Title: Elucidating the quantum measurement problem
Date: Apr 12, 2011 04:00 PM
URL: http://pirsa.org/11040106
Abstract: Ideal measurements are described in quantum mechanics textbooks by two postulates: the collapse of the wave packet and Born\Ã\¢\Â $\hat{A} € \& A c i r c ; \hat{A}^{T M} S_{S}$ rule for the probabilities of outcomes. The quantum evolution of a system then has two components: a unitary (Hamiltonian) evolution in between measurements and non-unitary one when a measurement is performed. This situation was considered to be unsatisfactory by many people, including Einstein, Bohr, de Broglie, von Neumann and Wigner, but has remained unsolved to date.
The quantum measurement problem, that is, understanding why a unique outcome is obtained in each individual run of an experiment, is tackled by solving a Hamiltonian model within standard quantum statistical mechanics. The model describes the measurement of the $z$-component of a spin through interaction with a magnetic memory. The latter apparatus is modeled by a Curie\Ã\¢\ÂÂ€\ÂÂ"Weiss magnet having N \Ã\¢\Â $\hat{\text { Al }}$ oo\Â\« 1 spins weakly coupled to a phonon bath.
The Hamiltonian evolution exhibits several time scales. The reduction, a rapid decay of the off-diagonal blocks of the system\Ã \¢\ÂÂ€\ÂÂ"apparatus density matrix, arises from the many degrees of freedom of the pointer (the magnetization). The registration occurs due to a phase transition from the initial metastable state to one of the final stable states triggered by the tested system. It yields a stationary state in which the apparatus and the system are correlated. Under proper conditions the process satisfies all the features of ideal measurements, including collapse and Born\Ã\¢\Â $\hat{A} € \& A c i r c ; \hat{A}^{\mathrm{TM}}$ S rule.
As usual, irreversibility is ensured by the macroscopic size of the apparatus, in particular by the large value of N. Nothing else than the usual
 statistical interpretation. The solution of the quantum measurement problem requires a combination of the reduction and the registration, the properties of which arise from the irreversible dynamics.

## Elucidating the

 Quantum Measurement ProblemTheo M. Nieuwenhuizen CCPP, NYU \&
ITP, Univ. of Amsterdam
Europhysics Letters 2003 arXiv 2004, 2005, 2006
Beyond the Quantum 2007 arXiv 2008

Opus Magnum, in progress

Perimeter Institute, Waterloo April 12, 2011

## Elucidating <br> the <br> Quantum Measurement Problem

Theo M. Nieuwenhuizen CCPP, NYU \&
ITP, Univ. of Amsterdam
Europhysics Letters 2003 arXiv 2004, 2005, 2006
Beyond the Quantum 2007 arXiv 2008
Armen E. Allahverdyan, Yerevan Roger Balian, Saclay

Opus Magnum, in progress

Perimeter Institute, Waterloo April 12, 2011

## Setup

Statistical interpretation of QM
Text books on measurements
Problems \& paradoxes + the big questions

The model: system S + apparatus A

$$
\text { spin- } 1 / 2 \quad A=M+B=\text { magnet }+ \text { bath }
$$

Selection of collapse basis \& fate of Schrodinger cats
Registration of the Q-measurement \& classical measurement
Post measurement \& the Born rule
The Q measurement problem elucidated

## Statistical interpretation of QM

Density matrix $\rho=\sum p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ describes ensemble of identically prepared systems

Pure state $|\psi\rangle \mapsto \rho=|\psi\rangle\langle\psi|$ is limiting case; same meaning (no special role)
Ensemble can be real (many particles: bundle at LHC
one trapped ion in photon field, repeated excitation) or virtual (as in classical statistical physics)
$\mathrm{QM}=$ tool for calculating averages from density matrix $\rho$

$$
\langle A\rangle=\langle\psi| A|\psi\rangle \mapsto \operatorname{tr}(\rho A)
$$

$\Rightarrow \mathrm{QM}=$ about what we can measure, not about what is epistomology $\Leftrightarrow$ ontology

Quantum measurement theory describes ensemble of measurements

## Q-measurements in text books

$$
\begin{aligned}
|\psi\rangle=\sum_{i} \psi_{i}\left|s_{i}\right\rangle \text { measurement } \Rightarrow \quad\left|s_{i}\right\rangle & \begin{array}{l}
\text { collapse of the wave function } \\
\text { (reduction of wave packet) }
\end{array} \\
\qquad p_{i}=\left|\psi_{i}\right|^{2} & \begin{array}{l}
\text { pure state }=>\text { mixed state } \\
\text { Born probability }
\end{array}
\end{aligned}
$$

projector on eigenstate $i: \quad \hat{\Pi}_{i}=\left|s_{i}\right\rangle\left\langle s_{i}\right|$

$$
\begin{aligned}
& \text { collapse } \rho \mapsto \rho_{i}=\frac{1}{p_{i}} \hat{\Pi}_{i} \rho \hat{\Pi}_{i} \\
& \text { Born } \quad p_{i}=\operatorname{tr}\left(\hat{\Pi}_{i} \rho\right)
\end{aligned}
$$

No Schrödinger cats: no terms $\hat{\Pi}_{i} \rho \hat{\Pi}_{j} \quad(i \neq j)$ after measurement

## Problems \& paradoxes <br> Einstein, Bohr, de Broglie, von Neumann, Wigner, Bohm, Bell, Balian, van Kampen ...

Collapse $=$ non-unitary
Small part of apparatus described by $\mathrm{QM} \Leftrightarrow$ why not measurement process?
Preferred basis paradox: on which basis will reduction take place?
When does collapse happen ? How long does it take?
What happens to Schrödinger cats?
The biggest of them all:
The quantum measurement problem:
QM = statistical theory, but in experiments we see individual outcomes
Solvable within QM ?? => probably not ...

## Requirements for $Q$ measurement models

simulate as much as possible real experiments
ensure unbiased and robust registration by the macroscopic pointer of A
apparatus initially in a metastable state to amplify the quantum signal (not in pure state)
include a bath for dumping the free energy released by pointer be solvable and exhibit the characteristic times
lead to final state devoid of "Schrödinger cats"
satisfy Born's rule and correlations between system \& apparatus
solvable and flexible

## Spin-spin interactions in magnet M

$$
\begin{aligned}
\hat{H}_{\mathrm{M}} & =-\frac{J_{2} N}{2} \hat{m}^{2}-\frac{J_{4} N}{4} \hat{m}^{4} \\
& =-\frac{J_{2}}{2 N} \sum_{m, n=1}^{N} \hat{\sigma}_{z}^{(m)} \hat{\sigma}_{z}^{(n)}-\frac{J_{4}}{4 N^{3}} \sum_{k, l, m, n=1}^{N} \hat{\sigma}_{z}^{(k)} \hat{\sigma}_{z}^{(l)} \sigma_{z}^{(m)} \hat{\sigma}_{z}^{(n)}
\end{aligned}
$$

- $J_{2}$ term: Curie-Weiss magnet
- $J_{4}$ term: allows first order phase transition
- Extreme case of first order transition: $J_{2}=0, J_{4}=J$


## Curie-Weiss model for quantum measurements

System $\mathrm{S}: \mathrm{s}=$ spin- $^{-1 / 2}$. $\quad$ For ideal measurement: $\quad \hat{H}_{\mathrm{S}}=0$
Apparatus $=$ Magnet + Bath $(A=M+B)$. $\mathbf{M}=\mathrm{N}$ spins $-1 / 2 \quad \sigma^{(n)}$. Magnetization $\hat{m}=\frac{1}{N} \sum_{n=1}^{N} \hat{\sigma}_{z}^{(n)}$ $\mathrm{B}=$ phonon bath: harmonic oscillators


$$
\begin{aligned}
& \hat{H}=\hat{H}_{\mathrm{S}}+\hat{H}_{\mathrm{SA}}+\hat{H}_{\mathrm{A}} \\
& \hat{H}_{\mathrm{S}}=0 \quad \hat{H}_{\mathrm{SA}}=-g \hat{s}_{z} \sum_{n=1}^{N} \hat{\sigma}_{z}^{(n)}=-N g \hat{s}_{z} \hat{m}
\end{aligned}
$$

## Spin-spin interactions in magnet M

$$
\begin{aligned}
\hat{H}_{\mathrm{M}} & =-\frac{J_{2} N}{2} \hat{m}^{2}-\frac{J_{4} N}{4} \hat{m}^{4} \\
& =-\frac{J_{2}}{2 N} \sum_{m, n=1}^{N} \hat{\sigma}_{z}^{(m)} \hat{\sigma}_{z}^{(n)}-\frac{J_{4}}{4 N^{3}} \sum_{k, l, m, n=1}^{N} \hat{\sigma}_{z}^{(k)} \hat{\sigma}_{z}^{(l)} \sigma_{z}^{(m)} \hat{\sigma}_{z}^{(n)}
\end{aligned}
$$

- $J_{2}$ term: Curie-Weiss magnet
- $J_{4}$ term: allows first order phase transition
- Extreme case of first order transition: $J_{2}=0, J_{4}=J$


## Bath Hamiltonian

Standard harmonic oscillator bath:

$$
\hat{H}_{\mathrm{B}}=\sum_{n=1}^{N} \sum_{a=x, y, z} \sum_{k} \hbar \omega_{k} \hat{b}_{k, s}^{\dagger(n)} \hat{b}_{k, a}^{(n)}
$$

$x, y, z$ components of the spins of $M$ couple to their own harmonic oscillators

$$
\begin{gathered}
\hat{H}_{\mathrm{MB}}=\sqrt{\gamma} \sum_{n=1}^{N}\left(\hat{\sigma}_{x}^{(n)} \hat{B}_{x}^{(n)}+\hat{\sigma}_{y}^{(n)} \hat{B}_{y}^{(n)}+\hat{\sigma}_{z}^{(n)} \hat{B}_{z}^{(n)}\right) \equiv \sqrt{\gamma} \sum_{n=1}^{N} \sum_{a=x y_{z}} \hat{\sigma}_{a}^{(n)} \hat{B}_{a}^{(n)} \\
\hat{B}_{a}^{(n)}=\sum_{k} \sqrt{c\left(\omega_{k}\right)}\left(b_{k, A}^{(n)}+\hat{b}_{k, A}^{+(n)}\right)
\end{gathered}
$$

Bath characterized by $\operatorname{tr}_{\mathrm{B}}\left[\hat{R}_{\mathrm{B}}(0) \hat{B}_{a}^{(n)}(t) \hat{B}_{b}^{(p)}\left(t^{\prime}\right)\right]=\delta_{n, p} \delta_{a, b} K\left(t-t^{\prime}\right)$

Weak M-B coupling: $Y \ll 1$ allows to work at lowest order in $Y$

## Initial density matrix $\quad \hat{\mathcal{L}}(0)=\hat{r}(0) \otimes \hat{R}_{\mathrm{A}}(0)$

## Initial density matrix $\hat{\mathcal{L}}(0)=\hat{r}(0) \otimes \hat{R}_{\mathrm{A}}(0)$

$\begin{gathered}\text { Tested system S: arbitrary density matrix } \\ \text { uncorrelated with A }\end{gathered} r(0)=\left(\begin{array}{ll}r_{\uparrow \uparrow}(0) & r_{\uparrow \downarrow}(0) \\ r_{\downarrow \uparrow}(0) & r_{\downarrow \downarrow}(0)\end{array}\right)$

## Initial density matrix $\hat{\mathcal{L}}(0)=\hat{r}(0) \otimes \hat{R}_{\mathrm{A}}(0)$

Tested system S: arbitrary density matrix $r(0)=\left(\begin{array}{ll}r_{\uparrow \uparrow}(0) & r_{\uparrow \downarrow}(0) \\ r_{\downarrow \uparrow}(0) & r_{\downarrow \downarrow}(0)\end{array}\right)$

Apparatus A starts in mixed state, product of magnet M and bath B

$$
\hat{R}_{\mathrm{A}}(0)=\hat{R}_{\mathrm{M}}(0) \otimes \hat{R}_{\mathrm{B}}(0)
$$

## Initial density matrix $\quad \hat{\mathcal{L}}(0)=\hat{r}(0) \otimes \hat{R}_{A}(0)$

Tested system S: arbitrary density matrix $r(0)=\left(\begin{array}{ll}r_{\uparrow \uparrow}(0) & r_{\uparrow \downarrow}(0) \\ r_{\downarrow \uparrow}(0) & r_{\downarrow \downarrow}(0)\end{array}\right)$

Apparatus A starts in mixed state, product of magnet $M$ and bath $B$

$$
\hat{R}_{\mathrm{A}}(0)=\hat{R}_{\mathrm{M}}(0) \otimes \hat{R}_{\mathrm{B}}(0)
$$

Magnet M : N spins $1 / 2$, starts as paramagnet (mixed state)

$$
R_{M}(0)=\Pi_{n=1}^{N} \rho^{(n)}(0), \quad \rho^{(n)}(0)=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

## Initial density matrix $\quad \hat{\mathcal{L}}(0)=\hat{r}(0) \otimes \hat{R}_{A}(0)$

$\begin{gathered}\text { Tested system S: arbitrary density matrix } \\ \text { uncorrelated with A }\end{gathered} \quad r(0)=\left(\begin{array}{ll}r_{\uparrow \uparrow}(0) & r_{\uparrow \downarrow}(0) \\ r_{\downarrow \uparrow}(0) & r_{\downarrow \downarrow}(0)\end{array}\right)$

Apparatus A starts in mixed state, product of magnet $M$ and bath $B$

$$
\hat{R}_{\mathrm{A}}(0)=\hat{R}_{\mathrm{M}}(0) \otimes \hat{R}_{\mathrm{B}}(0)
$$

Magnet M : N spins $1 / 2$, starts as paramagnet (mixed state)

$$
R_{M}(0)=\Pi_{n=1}^{N} \rho^{(n)}(0), \quad \rho^{(n)}(0)=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Bath: Gibbs state (mixed state) $\quad R_{\mathrm{B}}(0)=\frac{e^{-\beta \hat{H}_{\mathrm{B}}}}{Z_{\mathrm{B}}} \quad \beta=1 / \tau$

## Selection of collapse basis

What selects collapse basis? The interaction Hamiltonian !

$$
\hat{H}_{\mathrm{SA}}=-g \hat{s}_{z} \sum_{n=1}^{N} \hat{\sigma}_{z}^{(n)}=-N g \hat{s}_{z} \hat{m}
$$

## Selection of collapse basis

What selects collapse basis? The interaction Hamiltonian !

$$
\hat{H}_{\mathrm{SA}}=-g \hat{s}_{z} \sum_{n=1}^{N} \hat{\sigma}_{z}^{(n)}=-N g \hat{s}_{z} \hat{m}
$$

Trace out Apparatus (Magnet+Bath) in von Neumann eqn

$$
\mathrm{i} \hbar \mathrm{~d} \mathrm{~d} \hat{\mathcal{D}}=[\hat{H}, \hat{\mathcal{D}}] \quad \mathcal{D}=\left(\begin{array}{cc}
\mathcal{D}_{\uparrow \uparrow} & \mathcal{D}_{\uparrow \downarrow} \\
\mathcal{D}_{\downarrow \uparrow} & \mathcal{D}_{\downarrow \downarrow}
\end{array}\right)
$$

The 4 sectors decouple; only interaction $\mathrm{H}_{\mathrm{SA}}$ remains
Trace out A = M + B

## Selection of collapse basis

What selects collapse basis? The interaction Hamiltonian !

$$
\hat{H}_{\mathrm{SA}}=-g \hat{s}_{z} \sum_{n=1}^{N} \hat{\sigma}_{z}^{(n)}=-N g \hat{s}_{z} \hat{m}
$$

Trace out Apparatus (Magnet+Bath) in von Neumann eqn

$$
\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} \hat{\mathcal{D}}=[\hat{H}, \hat{\mathcal{D}}] \quad \mathcal{D}=\left(\begin{array}{ll}
\mathcal{D}_{\uparrow \uparrow} & \mathcal{D}_{\uparrow \downarrow} \\
\mathcal{D}_{\downarrow \uparrow} & \mathcal{D}_{\downarrow \downarrow}
\end{array}\right)
$$

The 4 sectors decouple; only interaction $\mathrm{H}_{\mathrm{SA}}$ remains
Trace out $\mathrm{A}=\mathrm{M}+\mathrm{B}$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} r_{\mathrm{ij}} & \equiv \frac{\mathrm{~d}}{\mathrm{~d} t} \operatorname{tr}_{\mathrm{M}, \mathrm{~B}} \mathcal{D}_{\mathrm{ij}}=-g N\left(s_{i}-s_{j}\right) \operatorname{tr}_{\mathrm{M}, \mathrm{~B}}\left[\hat{m}, \mathcal{D}_{\mathrm{ij}}\right] \\
& =0 \quad \text { iff } s_{i}=s_{j}
\end{aligned}
$$

$$
r_{i j}(t)=t_{A_{2}=M_{1}+B} D(t)
$$

## Selection of collapse basis

What selects collapse basis? The interaction Hamiltonian !

$$
\hat{H}_{\mathrm{SA}}=-g \hat{s}_{z} \sum_{n=1}^{N} \hat{\sigma}_{z}^{(n)}=-N g \hat{s}_{z} \hat{m}
$$

Trace out Apparatus (Magnet+Bath) in von Neumann eqn

$$
\mathrm{i} \hbar \mathrm{~d} \hat{\mathrm{~d} t} \hat{\mathcal{D}}=[\hat{H}, \hat{\mathcal{D}}] \quad \mathcal{D}=\left(\begin{array}{cc}
\mathcal{D}_{\uparrow \uparrow} & \mathcal{D}_{\uparrow \downarrow} \\
\mathcal{D}_{\downarrow \uparrow} & \mathcal{D}_{\downarrow \downarrow}
\end{array}\right)
$$

The 4 sectors decouple; only interaction $\mathrm{H}_{\text {SA }}$ remains
Trace out $\mathrm{A}=\mathrm{M}+\mathrm{B}$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} r_{\mathrm{ij}} & \equiv \frac{\mathrm{~d}}{\mathrm{~d} t} \operatorname{tr}_{\mathrm{M}, \mathrm{~B}} \mathcal{D}_{\mathrm{ij}}=-g N\left(s_{i}-s_{j}\right) \operatorname{tr}_{\mathrm{M}, \mathrm{~B}}\left[\hat{m}, \mathcal{D}_{\mathrm{ij}}\right] \\
& =0 \quad \text { iff } s_{i}=s_{j}
\end{aligned}
$$

## Selection of collapse basis

What selects collapse basis? The interaction Hamiltonian !

$$
\hat{H}_{\mathrm{SA}}=-g \hat{s}_{z} \sum_{n=1}^{N} \hat{\sigma}_{z}^{(n)}=-N g \hat{s}_{z} \hat{m}
$$

Trace out Apparatus (Magnet+Bath) in von Neumann eqn

$$
\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} \hat{\mathcal{D}}=[\hat{H}, \hat{\mathcal{D}}] \quad \mathcal{D}=\left(\begin{array}{ll}
\mathcal{D}_{\uparrow \uparrow} & \mathcal{D}_{\uparrow \downarrow} \\
\mathcal{D}_{\downarrow \uparrow} & \mathcal{D}_{\downarrow \downarrow}
\end{array}\right)
$$

The 4 sectors decouple; only interaction $\mathrm{H}_{\mathrm{SA}}$ remains
Trace out A = M + B

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} r_{\mathrm{ij}} & \equiv \frac{\mathrm{~d}}{\mathrm{~d} t} \operatorname{tr}_{\mathrm{M}, \mathrm{~B}} \mathcal{D}_{\mathrm{ij}}=-g N\left(s_{i}-s_{j}\right) \operatorname{tr}_{\mathrm{M}, \mathrm{~B}}\left[\hat{m}, \mathcal{D}_{\mathrm{ij}}\right] \\
& =0 \quad \text { iff } s_{i}=s_{j}
\end{aligned}
$$

Diagonal terms of $r(t)$ conserved $->=r_{\mathrm{ii}}(\mathrm{t})=\mathrm{r}_{\mathrm{ii}}(0)$ : Born probabilities
Off-diagonal terms evolve => disappearence of Schrodinger cats

## Fate of Schrodinger cat terms

Short times: spin-spin couplings in magnet are irrelevant
$\mathrm{x}, \mathrm{y}$ components of spins of M rotate in magnetic field g of spin S
$\hat{\rho}^{(n)}(t)=\frac{1}{2} \operatorname{diag}\left(e^{2 i g t / \hbar}, e^{-2 i g t / \hbar}\right) e^{-g^{2} \gamma K t^{4}}$
Larmor procession damping by zero-point flucts of bath

Schrodinger cat:

$$
\begin{aligned}
r_{\uparrow \perp}(t)= & r_{\uparrow \perp}(0)\left(\cos \frac{2 g t}{\hbar}\right)^{N} e^{-N g^{2} \gamma K t^{4}} \\
= & r_{\uparrow \perp}(0) e^{-\left(t / \tau_{\text {red }}\right)^{2}} e^{-\left(t / \tau_{\text {dec }}\right)^{4}} \\
& \text { dephasing decoherence (zpf of bath) } \\
& \text { as in NMR comes in later }
\end{aligned}
$$

Recurrences eliminated by: decoherence by zero point flucts of bath or even by a spread in g's

Creation of multi-particle correlations: weak, dying out

$$
\left\langle\left(\hat{s}_{x}-i \hat{s}_{y}\right) \hat{m}^{k}(t)\right\rangle_{c} \sim\left\langle\left(\hat{s}_{x}-i \hat{s}_{y}\right)(0)\right) i^{k} t^{k} e^{-\left(t / \tau_{\text {red }}\right)^{2}} \leq\left(\frac{1}{\sqrt{N}}\right)^{k}
$$

Sehroedinger cat terms die out quickly

## Registration of the measurement

Solve Q-dynamics of diagonal elements to second order in the coupling to bath

## Registration of the measurement

Solve Q-dynamics of diagonal elements to second order in the coupling to bath
1 sector with $\mathrm{S}_{\mathrm{z}}=1$ : analogy to classical measurement of classical Ising spin $\mathrm{S}_{\mathrm{z}}=1$

## Registration of the measurement

Solve Q-dynamics of diagonal elements to second order in the coupling to bath
1 sector with $\mathrm{s}_{\mathrm{z}}=1$ : analogy to classical measurement of classical Ising spin $\mathrm{s}_{\mathrm{z}}=1$
lagnetization $m$ involves only eigenvalues $\sigma_{z}= \pm 1$, as in classical statistical physics

Measure a spin $s_{z}= \pm 1$ with a "classical" apparatus of magnet and a bath

## Registration of the measurement

Solve Q-dynamics of diagonal elements to second order in the coupling to bath 1 sector with $\mathrm{S}_{\mathrm{z}}=1$ : analogy to classical measurement of classical Ising spin $\mathrm{s}_{\mathrm{z}}=1$
lagnetization $m$ involves only eigenvalues $\sigma_{z}= \pm 1$, as in classical statistical physics

Measure a spin $s_{z}= \pm 1$ with a "classical" apparatus of magnet and a bath

$$
H_{\text {classical }}=-g N s_{z} m-\frac{J N}{4} \underline{m}^{4}, \quad \underline{m} \equiv \frac{1}{N} \sum_{n=1}^{N} \sigma_{z, n}
$$

## Registration of the measurement

Solve Q-dynamics of diagonal elements to second order in the coupling to bath 1 sector with $\mathrm{s}_{\mathrm{z}}=1$ : analogy to classical measurement of classical Ising spin $\mathrm{s}_{\mathrm{z}}=1$
lagnetization $m$ involves only eigenvalues $\sigma_{z}= \pm 1$, as in classical statistical physics

Measure a spin $s_{z}= \pm 1$ with a "classical" apparatus of magnet and a bath

$$
\begin{aligned}
\qquad H_{\text {classical }}=-g N s_{z} m-\frac{J N}{4} \underline{m}^{4}, & \underline{m} \equiv \frac{1}{N} \sum_{n=1}^{N} \sigma_{z, n} \\
\text { Dynamics } \quad \dot{m}=\gamma h\left(1-\frac{m}{\tanh \beta h}\right), & h=g s_{z}+J m^{3}
\end{aligned}
$$

## Registration of the measurement

Solve Q-dynamics of diagonal elements to second order in the coupling to bath 1 sector with $\mathrm{s}_{\mathrm{z}}=1$ : analogy to classical measurement of classical Ising spin $\mathrm{s}_{\mathrm{z}}=1$
lagnetization $m$ involves only eigenvalues $\sigma_{z}= \pm 1$, as in classical statistical physics

Measure a spin $s_{z}= \pm 1$ with a "classical" apparatus of magnet and a bath

$$
H_{\text {classical }}=-g N s_{z} m-\frac{J N}{4} \underline{m}^{4}, \quad \underline{m} \equiv \frac{1}{N} \sum_{n=1}^{N} \sigma_{z, n}
$$

Dynamics $\quad \dot{m}=\gamma h\left(1-\frac{m}{\tanh \beta h}\right), \quad h=g s_{z}+J m^{3}$
Free energy $\mathrm{F}=\mathrm{U}-\mathrm{TS}$ : minima are stable states of free energy

$$
\frac{F}{N}=-g s_{z} m-\frac{J m^{4}}{4}-T\left[\frac{1+m}{2} \ln \frac{2}{1+m}+\frac{1-m}{2} \ln \frac{2}{1-m}\right]
$$

Free energy landscape: classical Curie-Weiss model

$$
\frac{F}{N}=-g s_{z} m-\frac{J m^{4}}{4}-T\left[\frac{1+m}{2} \ln \frac{2}{1+m}+\frac{1-m}{2} \ln \frac{2}{1-m}\right]
$$

At $g=0$ :

$m$

$m$

High T: paramagnet is stable

Low T:
paramagnetic initial state; stable ferromagnetic states can act as measuring apparatus

## During measurement: turn on coupling $\Rightarrow$ field $h=\mathrm{g}_{\mathrm{z}}$




## During measurement: turn on coupling $\Rightarrow$ field $h=\mathrm{g}_{\mathrm{z}}$




Bath is needed to dump the free energy

## During measurement: turn on coupling $\boldsymbol{\square}$ field $\mathrm{h}=\mathrm{g} \mathrm{S}_{\mathrm{z}}$




Bath is needed to dump the free energy

## Procedure:

Turn off coupling $g$ after minimum is reached
Magnet goes to ferromagnetic minimum at $g=0$. Stays there a time $\exp (N)$
(Result is stable and may be read off, or not)

## During measurement: turn on coupling $\boldsymbol{\square}$ field $\mathrm{h}=\mathrm{g} \mathrm{S}_{\mathrm{z}}$




Bath is needed to dump the free energy

## Free energy landscape: classical Curie-Weiss model

$$
\frac{F}{N}=-g s_{z} m-\frac{J m^{4}}{4}-T\left[\frac{1+m}{2} \ln \frac{2}{1+m}+\frac{1-m}{2} \ln \frac{2}{1-m}\right]
$$

At $g=0$ :

$m$

m

High T: paramagnet is stable

Low T:
paramagnetic initial state; stable ferromagnetic states can act as measuring apparatus

## During measurement: turn on coupling $\Rightarrow$ field $h=\mathrm{g}_{\mathrm{z}}$




## During measurement: turn on coupling $\boldsymbol{\square}$ field $\mathrm{h}=\mathrm{g} \mathrm{S}_{\mathrm{z}}$




Bath is needed to dump the free energy

## Procedure:

Turn off coupling $g$ after minimum is reached
Magnet goes to ferromagnetic minimum at $g=0$. Stays there a time $\exp (N)$
(Result is stable and may be read off, or not)

## Free energy landscape: classical Curie-Weiss model

$$
\frac{F}{N}=-g s_{z} m-\frac{J m^{4}}{4}-T\left[\frac{1+m}{2} \ln \frac{2}{1+m}+\frac{1-m}{2} \ln \frac{2}{1-m}\right]
$$

At $g=0$ :

$m$

m

High T: paramagnet is stable

Low T:
paramagnetic initial state; stable ferromagnetic states can act as measuring apparatus

## During measurement: turn on coupling $\Rightarrow$ field $h=\mathrm{g}_{\mathrm{z}}$




Bath is needed to dump the free energy

## During measurement: turn on coupling $\boldsymbol{\square}$ field $\mathrm{h}=\mathrm{g} \mathrm{S}_{\mathrm{z}}$




Bath is needed to dump the free energy

Procedure:
Turn off coupling $g$ after minimum is reached
Magnet goes to ferromagnetic minimum at $g=0$. Stays there a time $\exp (N)$
(Result is stable and may be read off, or not)

## Real solution: QM widens the distribution $\mathrm{P}(\mathrm{m} ; \mathrm{t})$



- Finally: sharp peak at $m=+m_{F}$ in sector $s_{z}=+1$

$$
m=-m_{F} \text { in sector } s_{z}=-1
$$

## Post-measurement state

Magnet ends up in up/down ferromagnetic state Sign of magnetization maximally correlated with sign spin S Probabilities satisfy Born rule

No Schrodinger cat terms

## Post-measurement state

$$
\hat{\mathcal{D}}\left(t_{\mathrm{f}}\right)=r_{\uparrow \uparrow}(0)|\uparrow\rangle\langle\uparrow| \otimes \hat{R}_{\mathrm{A} \uparrow}\left(t_{\mathrm{f}}\right)+r_{\downarrow \downarrow}(0)|\downarrow\rangle\left\langle\downarrow \otimes \hat{R}_{\mathrm{A}_{\downarrow}}\left(t_{\mathrm{f}}\right)\right.
$$

Magnet ends up in up/down ferromagnetic state Sign of magnetization maximally correlated with sign spin S Probabilities satisfy Born rule

No Schrodinger cat terms

## On the Quantum Measurement Problem

The macroscopic magnet itself is well understood. Initial paramagnet relaxes to stable $\uparrow$ or $\downarrow$ ferromagnet Ensemble describes breaking of ergodicity Individual $\uparrow$ and $\downarrow$ ferromaget is stable, Poincare time is very large

In Q measurement this transition is triggered by the tested spin S Long life time of FM state ensures uniqueness of outcome for $\mathrm{m}= \pm \mathrm{m}_{\mathrm{F}}$ and for the measured spin $s_{z}= \pm 1$ that is fully correlated with it

No survival of Schrodinger cat terms, that could spoil this view.
One may select individual outcomes with magnetization $\uparrow$ (possible because ferromagnetic $\uparrow$ state longlived)
This unambiguous subensemble is a pure ensemble of spins $\uparrow$ of $S$

## Summary: the measurement problem elucidated

Collapse basis determined by interaction Hamiltonian
Measurement in two steps: cats die \& registration of the result very fast is slower small multi-particle correlations

Registration : some classical features ( $\leftarrow$ Bohr) macroscopic pointer: irreversible dynamics, entropy increase

Born rule results from the dynamics
Observation of pointer is irrelevant for outcomes ( $\leftarrow$ Wigner) (but results may be read off, or processed automatically)

Statistical interpretation of QM
Individual outcomes due to irreversible phase transition in magnet long lived pointer indication, no cat terms




















## Click to add notes

