construction.
- Big question: range of theories/issues for which holography is useful.
 - Matrix large N.
 - ▶ Hierarchy in spectrum: $\Delta_{s>2} \gg \Delta_{s\leq 2}$.

dS/CFT review

- $\langle e^{\int \phi_0 \mathcal{O}} \rangle = Z_{string}[\phi_0] \approx e^{-S[\phi_0]}$.
- Calculate e.g. stress tensor as

Henningson Skenderis

Balasubramanian Kraus

$$\langle T_{\mu
u}
angle = rac{1}{\sqrt{\hat{h}}} rac{\delta \mathcal{S}}{\delta \hat{h}^{\mu
u}},$$

where
$$ds^2 \approx \frac{dr^2}{r^2} + r^2 \hat{h}_{\mu\nu} dx^{\mu} dx^{\nu} + \dots$$

- One-point functions for arbitrary sources give full information: obtain correlation functions by varying sources.
 - \star Action S for boundary conditions fixing $\hat{h}_{\mu
 u}$
- One-point functions will depend on both sources and states:
 - * Space of 'asymptotically AdS' geometries for a given boundary condition.
- Thermal states described by bulk black hole solutions.

- Not to construct a dual to CFTs studied in condensed matter or make direct contact with lattice models. (Known examples of duality are large N gauge theories.)
- Proceed phenomenologically: construct bulk theories with qualitative features of interest.
 - Bottom-up: invent an appropriate classical gravitational Lagrangian
 - Top-down: string theory construction.
- Big question: range of theories/issues for which holography is useful.
 - Matrix large N.
 - ▶ Hierarchy in spectrum: $\Delta_{s>2} \gg \Delta_{s\leq 2}$.

ondensed matter physics & holography

application of holographic methods to gauge theories long studied.

Why condensed matter?

- Rich system:
 - CFTs arise as IR desc near critical points; often strongly coupled.
 - Many different theories; can tune Hamiltonian in some settings.
- AdS/CFT provides a useful new perspective:
 - Few other methods for calculation at strong coupling.
 - Gravity dual calculates observables like transport coefficients directly, no quasiparticle picture.
- Prompts new questions:
 - Charge transport, phase transitions
 - Can have theories with an anisotropic scaling symmetry $D: x^i \to \lambda x^i, t \to \lambda^z t$.

- Not to construct a dual to CFTs studied in condensed matter or make direct contact with lattice models. (Known examples of duality are large N gauge theories.)
- Proceed phenomenologically: construct bulk theories with qualitative features of interest.
 - ► Bottom-up: invent an appropriate classical gravitational Lagrangian
 - Top-down: string theory construction.
- Big question: range of theories/issues for which holography is useful.
 - Matrix large N.
 - ▶ Hierarchy in spectrum: $\Delta_{s>2} \gg \Delta_{s\leq 2}$.

- Not to construct a dual to CFTs studied in condensed matter or make direct contact with lattice models. (Known examples of duality are large N gauge theories.)
- Proceed phenomenologically: construct bulk theories with qualitative features of interest.
 - Bottom-up: invent an appropriate classical gravitational Lagrangian
 - Top-down: string theory construction.
- Big question: range of theories/issues for which holography is useful.
 - Matrix large N.
 - ▶ Hierarchy in spectrum: $\Delta_{s>2} \gg \Delta_{s\leq 2}$.

- Not to construct a dual to CFTs studied in condensed matter or make direct contact with lattice models. (Known examples of duality are large N gauge theories.)
- Proceed phenomenologically: construct bulk theories with qualitative features of interest.
 - ▶ Bottom-up: invent an appropriate classical gravitational Lagrangian
 - Top-down: string theory construction.
- Big question: range of theories/issues for which holography is useful.
 - Matrix large N.
 - ▶ Hierarchy in spectrum: $\Delta_{s>2} \gg \Delta_{s\leq 2}$.

dS/CFT review

- $\langle e^{\int \phi_0 \mathcal{O}} \rangle = Z_{string}[\phi_0] \approx e^{-S[\phi_0]}$.
- Calculate e.g. stress tensor as

Henningson Skenderis

Balasubramanian Kraus

$$\langle T_{\mu\nu}
angle = rac{1}{\sqrt{\hat{h}}} rac{\delta S}{\delta \hat{h}^{\mu
u}},$$

where
$$ds^2 \approx \frac{dr^2}{r^2} + r^2 \hat{h}_{\mu\nu} dx^{\mu} dx^{\nu} + \dots$$

- One-point functions for arbitrary sources give full information: obtain correlation functions by varying sources.
 - \star Action S for boundary conditions fixing $\hat{h}_{\mu
 u}$
- One-point functions will depend on both sources and states:
 - * Space of 'asymptotically AdS' geometries for a given boundary condition.
- Thermal states described by bulk black hole solutions.

dS/CFT review

- $\langle e^{\int \phi_0 \mathcal{O}} \rangle = Z_{string}[\phi_0] \approx e^{-S[\phi_0]}$.
- Calculate e.g. stress tensor as

Henningson Skenderis

Balasubramanian Kraus

$$\langle T_{\mu
u}
angle = rac{1}{\sqrt{\hat{h}}} rac{\delta \mathcal{S}}{\delta \hat{h}^{\mu
u}},$$

where
$$ds^2 \approx \frac{dr^2}{r^2} + r^2 \hat{h}_{\mu\nu} dx^{\mu} dx^{\nu} + \dots$$

- One-point functions for arbitrary sources give full information: obtain correlation functions by varying sources.
 - \star Action S for boundary conditions fixing $\hat{h}_{\mu
 u}$
- One-point functions will depend on both sources and states:
 - * Space of 'asymptotically AdS' geometries for a given boundary condition.
- Thermal states described by bulk black hole solutions.

nisotropic scaling

condensed matter, have theories with an anisotropic scaling symmetry $0: x^i \to \lambda x^i, t \to \lambda^z t$.

wo cases of interest:

- Lifshitz-like theories: D, H, \vec{P}, M_{ij}
- Schrödinger symmetry: add Galilean boosts \vec{K} . z=2 special.

Vant a holographic description as in AdS/CFT:

- Spacetime with these symmetries
- Prescription for calculating one-point functions in the presence of sources.
- Spacetimes with these asymptotics corresponding to interesting states
 in particular, black hole solutions.

or z=1, recover AdS/CFT. For $z\to\infty$, goes to $AdS_2\times\mathbb{R}^n$. Iteresting example of extending holography

nisotropic scaling

condensed matter, have theories with an anisotropic scaling symmetry $0: x^i \to \lambda x^i, t \to \lambda^z t$.

wo cases of interest:

- Lifshitz-like theories: D, H, P, Mij
- Schrödinger symmetry: add Galilean boosts \vec{K} . z=2 special.

Vant a holographic description as in AdS/CFT:

- Spacetime with these symmetries
- Prescription for calculating one-point functions in the presence of sources.
- Spacetimes with these asymptotics corresponding to interesting states
 — in particular, black hole solutions.

or z=1, recover AdS/CFT. For $z\to\infty$, goes to $AdS_2\times\mathbb{R}^n$. Iteresting example of extending holography

tress-energy: field theory expectations

Ion-relativistic theory: Stress-energy complex

- Energy density \mathcal{E} , energy flux \mathcal{E}^i .
- Momentum density \mathcal{P}_i , spatial stress tensor Π^i_j .
- Conservation equations $\partial_t \mathcal{E} + \partial_i \mathcal{E}^i = 0$, $\partial_t \mathcal{P}_i + \partial_j \Pi^j_{\ i} = 0$.
- Scaling invariance implies $z\mathcal{E} + \Pi^i_{\ i} = 0$.
- \mathcal{E} dimension $z + d \Rightarrow \mathcal{E}^i$ dimension 2z + d 1. \mathcal{P}_i dimension $1 + d \Rightarrow \Pi^j_i$ dimension z + d. (Note z + d is marginal.)
- Note no relation between $\mathcal{E}^i, \mathcal{P}_i$. Can't come from a symmetric tensor.

nisotropic scaling

condensed matter, have theories with an anisotropic scaling symmetry $0: x^i \to \lambda x^i, t \to \lambda^z t$.

wo cases of interest:

- Lifshitz-like theories: D, H, \vec{P}, M_{ij}
- Schrödinger symmetry: add Galilean boosts \vec{K} . z=2 special.

Vant a holographic description as in AdS/CFT:

- Spacetime with these symmetries
- Prescription for calculating one-point functions in the presence of sources.
- Spacetimes with these asymptotics corresponding to interesting states
 in particular, black hole solutions.

or z=1, recover AdS/CFT. For $z\to\infty$, goes to $AdS_2\times\mathbb{R}^n$. Iteresting example of extending holography

tress-energy: field theory expectations

Ion-relativistic theory: Stress-energy complex

- Energy density \mathcal{E} , energy flux \mathcal{E}^i .
- Momentum density \mathcal{P}_i , spatial stress tensor Π^i_j .
- Conservation equations $\partial_t \mathcal{E} + \partial_i \mathcal{E}^i = 0$, $\partial_t \mathcal{P}_i + \partial_j \Pi^j_{\ i} = 0$.
- Scaling invariance implies $z\mathcal{E} + \Pi^i_{\ i} = 0$.
- \mathcal{E} dimension $z + d \Rightarrow \mathcal{E}^i$ dimension 2z + d 1. \mathcal{P}_i dimension $1 + d \Rightarrow \Pi^j_i$ dimension z + d. (Note z + d is marginal.)
- Note no relation between $\mathcal{E}^i, \mathcal{P}_i$. Can't come from a symmetric tensor.

ifshitz geometry

Simple deformation of AdS:

Kachru Liu Mulligan

$$ds^2 = -r^{2z}dt^2 + r^2d\mathbf{x}^2 + \frac{dr^2}{r^2}.$$

Solution of a theory with a massive vector:

Taylor

$$S = \int d^4x \sqrt{-g} (R - 2\Lambda - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} m^2 A_{\mu} A^{\mu}),$$

with $\Lambda = -\frac{1}{2}(z^2 + z + 4)$, $m^2 = 2z$. Lifshitz solution has

$$A = \alpha r^z dt$$
, $\alpha^2 = \frac{2(z-1)}{z}$.

Finite temperature black hole solutions obtained numerically.

Danielsson Thorlacius

Mann

Bertoldi Burrington Peet

Analytic black holes in other theories.

Ayon-Beato Garbarz Giribet Hassaine

Balasubramanian McGreen

tress-energy: field theory expectations

Ion-relativistic theory: Stress-energy complex

- Energy density \mathcal{E} , energy flux \mathcal{E}^i .
- Momentum density \mathcal{P}_i , spatial stress tensor Π^i_j .
- Conservation equations $\partial_t \mathcal{E} + \partial_i \mathcal{E}^i = 0$, $\partial_t \mathcal{P}_i + \partial_j \Pi^j_{\ i} = 0$.
- Scaling invariance implies $z\mathcal{E} + \Pi^i_{\ i} = 0$.
- \mathcal{E} dimension $z + d \Rightarrow \mathcal{E}^i$ dimension 2z + d 1. \mathcal{P}_i dimension $1 + d \Rightarrow \Pi^j_i$ dimension z + d. (Note z + d is marginal.)
- Note no relation between $\mathcal{E}^i, \mathcal{P}_i$. Can't come from a symmetric tensor.

ifshitz geometry

Simple deformation of AdS:

Kachru Liu Mulligan

$$ds^2 = -r^{2z}dt^2 + r^2d\mathbf{x}^2 + \frac{dr^2}{r^2}.$$

Solution of a theory with a massive vector:

Taylor

$$S = \int d^4x \sqrt{-g} (R - 2\Lambda - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} m^2 A_{\mu} A^{\mu}),$$

with $\Lambda = -\frac{1}{2}(z^2 + z + 4)$, $m^2 = 2z$. Lifshitz solution has

$$A = \alpha r^z dt$$
, $\alpha^2 = \frac{2(z-1)}{z}$.

Finite temperature black hole solutions obtained numerically.

Danielsson Thorlacius

Mann

Bertoldi Burrington Peet

Analytic black holes in other theories.

Ayon-Beato Garbarz Giribet Hassaine

Balasubramanian McGreen

ifshitz geometry

Simple deformation of AdS:

Kachru Liu Mulligan

$$ds^2 = -r^{2z}dt^2 + r^2d\mathbf{x}^2 + \frac{dr^2}{r^2}.$$

Solution of a theory with a massive vector:

Taylor

$$S = \int d^4x \sqrt{-g} (R - 2\Lambda - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}m^2A_{\mu}A^{\mu}),$$

with $\Lambda = -\frac{1}{2}(z^2 + z + 4)$, $m^2 = 2z$. Lifshitz solution has

$$A = \alpha r^z dt$$
, $\alpha^2 = \frac{2(z-1)}{z}$.

Finite temperature black hole solutions obtained numerically.

Danielsson Thorlacius

Mann

Bertoldi Burrington Peet

Analytic black holes in other theories.

Ayon-Beato Garbarz Giribet Hassaine

Balasubramanian McCreen Page 26/71

ifshitz in string theory

S¹ compactifications of M theory:

Balasubramanian Donos Narayan Gauntlett

$$ds_{11}^2 = ds_4^2 + e^{2T}(d\sigma + A)^2 + e^{2V}D\psi^2 + e^{2U}(ds_1^2 + ds_2^2),$$

$$F_5 = 4e^{T-V-4U} Vol_4 \wedge (d\sigma + A) + 4D\psi \wedge J_1 \wedge J_2, H = \sqrt{2}(d\sigma + dk) \wedge (J_1 - J_2).$$

Gives z = 2 massive vector theory + scalars.

Massive IIA on S⁴ × H²/Γ:

Gregory Parameswarar Tasinato Zavala

Reduction on S^4 gives 6D gauged massive supergravity, $SU(2) \times U(1)$ gauge group. Allowing $F^{(3)}$ flux on H^2/Γ gives 4D Lifshitz with arbitrary z.

- Full 4D theory, asymptotically Lifshitz solutions?
- See also
 Hartnoll Polchinski Silverstein Tong
 Donos Gauntlett Kim
 Varela

ifshitz geometry

Simple deformation of AdS:

Kachru Liu Mulligan

$$ds^2 = -r^{2z}dt^2 + r^2d\mathbf{x}^2 + \frac{dr^2}{r^2}.$$

Solution of a theory with a massive vector:

Taylor

$$S = \int d^4x \sqrt{-g} (R - 2\Lambda - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}m^2A_{\mu}A^{\mu}),$$

with $\Lambda = -\frac{1}{2}(z^2 + z + 4)$, $m^2 = 2z$. Lifshitz solution has

$$A = \alpha r^z dt$$
, $\alpha^2 = \frac{2(z-1)}{z}$.

Finite temperature black hole solutions obtained numerically.

Danielsson Thorlacius

Mann

Bertoldi Burrington Peet

Analytic black holes in other theories.

Ayon-Beato Garbarz Giribet Hassaine

Balasubramanian McGreen Page 28/71

ifshitz in string theory

S¹ compactifications of M theory:

Balasubramanian Donos Narayan Gauntlett

$$ds_{11}^2 = ds_4^2 + e^{2T}(d\sigma + A)^2 + e^{2V}D\psi^2 + e^{2U}(ds_1^2 + ds_2^2),$$

$$F_5 = 4e^{T-V-4U}Vol_4 \wedge (d\sigma + A) + 4D\psi \wedge J_1 \wedge J_2, H = \sqrt{2}(d\sigma + dk) \wedge (J_1 - J_2).$$

Gives z = 2 massive vector theory + scalars.

Massive IIA on S⁴ × H²/Γ:

Gregory Parameswaran Tasinato Zavala

Reduction on S^4 gives 6D gauged massive supergravity, $SU(2) \times U(1)$ gauge group. Allowing $F^{(3)}$ flux on H^2/Γ gives 4D Lifshitz with arbitrary z.

- Full 4D theory, asymptotically Lifshitz solutions?
- See also
 Hartnoll Polchinski Silverstein
 Tong Tong Cauntlett
 Varela

ifshitz geometry

Simple deformation of AdS:

Kachru Liu Mulligan

$$ds^2 = -r^{2z}dt^2 + r^2d\mathbf{x}^2 + \frac{dr^2}{r^2}.$$

Solution of a theory with a massive vector:

Taylor

$$S = \int d^4x \sqrt{-g} (R - 2\Lambda - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}m^2A_{\mu}A^{\mu}),$$

with $\Lambda = -\frac{1}{2}(z^2 + z + 4)$, $m^2 = 2z$. Lifshitz solution has

$$A = \alpha r^z dt$$
, $\alpha^2 = \frac{2(z-1)}{z}$.

Finite temperature black hole solutions obtained numerically.

Danielsson Thorlacius

Mann

Bertoldi Burrington Peet

Analytic black holes in other theories.

Ayon-Beato Garbarz Giribet Hassaine

Balasubramanian McGreen

ifshitz in string theory

• S^1 compactifications of M theory:

Balasubramanian Donos Narayan Gauntlett

$$ds_{11}^2 = ds_4^2 + e^{2T}(d\sigma + A)^2 + e^{2V}D\psi^2 + e^{2U}(ds_1^2 + ds_2^2),$$

$$F_5 = 4e^{T-V-4U} Vol_4 \wedge (d\sigma + A) + 4D\psi \wedge J_1 \wedge J_2, H = \sqrt{2}(d\sigma + dk) \wedge (J_1 - J_2).$$

Gives z = 2 massive vector theory + scalars.

Massive IIA on S⁴ × H²/Γ:

Gregory Parameswaran Tasinato Zavala

Reduction on S^4 gives 6D gauged massive supergravity, $SU(2) \times U(1)$ gauge group. Allowing $F^{(3)}$ flux on H^2/Γ gives 4D Lifshitz with arbitrary z.

- Full 4D theory, asymptotically Lifshitz solutions?
- See also
 Hartnoll Polchinski Silverstein Tong
 Hartnoll Donos Gauntlett Kim
 Varela

ifshitz geometry

Simple deformation of AdS:

Kachru Liu Mulligan

$$ds^2 = -r^{2z}dt^2 + r^2d\mathbf{x}^2 + \frac{dr^2}{r^2}.$$

Solution of a theory with a massive vector:

Taylor

$$S = \int d^4x \sqrt{-g} (R - 2\Lambda - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}m^2A_{\mu}A^{\mu}),$$

with $\Lambda = -\frac{1}{2}(z^2 + z + 4)$, $m^2 = 2z$. Lifshitz solution has

$$A = \alpha r^z dt$$
, $\alpha^2 = \frac{2(z-1)}{z}$.

Finite temperature black hole solutions obtained numerically.

Danielsson Thorlacius

Mann

Bertoldi Burrington Peet

Analytic black holes in other theories.

Ayon-Beato Garbarz Giribet Hassaine

Balasubramanian McGreen Page 32/71

ifshitz in string theory

S¹ compactifications of M theory:

Balasubramanian Donos Narayan Gauntlett

$$ds_{11}^2 = ds_4^2 + e^{2T}(d\sigma + A)^2 + e^{2V}D\psi^2 + e^{2U}(ds_1^2 + ds_2^2),$$

$$F_5 = 4e^{T-V-4U}Vol_4 \wedge (d\sigma + A) + 4D\psi \wedge J_1 \wedge J_2, H = \sqrt{2}(d\sigma + dk) \wedge (J_1 - J_2).$$

Gives z = 2 massive vector theory + scalars.

Massive IIA on S⁴ × H²/Γ:

Gregory Parameswarar Tasinato Zavala

Reduction on S^4 gives 6D gauged massive supergravity, $SU(2) \times U(1)$ gauge group. Allowing $F^{(3)}$ flux on H^2/Γ gives 4D Lifshitz with arbitrary z.

- Full 4D theory, asymptotically Lifshitz solutions?
- See also
 Hartnoll Polchinski Silverstein
 Tong Varela

symptotically locally Lifshitz spacetimes

SFR & Saremi

Vant the leading-order metric at large r to locally take the form

$$ds^{2} = -r^{2z}dt^{2} + r^{2}d\vec{x}^{2} + \frac{dr^{2}}{r^{2}} + \dots$$

Work with an orthonormal frame $e^{(A)}$, $e^{(r)}$. (A=0,1,2;I=1,2.) by choice of gauge, $e^{(A)}_r=0$, $e^{(r)}=\frac{dr}{r}$. Require that as $r\to\infty$,

$$e^{(0)} = r^z \hat{e}^{(0)}(r, t, \vec{x}), \quad e^{(I)} = r \hat{e}^I(r, t, \vec{x}),$$

where $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^{I}(r, t, \vec{x})$ have finite limits as $r \to \infty$. Coundary data analogous to conformal metric on boundary.

Horava Melby-Thompson

tress tensor

Soundary geometry $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^I(r, t, \vec{x}) \Rightarrow$ sources for stress tensor. Issume we have an action S finite on-shell, $\delta S = 0$ for variations reserving boundary data. Define T_B^{α} by $(\alpha = t, x^1, x^2; i = x^1, x^2)$

$$\delta S = \int_{\partial M} d^3x \sqrt{-h} (T^{\alpha}_{B} \delta e^{(B)}_{\alpha} + \pi^{A} \delta A_{A}).$$

- Variation at fixed A_A implies T_{AB} not a symmetric tensor.
 - \triangleright A_I provides additional vector components; $A_I = 0$ by choice of frame.
 - ▶ Remaining scalar dof $\psi = A_0 \alpha$.
- Identify with stress tensor complex: $T^{\alpha}_{0} = \mathcal{E}, \mathcal{E}^{i}; T^{\alpha}_{J} = \mathcal{P}_{j}, \Pi^{i}_{j}.$
- Invariance of S under boundary diffeomorphisms t'(t, xi), xi'(t, xi)
 implies conservation equations

$$\nabla_{\alpha} T^{\alpha}_{\ \beta} - \pi^{\alpha} \nabla_{\beta} A_{\alpha} = 0.$$

tress tensor

Soundary geometry $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^I(r, t, \vec{x}) \Rightarrow$ sources for stress tensor. Issume we have an action S finite on-shell, $\delta S = 0$ for variations reserving boundary data. Define T_B^{α} by $(\alpha = t, x^1, x^2; i = x^1, x^2)$

$$\delta S = \int_{\partial M} d^3x \sqrt{-h} (T^{\alpha}_{B} \delta e^{(B)}_{\alpha} + \pi^{A} \delta A_{A}).$$

- Variation at fixed A_A implies T_{AB} not a symmetric tensor.
 - \triangleright A_I provides additional vector components; $A_I = 0$ by choice of frame.
 - ▶ Remaining scalar dof $\psi = A_0 \alpha$.
- Identify with stress tensor complex: $T^{\alpha}_{0} = \mathcal{E}, \mathcal{E}^{i}; T^{\alpha}_{J} = \mathcal{P}_{j}, \Pi^{i}_{j}.$
- Invariance of S under boundary diffeomorphisms t'(t, xi), xi'(t, xi)
 implies conservation equations

 Hollands Ishibash Marolf

$$\nabla_{\alpha} T^{\alpha}_{\ \beta} - \pi^{\alpha} \nabla_{\beta} A_{\alpha} = 0.$$

tress-energy: field theory expectations

Ion-relativistic theory: Stress-energy complex

- Energy density \mathcal{E} , energy flux \mathcal{E}^i .
- Momentum density \mathcal{P}_i , spatial stress tensor Π^i_j .
- Conservation equations $\partial_t \mathcal{E} + \partial_i \mathcal{E}^i = 0$, $\partial_t \mathcal{P}_i + \partial_j \Pi^j_{\ i} = 0$.
- Scaling invariance implies $z\mathcal{E} + \Pi^{i}_{i} = 0$.
- \mathcal{E} dimension $z + d \Rightarrow \mathcal{E}^i$ dimension 2z + d 1. \mathcal{P}_i dimension $1 + d \Rightarrow \Pi^j_i$ dimension z + d. (Note z + d is marginal.)
- Note no relation between $\mathcal{E}^i, \mathcal{P}_i$. Can't come from a symmetric tensor.

Pirsa: 11050007 Page 37/71

tress tensor

Soundary geometry $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^I(r, t, \vec{x}) \Rightarrow$ sources for stress tensor. Issume we have an action S finite on-shell, $\delta S = 0$ for variations reserving boundary data. Define T_B^{α} by $(\alpha = t, x^1, x^2; i = x^1, x^2)$

$$\delta S = \int_{\partial M} d^3x \sqrt{-h} (T^{\alpha}_{B} \delta e^{(B)}_{\alpha} + \pi^{A} \delta A_{A}).$$

- Variation at fixed A_A implies T_{AB} not a symmetric tensor.
 - \triangleright A_I provides additional vector components; $A_I = 0$ by choice of frame.
 - ▶ Remaining scalar dof $\psi = A_0 \alpha$.
- Identify with stress tensor complex: $T^{\alpha}_{0} = \mathcal{E}, \mathcal{E}^{i}; T^{\alpha}_{J} = \mathcal{P}_{j}, \Pi^{i}_{j}.$
- Invariance of S under boundary diffeomorphisms $t'(t,x^i),x^{i'}(t,x^i)$ implies conservation equations

 Hollands Ishibash Marolf

$$\nabla_{\alpha} T^{\alpha}_{\ \beta} - \pi^{\alpha} \nabla_{\beta} A_{\alpha} = 0.$$

oundary geometry

- A non-relativistic theory has an absolute time: so as $r \to \infty$, expect a foliation of boundary by a preferred family of surfaces.
- For general $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^{I}(r, t, \vec{x})$, this is *not* what we get: preferred vector field only defines preferred set of curves.
- For surfaces, need $e^{(0)}$ irrotational, $\hat{e}^{(0)} \wedge d\hat{e}^{(0)} = 0$ as $r \to \infty$.
- Implies source for Eⁱ vanishes (up to diffeomorphisms). Adding a source for an irrelevant operator modifies the UV behaviour, so not surprising. Want to consider this source perturbatively.

Pirsa: 11050007 Page 39/71

tress tensor

Soundary geometry $\hat{e}^{(0)}(r,t,\vec{x})$, $\hat{e}^I(r,t,\vec{x}) \Rightarrow$ sources for stress tensor. Issume we have an action S finite on-shell, $\delta S = 0$ for variations reserving boundary data. Define T_B^{α} by $(\alpha = t, x^1, x^2; i = x^1, x^2)$

$$\delta S = \int_{\partial M} d^3x \sqrt{-h} (T^{\alpha}_{B} \delta e^{(B)}_{\alpha} + \pi^{A} \delta A_{A}).$$

- Variation at fixed A_A implies T_{AB} not a symmetric tensor.
 - \triangleright A_I provides additional vector components; $A_I = 0$ by choice of frame.
 - ▶ Remaining scalar dof $\psi = A_0 \alpha$.
- Identify with stress tensor complex: $T^{\alpha}_{0} = \mathcal{E}, \mathcal{E}^{i}; T^{\alpha}_{J} = \mathcal{P}_{j}, \Pi^{i}_{j}$.
- Invariance of S under boundary diffeomorphisms t'(t, xi), xi'(t, xi)
 implies conservation equations

 Hollands Ishibash Marolf

$$\nabla_{\alpha} T^{\alpha}_{\beta} - \pi^{\alpha} \nabla_{\beta} A_{\alpha} = 0.$$

symptotically locally Lifshitz spacetimes

SFR & Saremi

Vant the leading-order metric at large r to locally take the form

$$ds^{2} = -r^{2z}dt^{2} + r^{2}d\vec{x}^{2} + \frac{dr^{2}}{r^{2}} + \dots$$

Work with an orthonormal frame $e^{(A)}$, $e^{(r)}$. (A=0,1,2;I=1,2.) by choice of gauge, $e^{(A)}_r=0$, $e^{(r)}=\frac{dr}{r}$. Require that as $r\to\infty$,

$$e^{(0)} = r^z \hat{e}^{(0)}(r, t, \vec{x}), \quad e^{(I)} = r \hat{e}^I(r, t, \vec{x}),$$

where $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^{I}(r, t, \vec{x})$ have finite limits as $r \to \infty$. Oundary data analogous to conformal metric on boundary.

Horava Melby-Thompson

tress tensor

Soundary geometry $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^I(r, t, \vec{x}) \Rightarrow$ sources for stress tensor. Issume we have an action S finite on-shell, $\delta S = 0$ for variations reserving boundary data. Define T_B^{α} by $(\alpha = t, x^1, x^2; i = x^1, x^2)$

$$\delta S = \int_{\partial M} d^3x \sqrt{-h} (T^{\alpha}_{B} \delta e^{(B)}_{\alpha} + \pi^{A} \delta A_{A}).$$

- Variation at fixed A_A implies T_{AB} not a symmetric tensor.
 - \triangleright A_I provides additional vector components; $A_I = 0$ by choice of frame.
 - ▶ Remaining scalar dof $\psi = A_0 \alpha$.
- Identify with stress tensor complex: $T^{\alpha}_{0} = \mathcal{E}, \mathcal{E}^{i}; T^{\alpha}_{J} = \mathcal{P}_{j}, \Pi^{i}_{j}.$
- Invariance of S under boundary diffeomorphisms t'(t, xi), xi'(t, xi)
 implies conservation equations

 Hollands Ishibash Marolf

$$\nabla_{\alpha} T^{\alpha}_{\beta} - \pi^{\alpha} \nabla_{\beta} A_{\alpha} = 0.$$

oundary geometry

- A non-relativistic theory has an absolute time: so as r → ∞, expect a foliation of boundary by a preferred family of surfaces.
- For general $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^{I}(r, t, \vec{x})$, this is *not* what we get: preferred vector field only defines preferred set of curves.
- For surfaces, need $e^{(0)}$ irrotational, $\hat{e}^{(0)} \wedge d\hat{e}^{(0)} = 0$ as $r \to \infty$.
- Implies source for Eⁱ vanishes (up to diffeomorphisms). Adding a source for an irrelevant operator modifies the UV behaviour, so not surprising. Want to consider this source perturbatively.

oundary geometry

- A non-relativistic theory has an absolute time: so as $r \to \infty$, expect a foliation of boundary by a preferred family of surfaces.
- For general $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^{I}(r, t, \vec{x})$, this is *not* what we get: preferred vector field only defines preferred set of curves.
- For surfaces, need $e^{(0)}$ irrotational, $\hat{e}^{(0)} \wedge d\hat{e}^{(0)} = 0$ as $r \to \infty$.
- Implies source for Eⁱ vanishes (up to diffeomorphisms). Adding a source for an irrelevant operator modifies the UV behaviour, so not surprising. Want to consider this source perturbatively.

Pirsa: 11050007 Page 44/71

SFR Saremi Bertoldi Burrington Peet

Ansatz

$$e^{(0)} = r^{z} (1 + \frac{1}{2} \hat{h}_{tt}) dt + r w_{1i} dx^{i},$$

$$e^{(i)} = r^{z} w_{2i} dt + r (\delta^{i}_{j} + \frac{1}{2} \hat{h}^{i}_{j}) dx^{j}, \quad A^{M} = \alpha (1 + \hat{a}_{t}) \delta^{M}_{0} + \alpha \hat{a}_{r} \delta^{M}_{3}.$$

Expected pattern of modes:

$$\hat{a}_{t}, \hat{h}_{tt}, \hat{h}_{i}^{i} \sim a_{1}, \frac{a_{2}}{r^{z+2}}, \frac{a_{3}}{r^{\frac{1}{2}(z+2-\beta_{z})}}, \frac{a_{4}}{r^{\frac{1}{2}(z+2+\beta_{z})}},$$

$$w_{1i} \sim c_{1i}r^{z-1}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}}, \quad w_{2i} \sim c_{4i}r^{1-z}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}},$$

$$\hat{h}_{ij}^{T} = t_{1ij} + \frac{t_{2ij}}{r^{z+2}}.$$

$$\beta_z^2 = (z+2)^2 + 8(z-1)(z-2)$$

SFR Saremi

xpectation values:

Fast fall-off modes give expectation values as expected:

$$\mathcal{E} \propto a_2$$
, $\mathcal{E}^i \propto c_{3i}$, $\mathcal{P}_i \propto c_{2i}$, $\Pi_{ij} \propto a_2 \delta_{ij} + t_{2ij}$

For vectors, c_{2i} violates boundary condition for $z \ge 4$ $\mathcal{P}_i \mathcal{P}^i$ relevant: flow from fixed c_{4i} to fixed c_{2i}

(HPST)

- One remaining scalar degree of freedom: spatial vector part of A_{μ} was used up in stress tensor.
- Scalar operator \mathcal{O} dual to ψ has dimension $\Delta = \frac{1}{2}(z+2+\beta_z)$, $\langle \mathcal{O} \rangle \sim a_4$.

ivergences:

- Divergences in on-shell action, expectation values from sources.
- Also divergences in \mathcal{E}^i , \mathcal{O} for z>2 from fast fall-off modes. (van Rees)
- Covariant local counterterms removed linear divergences, except in O for z > 2.

SFR Saremi Bertoldi Burrington Peet

Ansatz

$$e^{(0)} = r^{z} (1 + \frac{1}{2} \hat{h}_{tt}) dt + r w_{1i} dx^{i},$$

$$e^{(i)} = r^{z} w_{2i} dt + r (\delta^{i}_{j} + \frac{1}{2} \hat{h}^{i}_{j}) dx^{j}, \quad A^{M} = \alpha (1 + \hat{a}_{t}) \delta^{M}_{0} + \alpha \hat{a}_{r} \delta^{M}_{3}.$$

Expected pattern of modes:

$$\hat{a}_{t}, \hat{h}_{tt}, \hat{h}_{i}^{i} \sim a_{1}, \frac{a_{2}}{r^{z+2}}, \frac{a_{3}}{r^{\frac{1}{2}(z+2-\beta_{z})}}, \frac{a_{4}}{r^{\frac{1}{2}(z+2+\beta_{z})}},$$

$$w_{1i} \sim c_{1i}r^{z-1}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}}, \quad w_{2i} \sim c_{4i}r^{1-z}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}},$$

$$\hat{h}_{ij}^{T} = t_{1ij} + \frac{t_{2ij}}{r^{z+2}}.$$

$$\beta_z^2 = (z+2)^2 + 8(z-1)(z-2)$$

SFR Saremi

xpectation values:

Fast fall-off modes give expectation values as expected:

$$\mathcal{E} \propto \mathsf{a}_2, \, \mathcal{E}^i \propto \mathsf{c}_{3i}, \, \mathcal{P}_i \propto \mathsf{c}_{2i}, \, \Pi_{ij} \propto \mathsf{a}_2 \delta_{ij} + \mathsf{t}_{2ij}$$

For vectors, c_{2i} violates boundary condition for $z \ge 4$ $\mathcal{P}_i \mathcal{P}^i$ relevant: flow from fixed c_{4i} to fixed c_{2i}

(HPST)

- One remaining scalar degree of freedom: spatial vector part of A_{μ} was used up in stress tensor.
- Scalar operator \mathcal{O} dual to ψ has dimension $\Delta = \frac{1}{2}(z+2+\beta_z)$, $\langle \mathcal{O} \rangle \sim a_4$.

ivergences:

- Divergences in on-shell action, expectation values from sources.
- Also divergences in \mathcal{E}^i , \mathcal{O} for z>2 from fast fall-off modes. (van Rees)
- Covariant local counterterms removed linear divergences, except in O for z > 2.

SFR Saremi Bertoldi Burrington Peet

Ansatz

$$e^{(0)} = r^{z} (1 + \frac{1}{2} \hat{h}_{tt}) dt + r w_{1i} dx^{i},$$

$$e^{(i)} = r^{z} w_{2i} dt + r (\delta^{i}_{j} + \frac{1}{2} \hat{h}^{i}_{j}) dx^{j}, \quad A^{M} = \alpha (1 + \hat{a}_{t}) \delta^{M}_{0} + \alpha \hat{a}_{r} \delta^{M}_{3}.$$

Expected pattern of modes:

$$\hat{a}_{t}, \hat{h}_{tt}, \hat{h}_{i}^{i} \sim a_{1}, \frac{a_{2}}{r^{z+2}}, \frac{a_{3}}{r^{\frac{1}{2}(z+2-\beta_{z})}}, \frac{a_{4}}{r^{\frac{1}{2}(z+2+\beta_{z})}},$$

$$w_{1i} \sim c_{1i}r^{z-1}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}}, \quad w_{2i} \sim c_{4i}r^{1-z}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}},$$

$$\hat{h}_{ij}^{T} = t_{1ij} + \frac{t_{2ij}}{r^{z+2}}.$$

$$\beta_z^2 = (z+2)^2 + 8(z-1)(z-2)$$

SFR Saremi

xpectation values:

Fast fall-off modes give expectation values as expected:

$$\mathcal{E} \propto \mathsf{a}_2, \, \mathcal{E}^i \propto \mathsf{c}_{3i}, \, \mathcal{P}_i \propto \mathsf{c}_{2i}, \, \Pi_{ij} \propto \mathsf{a}_2 \delta_{ij} + \mathsf{t}_{2ij}$$

For vectors, c_{2i} violates boundary condition for $z \ge 4$ $\mathcal{P}_i \mathcal{P}^i$ relevant: flow from fixed c_{4i} to fixed c_{2i}

(HPST)

- One remaining scalar degree of freedom: spatial vector part of A_{μ} was used up in stress tensor.
- Scalar operator \mathcal{O} dual to ψ has dimension $\Delta = \frac{1}{2}(z+2+\beta_z)$, $\langle \mathcal{O} \rangle \sim a_4$.

ivergences:

- Divergences in on-shell action, expectation values from sources.
- Also divergences in \mathcal{E}^i , \mathcal{O} for z>2 from fast fall-off modes. (van Rees)
- Covariant local counterterms removed linear divergences, except in O for z > 2.

SFR Saremi Bertoldi Burrington Peet

Ansatz

$$e^{(0)} = r^{z} (1 + \frac{1}{2} \hat{h}_{tt}) dt + r w_{1i} dx^{i},$$

$$e^{(i)} = r^{z} w_{2i} dt + r (\delta^{i}_{j} + \frac{1}{2} \hat{h}^{i}_{j}) dx^{j}, \quad A^{M} = \alpha (1 + \hat{a}_{t}) \delta^{M}_{0} + \alpha \hat{a}_{r} \delta^{M}_{3}.$$

Expected pattern of modes:

$$\hat{a}_{t}, \hat{h}_{tt}, \hat{h}_{i}^{i} \sim a_{1}, \frac{a_{2}}{r^{z+2}}, \frac{a_{3}}{r^{\frac{1}{2}(z+2-\beta_{z})}}, \frac{a_{4}}{r^{\frac{1}{2}(z+2+\beta_{z})}},$$

$$w_{1i} \sim c_{1i}r^{z-1}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}}, \quad w_{2i} \sim c_{4i}r^{1-z}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}},$$

$$\hat{h}_{ij}^{T} = t_{1ij} + \frac{t_{2ij}}{r^{z+2}}.$$

$$\beta_z^2 = (z+2)^2 + 8(z-1)(z-2)$$

SFR Saremi

xpectation values:

Fast fall-off modes give expectation values as expected:

$$\mathcal{E} \propto a_2$$
, $\mathcal{E}^i \propto c_{3i}$, $\mathcal{P}_i \propto c_{2i}$, $\Pi_{ij} \propto a_2 \delta_{ij} + t_{2ij}$

For vectors, c_{2i} violates boundary condition for $z \ge 4$ $\mathcal{P}_i \mathcal{P}^i$ relevant: flow from fixed c_{4i} to fixed c_{2i}

(HPST)

- One remaining scalar degree of freedom: spatial vector part of A_{μ} was used up in stress tensor.
- Scalar operator \mathcal{O} dual to ψ has dimension $\Delta = \frac{1}{2}(z+2+\beta_z)$, $\langle \mathcal{O} \rangle \sim a_4$.

ivergences:

- Divergences in on-shell action, expectation values from sources.
- Also divergences in \mathcal{E}^i , \mathcal{O} for z>2 from fast fall-off modes. (van Rees)
- Covariant local counterterms removed linear divergences, except in O for z > 2.

SFR Saremi Bertoldi Burrington Peet

Ansatz

$$e^{(0)} = r^{z} (1 + \frac{1}{2} \hat{h}_{tt}) dt + r w_{1i} dx^{i},$$

$$e^{(i)} = r^{z} w_{2i} dt + r (\delta^{i}_{j} + \frac{1}{2} \hat{h}^{i}_{j}) dx^{j}, \quad A^{M} = \alpha (1 + \hat{a}_{t}) \delta^{M}_{0} + \alpha \hat{a}_{r} \delta^{M}_{3}.$$

Expected pattern of modes:

$$\hat{a}_{t}, \hat{h}_{tt}, \hat{h}_{i}^{i} \sim a_{1}, \frac{a_{2}}{r^{z+2}}, \frac{a_{3}}{r^{\frac{1}{2}(z+2-\beta_{z})}}, \frac{a_{4}}{r^{\frac{1}{2}(z+2+\beta_{z})}},$$

$$w_{1i} \sim c_{1i}r^{z-1}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}}, \quad w_{2i} \sim c_{4i}r^{1-z}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}},$$

$$\hat{h}_{ij}^{T} = t_{1ij} + \frac{t_{2ij}}{r^{z+2}}.$$

$$\beta_z^2 = (z+2)^2 + 8(z-1)(z-2)$$

SFR Saremi

xpectation values:

• Fast fall-off modes give expectation values as expected:

$$\mathcal{E} \propto a_2$$
, $\mathcal{E}^i \propto c_{3i}$, $\mathcal{P}_i \propto c_{2i}$, $\Pi_{ij} \propto a_2 \delta_{ij} + t_{2ij}$

For vectors, c_{2i} violates boundary condition for $z \ge 4$ $\mathcal{P}_i \mathcal{P}^i$ relevant: flow from fixed c_{4i} to fixed c_{2i}

(HPST)

- One remaining scalar degree of freedom: spatial vector part of A_{μ} was used up in stress tensor.
- Scalar operator \mathcal{O} dual to ψ has dimension $\Delta = \frac{1}{2}(z+2+\beta_z)$, $\langle \mathcal{O} \rangle \sim a_4$.

ivergences:

- Divergences in on-shell action, expectation values from sources.
- Also divergences in \mathcal{E}^i , \mathcal{O} for z>2 from fast fall-off modes. (van Rees)
- Covariant local counterterms removed linear divergences, except in O for z > 2.

SFR Saremi Bertoldi Burrington Peet

Ansatz

$$e^{(0)} = r^{z} (1 + \frac{1}{2} \hat{h}_{tt}) dt + rw_{1i} dx^{i},$$

$$e^{(i)} = r^{z} w_{2i} dt + r(\delta^{i}{}_{j} + \frac{1}{2} \hat{h}^{i}{}_{j}) dx^{j}, \quad A^{M} = \alpha (1 + \hat{a}_{t}) \delta^{M}_{0} + \alpha \hat{a}_{r} \delta^{M}_{3}.$$

Expected pattern of modes:

$$\hat{a}_{t}, \hat{h}_{tt}, \hat{h}_{i}^{i} \sim a_{1}, \frac{a_{2}}{r^{z+2}}, \frac{a_{3}}{r^{\frac{1}{2}(z+2-\beta_{z})}}, \frac{a_{4}}{r^{\frac{1}{2}(z+2+\beta_{z})}},$$

$$w_{1i} \sim c_{1i}r^{z-1}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}}, \quad w_{2i} \sim c_{4i}r^{1-z}, \frac{c_{2i}}{r^{3}}, \frac{c_{3i}}{r^{2z+1}},$$

$$\hat{h}_{ij}^{T} = t_{1ij} + \frac{t_{2ij}}{r^{z+2}}.$$

$$\beta_z^2 = (z+2)^2 + 8(z-1)(z-2)$$

SFR Saremi

xpectation values:

Fast fall-off modes give expectation values as expected:

$$\mathcal{E} \propto a_2$$
, $\mathcal{E}^i \propto c_{3i}$, $\mathcal{P}_i \propto c_{2i}$, $\Pi_{ij} \propto a_2 \delta_{ij} + t_{2ij}$

For vectors, c_{2i} violates boundary condition for $z \ge 4$ $\mathcal{P}_i \mathcal{P}^i$ relevant: flow from fixed c_{4i} to fixed c_{2i}

(HPST)

- One remaining scalar degree of freedom: spatial vector part of A_{μ} was used up in stress tensor.
- Scalar operator \mathcal{O} dual to ψ has dimension $\Delta = \frac{1}{2}(z+2+\beta_z)$, $\langle \mathcal{O} \rangle \sim a_4$.

ivergences:

- Divergences in on-shell action, expectation values from sources.
- Also divergences in \mathcal{E}^i , \mathcal{O} for z>2 from fast fall-off modes. (van Rees)
- Covariant local counterterms removed linear divergences, except in O for z > 2.

SFR Saremi

xpectation values:

• Fast fall-off modes give expectation values as expected:

$$\mathcal{E} \propto a_2$$
, $\mathcal{E}^i \propto c_{3i}$, $\mathcal{P}_i \propto c_{2i}$, $\Pi_{ij} \propto a_2 \delta_{ij} + t_{2ij}$

For vectors, c_{2i} violates boundary condition for $z \ge 4$ $\mathcal{P}_i \mathcal{P}^i$ relevant: flow from fixed c_{4i} to fixed c_{2i}

(HPST)

- One remaining scalar degree of freedom: spatial vector part of A_{μ} was used up in stress tensor.
- Scalar operator \mathcal{O} dual to ψ has dimension $\Delta = \frac{1}{2}(z+2+\beta_z)$, $\langle \mathcal{O} \rangle \sim a_4$.

ivergences:

- Divergences in on-shell action, expectation values from sources.
- Also divergences in \mathcal{E}^i , \mathcal{O} for z>2 from fast fall-off modes. (van Rees)
- Covariant local counterterms removed linear divergences, except in O for z > 2.

olographic renormalization

xtend beyond linear analysis: want to determine $\langle T^{\alpha}_{B} \rangle$, $\langle \mathcal{O} \rangle$ for arbitrary ources to all orders.

leed to solve eom in asymptotic regime $r \to \infty$.

se functional differentiation approach:

Papadimitrio Skenderis

Introduce "dilatation generator"

$$\delta_D = \int d^3x \sqrt{-h} \left(z e_{\alpha}^{(0)} \frac{\delta}{\delta e_{\alpha}^{(0)}} + e_{\alpha}^{(I)} \frac{\delta}{\delta e_{\alpha}^{(I)}} - (z + 2 - \Delta) \psi \frac{\delta}{\delta \psi} \right)$$

expand in eigenvalues of δ_D rather than powers of r.

- Regular expansion exists
 - For arbitrary sources for z < 2
 - For zero source for \mathcal{E}^i , \mathcal{O} for $z \geq 2$.
- Expansion gives subleading terms in bulk as functions of sources.

olographic renormalization

livergent terms in response functions $\langle T^{\alpha}_{B} \rangle$, $\langle \mathcal{O} \rangle$ from dilatation xpansion can be cancelled by local counter-terms in action.

• Write $S_{on-shell} = \int d^3x \sqrt{-h}\lambda$; since $T^A_B = e^{(A)}_\alpha \frac{\delta S}{\delta e^{(B)}_\alpha}$,

$$(z + 2 - \delta_D)\lambda = zT_0^0 + T_I^I - (z + 2 - \Delta)\psi \mathcal{O}.$$

• Using this, $T_{AB} = \pi_{AB} + \pi_A A_B$ and constraint

$$\frac{1}{8}\pi^2 - \frac{1}{4}\pi_{AB}\pi^{AB} - \frac{1}{2}\pi_A\pi^A - \frac{1}{2m^2}(\nabla^A\pi_A)^2 = R - 2\Lambda - \frac{1}{4}F_{AB}F^{AB} - \frac{1}{2}m^2A_AA^A,$$

determine on-shell action in dilatation expansion: gives divergent terms as functions of sources.

 Term in λ with δ_D = z + 2 undetermined; gives finite part of expectation values.

chrödinger geometry

Son

Balasubramanian McGreevy

ymmetry Galilean symmetry + anisotropic dilatation D. Imbed Galilean symmetry in ISO(d+1,1) by light-cone quant: $H=\tilde{P}_+$, $P_i=\tilde{P}_i$, $K_i=\tilde{M}_{-i}$, $N=\tilde{P}_-$. Extend to embed Sch(d) in SO(d+2,2) by

$$D = \tilde{D} + (z - 1)\tilde{M}_{+-}$$
.

olographic renormalization

livergent terms in response functions $\langle T^{\alpha}_{B} \rangle$, $\langle \mathcal{O} \rangle$ from dilatation xpansion can be cancelled by local counter-terms in action.

• Write $S_{on-shell} = \int d^3x \sqrt{-h}\lambda$; since $T^A_B = e^{(A)}_\alpha \frac{\delta S}{\delta e^{(B)}_\alpha}$,

$$(z + 2 - \delta_D)\lambda = zT_0^0 + T_I^I - (z + 2 - \Delta)\psi \mathcal{O}.$$

• Using this, $T_{AB} = \pi_{AB} + \pi_A A_B$ and constraint

$$\frac{1}{8}\pi^2 - \frac{1}{4}\pi_{AB}\pi^{AB} - \frac{1}{2}\pi_A\pi^A - \frac{1}{2m^2}(\nabla^A\pi_A)^2 = R - 2\Lambda - \frac{1}{4}F_{AB}F^{AB} - \frac{1}{2}m^2A_AA^A,$$

determine on-shell action in dilatation expansion: gives divergent terms as functions of sources.

 Term in λ with δ_D = z + 2 undetermined; gives finite part of expectation values.

chrödinger geometry

Son

Balasubramanian McGreevy

ymmetry Galilean symmetry + anisotropic dilatation D. Imbed Galilean symmetry in ISO(d+1,1) by light-cone quant: $H=\tilde{P}_+$, $P_i=\tilde{P}_i$, $K_i=\tilde{M}_{-i}$, $N=\tilde{P}_-$. Extend to embed Sch(d) in SO(d+2,2) by

$$D = \tilde{D} + (z - 1)\tilde{M}_{+-}$$
.

chrödinger geometry

Son

Balasubramanian McGreevy

ymmetry Galilean symmetry + anisotropic dilatation D. Imbed Galilean symmetry in ISO(d+1,1) by light-cone quant: $H=\tilde{P}_+$, $P_i=\tilde{P}_i$, $K_i=\tilde{M}_{-i}$, $N=\tilde{P}_-$. Extend to embed Sch(d) in SO(d+2,2) by

$$D = \tilde{D} + (z - 1)\tilde{M}_{+-}.$$

ravitational dual: deform AdS_{d+3} to

$$ds^{2} = -r^{4}(dx^{+})^{2} + r^{2}(-2dx^{+}dx^{-} + d\mathbf{x}^{2}) + \frac{dr^{2}}{r^{2}}.$$

- Solution of a theory with a massive vector, $A_+ = r^2$.
- N discrete implies x^- periodic. Compact null direction?

chrödinger holography

Schrödinger_{d=2} obtained in string theory by TsT from $AdS_5 \times S^5$

pply to Schwarzschild-AdS: obtain asymptotically Schrödinger black hole.

- Two-parameter solutions: r_+, β : temperature, particle number.
- Slow falloffs: $1 + \frac{\beta^2 r_+^4}{r^2}$

pply same prescription for stress tensor:

- For black hole solution, $\mathcal{E} = r_+^4$, $\Pi_{xx} = \Pi_{yy} = r_+^4$, $\rho = 2\beta^2 r_+^4$.
- For solutions obtained by TsT from vacuum AdS solution, agrees with AdS stress tensor.

chrödinger holography

Schrödinger $_{d=2}$ obtained in string theory by TsT from AdS $_5 \times S^5$

pply to Schwarzschild-AdS: obtain asymptotically Schrödinger black hole.

- Two-parameter solutions: r_+, β : temperature, particle number.
- Slow falloffs: $1 + \frac{\beta^2 r_+^4}{r^2}$

pply same prescription for stress tensor:

- For black hole solution, $\mathcal{E} = r_+^4$, $\Pi_{xx} = \Pi_{yy} = r_+^4$, $\rho = 2\beta^2 r_+^4$.
- For solutions obtained by TsT from vacuum AdS solution, agrees with AdS stress tensor.

chrödinger geometry

Son

Balasubramanian McGreevy

ymmetry Galilean symmetry + anisotropic dilatation D. Imbed Galilean symmetry in ISO(d+1,1) by light-cone quant: $H=\tilde{P}_+$, $P_i=\tilde{P}_i$, $K_i=\tilde{M}_{-i}$, $N=\tilde{P}_-$. Extend to embed Sch(d) in SO(d+2,2) by

$$D = \tilde{D} + (z - 1)\tilde{M}_{+-}.$$

ravitational dual: deform AdS_{d+3} to

$$ds^{2} = -r^{4}(dx^{+})^{2} + r^{2}(-2dx^{+}dx^{-} + d\mathbf{x}^{2}) + \frac{dr^{2}}{r^{2}}.$$

- Solution of a theory with a massive vector, $A_+ = r^2$.
- N discrete implies x⁻ periodic. Compact null direction?

chrödinger holography

Schrödinger $_{d=2}$ obtained in string theory by TsT from AdS $_5 \times S^5$

pply to Schwarzschild-AdS: obtain asymptotically Schrödinger black hole.

- Two-parameter solutions: r_+, β : temperature, particle number.
- Slow falloffs: $1 + \frac{\beta^2 r_+^4}{r^2}$

pply same prescription for stress tensor:

- For black hole solution, $\mathcal{E} = r_+^4$, $\Pi_{xx} = \Pi_{yy} = r_+^4$, $\rho = 2\beta^2 r_+^4$.
- For solutions obtained by TsT from vacuum AdS solution, agrees with AdS stress tensor.

iscussion

- NRCFT is an interesting and challenging extension of AdS/CFT.
- Lifshitz has a simple spacetime dual, now embedded in string theory.
- Holographic dictionary similar to familiar AdS/CFT case.
- Pretty much under control for 1 < z < 2
- For z > 2, some issues remain:
 - Check counterterms also cancel divergences from fast fall-off modes.
 - ▶ Understand divergences in $\langle \mathcal{O} \rangle$ for z > 2.
 - Flow between boundary conditions for z > 4.

tress tensor

Soundary geometry $\hat{e}^{(0)}(r,t,\vec{x})$, $\hat{e}^I(r,t,\vec{x}) \Rightarrow$ sources for stress tensor. Issume we have an action S finite on-shell, $\delta S = 0$ for variations reserving boundary data. Define T_B^{α} by $(\alpha = t, x^1, x^2; i = x^1, x^2)$

$$\delta S = \int_{\partial M} d^3x \sqrt{-h} (T^{\alpha}_{B} \delta e^{(B)}_{\alpha} + \pi^{A} \delta A_{A}).$$

- Variation at fixed A_A implies T_{AB} not a symmetric tensor.
 - \triangleright A_I provides additional vector components; $A_I = 0$ by choice of frame.
 - ▶ Remaining scalar dof $\psi = A_0 \alpha$.
- Identify with stress tensor complex: $T^{\alpha}_{0} = \mathcal{E}, \mathcal{E}^{i}; T^{\alpha}_{J} = \mathcal{P}_{j}, \Pi^{i}_{j}.$
- Invariance of S under boundary diffeomorphisms t'(t, xⁱ), x^{i'}(t, xⁱ)
 Hollands
 implies conservation equations

$$\nabla_{\alpha} T^{\alpha}_{\beta} - \pi^{\alpha} \nabla_{\beta} A_{\alpha} = 0.$$

symptotically locally Lifshitz spacetimes

SFR & Saremi

Vant the leading-order metric at large r to locally take the form

$$ds^{2} = -r^{2z}dt^{2} + r^{2}d\vec{x}^{2} + \frac{dr^{2}}{r^{2}} + \dots$$

Work with an orthonormal frame $e^{(A)}$, $e^{(r)}$. (A=0,1,2; I=1,2.) y choice of gauge, $e^{(A)}_r=0$, $e^{(r)}=\frac{dr}{r}$. Require that as $r\to\infty$,

$$e^{(0)} = r^z \hat{e}^{(0)}(r, t, \vec{x}), \quad e^{(I)} = r \hat{e}^I(r, t, \vec{x}),$$

where $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^{I}(r, t, \vec{x})$ have finite limits as $r \to \infty$. Oundary data analogous to conformal metric on boundary.

Horava Melby-Thompson

symptotically locally Lifshitz spacetimes

SFR & Saremi

Vant the leading-order metric at large r to locally take the form

$$ds^{2} = -r^{2z}dt^{2} + r^{2}d\vec{x}^{2} + \frac{dr^{2}}{r^{2}} + \dots$$

Work with an orthonormal frame $e^{(A)}$, $e^{(r)}$. (A=0,1,2;I=1,2.) by choice of gauge, $e^{(A)}_r=0$, $e^{(r)}=\frac{dr}{r}$. Require that as $r\to\infty$,

$$e^{(0)} = r^z \hat{e}^{(0)}(r, t, \vec{x}), \quad e^{(I)} = r \hat{e}^I(r, t, \vec{x}),$$

where $\hat{e}^{(0)}(r, t, \vec{x})$, $\hat{e}^{I}(r, t, \vec{x})$ have finite limits as $r \to \infty$. Coundary data analogous to conformal metric on boundary.

Horava Melby-Thompson