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Abstract: It isageneric feature of strongly correlated electronic systems that several mechanisms (broadly represented by interactions) compete with
each other. This competition often leads to the phenomenon of frustration. In

strongly correlated systems such as doped Mott insulators kinetic energy and Coulomb repulsion frustrate the tendency of doped holes to phase
separate. The result is the onset of a set of novel phases, which we

dubbed Electronic Liquid Crystal (ELC) states, with varying degrees of complexity. Much like classical liquid crystals, electronic liquid crystal
phases break translation and rotational invariance to varying degrees.

In this talk | will focus on the experimental evidence and theory of two these phases, stripes and nematics, in severa different systems including
two-dimensional electron gasesin large magnetic fields, ruthenate

oxides, heavy fermions, and cuprate and pnictide superconductors.
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Electronic Liquid Crystal phases in doped Mott insulators

® Doping a Mott insulator leads to a system with a

tendency to phase separation frustrated by strong
correlations
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different degrees of breakdown of translation and
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Doping a Mott insulator leads to a system with a
tendency to phase separation frustrated by strong
correlations

The result are electronic liquid crystal phases:
crystals, stripes (smectic), nematic and fluids, with
different degrees of breakdown of translation and

rotational symmetry
In lattice systems these symmetries are discrete

Examples: stripe phases in HTSC, nematic
phase of the 2DEG in magnetic fields, in YBCO and
BSCCO, and in iron pnictides and heavy fermions.
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Electronic Liquid Crystal phases in doped Mott insulators

Doping a Mott insulator leads to a system with a
tendency to phase separation frustrated by strong
correlations

The result are electronic liquid crystal phases:
crystals, stripes (smectic), nematic and fluids, with
different degrees of breakdown of translation and
rotational symmetry

In lattice systems these symmetries are discrete

Examples: stripe phases in HTSC, nematic
phase of the 2DEG in magnetic fields, in YBCO and
BSCCO, and in iron pnictides and heavy fermions.

In addition to their charge and spin orders,
these phases may also be superconducting
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How Liquid Crystals got an
or
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Conducting Liquid Crystal Phases and HISC
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Conducting Liquid Crystal Phases and HTSC

® Stripes: unidirectional charge ordered states
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anisotropic transport
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Conducting Liquid Crystal Phases and HTSC

Stripes: unidirectional charge ordered states

Nematic: a uniform metallic (or superconducting) state with
anisotropic transport

Stripe and nematic ordered states in HTSC: static stripes in LBCO and

LNSCO x~1/8
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® Stripes: unidirectional charge ordered states
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anisotropic transport

® Stripe and nematic ordered states in HTSC: static stripes in LBCO and
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® Statc stripes in LSCO and YBCO in magnetic fields (INS and quantum
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® Nematic order in the pseudogap regime of YBCO: INS ~6.45 and
anisotropy in Nernst measurements

® Nematic order also seen in pnictides, bilayer ruthenates, URu;Si;, and
in 2DEG in large magnetic fields.
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Conducting Liquid Crystal Phases and HTSC

Stripes: unidirectional charge ordered states

Nematic: a uniform metallic (or superconducting) state with
anisotropic transport

Stripe and nematic ordered states in HTSC: static stripes in LBCO and
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Static stripes in LSCO and YBCO in magnetic fields (INS and quantum

oscillation experiments)

Nematic order in the pseudogap regime of YBCO: INS ~6.45 and
anisotropy in Nernst measurements
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The “fluctuating” stripes seen in superconducting LSCO, LBCO away
from 1/8, and underdoped YBCO, are nematic states

Page 19/118




Pirsa: 11040089

Conducting Liquid Crystal Phases and HTSC

Stripes: unidirectional charge ordered states
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The high energy electronic states seen in BSCCO by STM/STS have
local nematic order
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Conducting Liquid Crystal Phases and HTSC

Stripes: unidirectional charge ordered states

Nematic: a uniform metallic (or superconducting) state with
anisotropic transport

Stripe and nematic ordered states in HTSC: static stripes in LBCO and
LNSCO x~1/8

Static stripes in LSCO and YBCO in magnetic fields (INS and quantum

oscillation experiments)

Nematic order in the pseudogap regime of YBCO: INS ~6.45 and
anisotropy in Nernst measurements

Nematic order also seen in pnictides, bilayer ruthenates, URu;Si;, and
in 2DEG in large magnetic fields.

The “fluctuating”™ stripes seen in superconducting LSCO, LBCO away
from 1/8, and underdoped YBCO, are nematic states

The high energy electronic states seen in BSCCO by STM/STS have
local nematic order
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The case of La;-x Bax CuOyq
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The case of La,;-x Bax CuOq

® [ BCO,the original HTSC, is known to exhibit low energy
stripe fluctuations in its superconducting state
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The case of La;-x Bax CuOq

® [BCO, the original HTSC, is known to exhibit low energy

stripe fluctuations in its superconducting state

® |t has a very low T. near x=1/8 where it shows static stripe
order in the LT T crystal structure
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LBCO, the original HTSC, is known to exhibit low energy

stripe fluctuations in its superconducting state

It has a very low T. near x=1/8 where it shows static stripe
order in the LT T crystal structure

Experimental evidence for superconducting layer decoupling in
LBCO at x=1/8
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® [BCO, the original HTSC, is known to exhibit low energy

stripe fluctuations in its superconducting state

® |t has a very low T. near x=1/8 where it shows static stripe
order in the LT T crystal structure

® Experimental evidence for superconducting layer decoupling in
LBCO at x=1/8

® (learest example of the interconnection between charge and
spin order with superconductivity

Pirsa: 11040089 Page 26/118




The case of La;.x Bax CuOq
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LBCO, the original HTSC, is known to exhibit low energy

stripe fluctuations in its superconducting state

It has a very low T near x=1/8 where it shows static stripe
order in the LTT crystal structure

Experimental evidence for superconducting layer decoupling in
LBCO at x=1/8

Clearest example of the interconnection between charge and
spin order with superconductivity

Layer decoupling, long range charge and spin stripe order and
superconductivity: a novel striped superconducting state, a Pair
Density Wave, in which charge, spin, and superconducting
orders are intertwined!
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Temperature (K)
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Li et al (2007): Dynamical Layer Decoupling in LBCO

® ARPES: anti-nodal d-wave SC gap is large and
unsuppressed at |/8

® Static charge stripe order for T< Tcharge=54 K
® Static Stripe Spin order T < Tsin= 42K

® ., drops rapidly to zero from Tgin to Tk
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e ARPES: anti-nodal d-wave SC gap is large and
unsuppressed at |/8

® Static charge stripe order for T< Tcharge=54 K
® Static Stripe Spin order T < T5in= 42K
® ., drops rapidly to zero from T, to Tk

® p.,shows KT behavior for Tspin>T > Tkt
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e ARPES: anti-nodal d-wave SC gap is large and
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® Static charge stripe order for T< Tcharge=54 K
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® ., drops rapidly to zero from Tgin to Tk
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Pirsa: 11040089 Page 35/118




Li et al (2007): Dynamical Layer Decoupling in LBCO

e ARPES: anti-nodal d-wave SC gap is large and
unsuppressed at |/8

® Static charge stripe order for T< Tcharge=54 K
® Static Stripe Spin order T < Tspin= 42K

® ., drops rapidly to zero from T to Tkr

® ., shows KT behavior for Tspin > T > Tkt

® p.TasT! forT>T = 35K

® p.—~0asT —T3;p= I0K
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Li et al (2007): Dynamical Layer Decoupling in LBCO
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ARPES: anti-nodal d-wave SC gap is large and
unsuppressed at |/8

Static charge stripe order for T< Tcharge=54 K
Static Stripe Spin order T < Tsin= 42K

Pab drops rapidly to zero from Tspin to Tkt

Pab shows KT behavior for Tspin > T > Tkt

Pc T asT! forT>T = 35K

Ppc =0asT —T:p= 10K

pc/ Pab ™ X forTkr>T >T3p
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Li et al (2007): Dynamical Layer Decoupling in LBCO

ARPES: anti-nodal d-wave SC gap is large and
unsuppressed at |/8

Static charge stripe order for T< Tcharge=54 K
Static Stripe Spin order T < Tin= 42K

Pab drops rapidly to zero from Tspin to Tkr

Pab shows KT behavior for Tspin > T > Tkt

Pc T asT! forT>T = 35K

Pc —=0asT —T:p= 10K

Pc/ Pab = o forTkr>T >T3p

Meissner state only below T.= 4K
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Cascade of thermal transitions/crossovers in
La, 5;,Ba 1,5Cu0,
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The 2D Resistive State and 2D
Superconductivity
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How Do We Understand This Remarkable Effects?
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® Broad temperature range, T3p <T <Typ with
2D superconductivity but not in 3D, as if there
is not interlayer Josephson coupling
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® Broad temperature range, T3p <T <Tip with
2D superconductivity but not in 3D, as if there
is not interlayer Josephson coupling

® |[n this regime there is both striped charge and
spin order
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How Do We Understand This Remarkable Effects?

® Broad temperature range,T3p <T <Typ with
2D superconductivity but not in 3D, as if there
is not interlayer Josephson coupling

® |n this regime there is both striped charge and
spin order

® This can only happen if there is a special
symmetry of the superconductor in the striped
state that leads to an almost complete
cancellation of the c-axis Josephson coupling.
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A Striped Textured Superconducting Phase
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A Striped Textured Superconducting Phase

® The stripe state in the LTT crystal structure has two planes in
the unit cell.
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A Striped Textured Superconducting Phase

The stripe state in the LT T crystal structure has two planes in
the unit cell.

Stripes in the 2nd neighbor planes are shifted by half a period
to minimize the Coulomb interaction: 4 planes per unit cell
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A Striped Textured Superconducting Phase

® The stripe state in the LT T crystal structure has two planes in
the unit cell.

® Stripes in the 2nd neighbor planes are shifted by half a period
to minimize the Coulomb interaction: 4 planes per unit cell

® The AFM spin order suffers a TT phase shift accross the charge
stripe which has period 4
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A Striped Textured Superconducting Phase

® The stripe state in the LT T crystal structure has two planes in
the unit cell.

® Stripes in the 2nd neighbor planes are shifted by half a period
to minimize the Coulomb interaction: 4 planes per unit cell

® The AFM spin order suffers a TT phase shift accross the charge
stripe which has period 4

® We propose that the superconducting order is also striped and
also suffers a 1T phase shift.
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A Striped Textured Superconducting Phase

® The stripe state in the LT T crystal structure has two planes in
the unit cell.

® Stripes in the 2nd neighbor planes are shifted by half a period
to minimize the Coulomb interaction: 4 planes per unit cell

® TheAFM spin order suffers a TT phase shift accross the charge
stripe which has period 4

® We propose that the superconducting order is also striped and
also suffers a 1T phase shift.

® The superconductivity resides in the spin gap regions and there
is a TT phase shift in the SC order across the AFM regions
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Period 4 Striped Superconducting State

E. Berg et al, 2007
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Period 4 Striped Superconducting State

E. Berg et al, 2007

® This state has intertwined
striped charge, spin and
superconducting orders.
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Period 4 Striped Superconducting State

E. Berg et al, 2007

® This state has intertwined
striped charge, spin and
superconducting orders.

® A state of this type was
found in variational Monte
Carlo (Ogata et al 2004)
and MFT (Poilblanc e#'dl ™

e e Y
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How does this state solve the puzzle?
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How does this state solve the puzzle?

® |[f this order is perfect, the Josephson coupling between
neighboring planes cancels exactly due to the symmetry of
the periodic array of TT textures
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How does this state solve the puzzle!?

® |[f this order is perfect, the Josephson coupling between
neighboring planes cancels exactly due to the symmetry of

the periodic array of TT textures

® The Josephson couplings || and |; between planes two and
three layers apart also cancel by symmetry.
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How does this state solve the puzzle!?

If this order is perfect, the Josephson coupling between
neighboring planes cancels exactly due to the symmetry of

the periodic array of 1T textures

The Josephson couplings || and ), between planes two and
three layers apart also cancel by symmetry.

The first non-vanishing coupling |3 occurs at four spacings. It
is quite small and it is responsible for the non-zero but very

low T
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How does this state solve the puzzle!?

If this order is perfect, the Josephson coupling between
neighboring planes cancels exactly due to the symmetry of
the periodic array of 1T textures

The Josephson couplings || and |, between planes two and
three layers apart also cancel by symmetry.

The first non-vanishing coupling |3 occurs at four spacings. It
is quite small and it is responsible for the non-zero but very

low T-

Defects and/or discommensurations gives rise to small
Josephson coupling Jo neighboring planes
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Are there other interactions’

® |t is possible to have an inter-plane biquadratic coupling
involving the product SC of the order parameters between
neighboring planes A, A; and the product of spin stripe
order parameters also on neighboring planes M, . M2
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Are there other interactions’

It is possible to have an inter-plane biquadratic coupling
involving the product SC of the order parameters between

neighboring planes A; A; and the product of spin stripe
order parameters also on neighboring planes M, . M2

However in the LTT structure M, M2=0 and there is no
such coupling
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Are there other interactions’

It is possible to have an inter-plane biquadratic coupling
involving the product SC of the order parameters between
neighboring planes A; A; and the product of spin stripe
order parameters also on neighboring planes M, . M2

However in the LTT structure M, . M1=0 and there is no
such coupling

In a large enough perpendicular magnetic field it is possible
(spin flop transition) to induce such a term and hence an
effective Josephson coupling.
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Are there other interactions’

It is possible to have an inter-plane biquadratic coupling
involving the product SC of the order parameters between
neighboring planes A, A; and the product of spin stripe
order parameters also on neighboring planes M, . M2

However in the LTT structure M, . M1=0 and there is no
such coupling

In a large enough perpendicular magnetic field it is possible
(spin flop transition) to induce such a term and hence an
effective Josephson coupling.

Thus in this state there should be a strong suppression of the
3D SC T. but not of the 2D SCT. —




Away from x=1/8

® Away from x=1/8 there is no perfect commensuration
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Away from x=1/8

® Away from x=1/8 there is no perfect commensuration

® Discommensurations are defects that induce a finite
Josephson coupling between neighboring planes || ~ [x-1/8|%,
leading to an increase of the 3D SCT. away from |/8
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Away from x=1/8

® Away from x=1/8 there is no perfect commensuration

® Discommensurations are defects that induce a finite
Josephson coupling between neighboring planes |, ~ [x-1/8|%,
leading to an increase of the 3D SCT. away from |/8

® Similar effects arise from disorder which also lead to a rise in

the 3D SCT.
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Landau-Ginzburg Theory of the striped SC:
Order Parameters

® Striped SC: A(r)=Aq(r) e @+ A_q(r) e'Qr,
complex charge 2e singlet pair condensate with
wave vector, (i.e.an FFLO type state at zero
magnetic field)

® Nematic: detects breaking of rotational symmetry:
N, a real neutral pseudo-scalar order parameter

® Charge stripe: Pk, unidirectional charge stripe with
wave vector K

® Spin stripe order parameter: Sq, a neutral complex
spin vector order parameter, K=2Q
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Ginzburg-Landau Free Energy Functional

of=F+ F3 + F4 + ..
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Ginzburg-Landau Free Energy Functional

oF=Fy+ F3 + Fs + ..

* The quadratic and quartic terms are standard
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Ginzburg-Landau Free Energy Functional

of=Fy+ F3 + F4 + ...
* The quadratic and quartic terms are standard

*F3=Y: Pk Sq .Sq + TT/2 rotation + c.c.
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Ginzburg-Landau Free Energy Functional

of=fF+ F3 + F4 + ...
* The quadratic and quartic terms are standard

*F3=Y; Pk Sq .Sq + TT/2 rotation + c.c.
+Ya Pk A.@ Aq + TT/2 rotation + c.c.
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Ginzburg-Landau Free Energy Functional

of=fF+ F3 + F4 + ...
e The quadratic and quartic terms are standard

*F3=Ys px Sq .Sq + TT/2 rotation + c.c.
+Ya Pk A.@ Aq + TT/2 rotation + c.c.

+gA N (Aq Aqt+ A-q A-q -TT/2 rotation) + c.c.
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Some Consequences of the GL theory
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Some Consequences of the GL theory

® [he symmetry of the term coupling charge and spin order
parameters requires the condition K= 2Q
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Some Consequences of the GL theory

The symmetry of the term coupling charge and spin order
parameters requires the condition K= 2Q

Striped SC order implies charge stripe order with |/2 the
period, and of nematic order
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Some Consequences of the GL theory

® The symmetry of the term coupling charge and spin order
parameters requires the condition K= 2Q

® Striped SC order implies charge stripe order with |/2 the
period, and of nematic order

® Charge stripe order with wave vector 2Q and/or nematic
order favors stripe superconducting order which may or may

not occur depending on the coefficients in the quadratic
part
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® The symmetry of the term coupling charge and spin order
parameters requires the condition K= 2Q

® Striped SC order implies charge stripe order with |/2 the
period, and of nematic order

® Charge stripe order with wave vector 2Q and/or nematic
order favors stripe superconducting order which may or may

not occur depending on the coefficients in the quadratic
part

® Coupling to a charge 4e SC order parameter A4
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Some Consequences of the GL theory

® The symmetry of the term coupling charge and spin order
parameters requires the condition K= 2Q

® Striped SC order implies charge stripe order with |/2 the
period, and of nematic order

® (Charge stripe order with wave vector 2Q and/or nematic
order favors stripe superconducting order which may or may

not occur depending on the coefficients in the quadratic
part

® Coupling to a charge 4e SC order parameter A4
® [3=g4 [As (AqA-q+ rotation)+ c.c]
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Some Consequences of the GL theory

The symmetry of the term coupling charge and spin order
parameters requires the condition K= 2Q

Striped SC order implies charge stripe order with |/2 the
period, and of nematic order

Charge stripe order with wave vector 2Q and/or nematic
order favors stripe superconducting order which may or may

not occur depending on the coefficients in the quadratic
part

Coupling to a charge 4e SC order parameter A4
F3=gs [As (Aq A-q+ rotation)+ c.c]
Striped SC order (PDW) = uniform charge 4e SC order
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Coexisting uniform and striped SC order
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Coexisting uniform and striped SC order

® PDW order Aqg and uniform SC order Ao
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Coexisting uniform and striped SC order

® PDW order Ag and uniform SC order Ao

® F:.=Yalo pq Aqtp-@ Aqgtgy P2 P’ +rotation
*CL:

irsa: 11040089 Page 82/118




Coexisting uniform and striped SC order

® PDW order Ao and uniform SC order Ao

® F.,=Yalo pq Aqtp- Aqgtgr P2 P’ +rotation
== i

® |f Ao#0 and Ag#0 = there is a pq component of

the charge order!
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Coexisting uniform and striped SC order

® PDW order Ag and uniform SC order Ao

® F3.=Yalo pq Aqtp- Aqtge P-2@ P’ *rotation
sz A =

® |f Ao#0 and Aq#0 = there is a pq component of

the charge order!

® The small uniform component Ao removes the
sensitivity to quenched disorder of the PDWV state

irsa: 11040089 Page 84/118




Topological Excitations of the Striped SC
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Topological Excitations of the Striped SC

® p(r)=|pk| cos [K r+ ®(r)]




Topological Excitations of the Striped SC

® p(r)=|px| cos

® A(r)=|Aq| exp
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Topological Excitations of the Striped SC

® p(r)=|pk| cos [K r+ &(r)]
® A(r)=|Aq| exp[i Q r +i Oq(r)]+|A-q| exp[-i Q r + i B.q(r)]
® Fy=2Ya |pxAq A-q| cos[2 O.(r)-P(r)]
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Topological Excitations of the Striped SC

® p(r)=|pk| cos [K r+ ®(r)]

® A(r)=|Aq| exp[i Q r +i Oq(r)]+|A-q| exp[-i Q r + i B.q(r)]
® F3x=2Yx |px Aq A-q| cos[2 B.(r)-P(r)]

® B:q(r)=[6+(r) £ B.(r)]/2

00000000




Pirsa: 11040089

Topological Excitations of the Striped SC

p(r)=|px| cos [K r+ &(r)]
A(r)=|Aq| exp[i Q r + i Oq(r)]+|A-q| exp[-i Q r + i B.q(r)]
F3,Y=2Y5 Pk ﬂQ A-Q[ COS[2 9(r)-d>(r)]

O:0(r)=[0+(r) £ B.(r)]/2

O+q single valued mod 21T = 0: defined mod 1T
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Topological Excitations of the Striped SC

P(r)=|px| cos [K r+ ®(r)]

A(r)=|Aq| exp[i Q r +i Bq(r)]+|A-q| exp[-i Q r + i B.q(r)]
F3¥=2Ya |pk Aq A-q| cos[2 B.(r)-®(r)]

O:q(r)=[0+(r) £ 6.(r)]/2

O+q single valued mod 21T = 0: defined mod 1T

¢ and O. are locked = topological defects of ¢ and O+




Topological Excitations of the Striped SC
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Topological Excitations of the Striped SC

® SC vortex with AB+=21T and Ad=0




Topological Excitations of the Striped SC

® SC vortex with AB+=21T and Ad=0

® Bound state of a |/2 vortex and a dislocation
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Topological Excitations of the Striped SC

® SC vortex with AB+=2T1T and Ad=0

® Bound state of a |/2 vortex and a dislocation
AB+ =11, Ad= 21T
* Double dislocation, AG+ =0, A= 41T
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Topological Excitations of the Striped SC

SC vortex with AB: =211 and A$=0

Bound state of a |1/2 vortex and a dislocation
AB: =TT, Ad= 21T
Double dislocation, AB+ =0, Ap= 41T

All three topological defects have logarithmic
Interactions
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Half-vortex and a Dislocation
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Double Dislocation
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Thermal melting of the PDWV state
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Thermal melting of the PDWV state

® Three paths for thermal melting of the PDWV state
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Thermal melting of the PDWV state

® Three paths for thermal melting of the PDWV state

® Three types of topological excitations: (1,0) (SC
vortex), (0,1) (double dislocation), (£1/2, £1/2) (1/2
vortex, single dislocation bound pair)
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Thermal melting of the PDWV state

® Three paths for thermal melting of the PDWV state

® Three types of topological excitations: (1,0) (SC
vortex), (0,1) (double dislocation), (£1/2, £1/2) (1/2
vortex, single dislocation bound pair)

® Scaling dimensions: Ao o=TT(Psc p*+Kcdw q2)/T=2
(for marginality)
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Thermal melting of the PDWV state

® Three paths for thermal melting of the PDWV state

® Three types of topological excitations: (1,0) (SC
vortex), (0,1) (double dislocation), (£1/2, £1/2) (1/2
vortex, single dislocation bound pair)

® Scaling dimensions: Ao o=TT(Psc p*+Keaw q2)/T=2
(for marginality)

e Phases: PDW, Charge 4e SC, CDW, and normal
(Ising nematic)
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Schematic Phase Diagram

I/ p, [sotropic

Nematic
Stripe
(CDW)
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Effects of Disorder

Pirsa: 11040089 Page 106/118




irsa:

Effects of Disorder

® The striped SC order is very sensitive to disorder: disorder
= pinned charge density wave = coupling to the phase of

the striped SC = SC “gauge” glass with zero resistance but

no Meissner effect in 3D
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Effects of Disorder

® The striped SC order is very sensitive to disorder: disorder
= pinned charge density wave = coupling to the phase of

the striped SC = SC "gauge™ glass with zero resistance but

no Meissner effect in 3D

® Disorder induces dislocation defects in the stripe order
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Effects of Disorder

The striped SC order is very sensitive to disorder: disorder
= pinned charge density wave = coupling to the phase of

the striped SC = SC “gauge” glass with zero resistance but

no Meissner effect in 3D
Disorder induces dislocation defects in the stripe order

Due to the coupling between stripe order and SC, £17 flux
vortices are induced at the dislocation core.

Strict layer decoupling only allows for a magnetic coupling
between randomly distributed 1T flux vortices

Novel glassy physics and “fractional” flux

the charge 4e SC order is unaffected by the Bragg glass of
the pinned CDW Page 109/118
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Phase Sensitive Experiments

2e SC
= 2e SC
D = nhe/de J C =
SIS =
4e SC _. | v -
T TT =~
JA J5 +

2e striped SC
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Role of Nematic Fluctuations in PDW Melting?
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Role of Nematic Fluctuations in PDW Melting?

® |f nematic fluctuations become strong, orders that break
translational symmetry become progressively suppressed

® |n the absence of a lattice in 2D smectic order is not possible
(at T>0) (Toner & Nelson, 1980)

® Coupling to the lattice breaks continuous rotational
invariance to the point group of the lattice
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Role of Nematic Fluctuations in PDW Melting?

If nematic fluctuations become strong, orders that break
translational symmetry become progressively suppressed

In the absence of a lattice in 2D smectic order is not possible
(at T>0) (Toner & Nelson, |980)

Coupling to the lattice breaks continuous rotational
invariance to the point group of the lattice

For a square lattice the point group is C4 and the nematic-
isotropic transition is 2D Ising

As the coupling to the lattice is weakened the structure of
the phase diagram changes and the nematic transition is

pushed to lower temperatures
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Role of Nematic Fluctuations in PDW Melting?
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Phase Sensitive Experiments

2e SC

D = nhe/de

de SC

11040089

2e SC

wSer A
TSI ~—

2e striped SC
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Role of Nematic Fluctuations in PDW Melting?
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Schematic Phase Diagram

T/ p

< [sotropic

Nematic
Stripe
(CDW)
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