Title: Marginal Fermi liquids and holography

Date: Apr 11, 2011 11:00 AM

URL: http://pirsa.org/11040083

Abstract: I will discuss a holographic model whose low-energy physics may be used to build a marginal Fermi liquid. The model has several interesting features, including (i.) it is embedded in string theory and we possess a Lagrangian description of the field theory, (ii.) it exhibits a first-order transition between the non-Fermi liquid phase and a normal Fermi liquid phase, and (iii.) the model involves a lattice of heavy defects interacting with a sea of propagating fields.

Pirsa: 11040083 Page 1/81

Marginal Fermi liquids and holography

Kristan Jensen

University of Victoria

Perimeter Institute - April 11, 2011

based on:

KJ, Shamit Kachru, Andreas Karch, Joseph Polchinski, and Eva Silverstein - arXiv:1104.XXXX?

Pirsa: 11040083 Page 2/81

Outline

- [Some] Motivation: heavy fermion systems.
- 2 Review: use of AdS/CFT to model non-Fermi liquids, lattice setups, &c
- O Holographic lattices: generalities.
- The D3/D5 lattice
- The M2/M2 lattice and the semi-holographic MFL.
- Open questions.

Pirsa: 11040083 Page 3/81

Some motivation: heavy fermions - I

Features:

- Non-Fermi liquid phase related to..
- Existence of quantum critical point (QCP).
- Phase transitions may reorganize Fermi surface: FL/NFL
- Inherent lattice structure: rare earth defects embedded in sea of free electrons.

Some motivation: heavy fermions - II

Non-Fermi liquid phase:

Good fit for dynamical spin susceptibility (e.g., CeCu_{6-x}Au_x),

$$\chi = \frac{1}{\omega + c_1 k^2 + T^{2/z} f(\frac{\omega}{T})}$$

Anomalous thermodynamics, electrical transport:

$$c_V \sim cT$$
, c grows near $B = B_c$, $\rho_{\rm DC} \propto T$.

Marginal Fermi liquid:

$$\chi_{T=0} = \frac{1}{\omega - v_F k_{||} + c_1 \omega \ln \omega}$$

Pirsa: 11040083 Page 5/81

Some motivation: heavy fermions - I

Features:

- Non-Fermi liquid phase related to..
- Existence of quantum critical point (QCP).
- Phase transitions may reorganize Fermi surface: FL/NFL
- Inherent lattice structure: rare earth defects embedded in sea of free electrons.

Some motivation: heavy fermions - II

Non-Fermi liquid phase:

• Good fit for dynamical spin susceptibility (e.g., $CeCu_{6-x}Au_x$),

$$\chi = \frac{1}{\omega + c_1 k^2 + T^{2/z} f(\frac{\omega}{T})}$$

Anomalous thermodynamics, electrical transport:

$$c_V \sim cT$$
, c grows near $B = B_c$, $\rho_{\rm DC} \propto T$.

Marginal Fermi liquid:

$$\chi_{T=0} = \frac{1}{\omega - v_F k_{||} + c_1 \omega \ln \omega}$$

Pirsa: 11040083 Page 7/81

What about holography?

Lots of attempts to model condensed matter phenomena with gravitational duals.

- ONFL: charged fermion in near-extremal AdS-RN background. [Cubrovic, et al], [Faulkner, et al].
- QCP: adjust charge density, magnetic field for fundamental flavour [KJ, et al], [Evans, et al], holographic superfluid [Iqbal, et al]; multi-traces [Faulkner, et al].
- O Probe brane models realize lattice configurations, FL/NFL transitions [Kachru, Karch, Yaida].

Pirsa: 11040083 Page 8/81

What about holography?

Lots of attempts to model condensed matter phenomena with gravitational duals.

ONFL: charged fermion in near-extremal AdS-RN background. [Cubrovic, et al], [Faulkner, et al].

Pirsa: 11040083 Page 9/81

Semi-holographic theories

One way to get NFL: semi-holographic [Faulkner, Polchinski].

Idea: mix free fermion with fermion in large N (0 + 1)-d CFT

$$\mathcal{L} = \mathcal{L}_{\text{free}} + \mathcal{L}_{0+1} + g\psi \Psi_{x}$$

 ψ : conduction electron, Ψ : locally critical fermion (from AdS₂)

At
$$g = 0$$
: $G_0 = \langle \bar{\psi}\psi \rangle = \frac{1}{\omega - v_F k_{||}}$,

$$G_0 = \langle \bar{\Psi}_{\mathbf{x}'}\Psi_{\mathbf{x}} \rangle = \delta(\mathbf{x}' - \mathbf{x}) \times \begin{cases} c(i\omega)^{2\Delta - 1} & T > 0 \\ T^{2\Delta - 1}f(\frac{\omega}{T}) & T > 0, \end{cases}$$

Pirsa: 11040083 Page 10/81

Semi-holographic theories - II

Large $N \Rightarrow$ compute susceptibility via

$$\chi = \sum_{n=1}^{\infty} g^{2n} G_0^{n+1} \mathcal{G}_0^n = \frac{1}{G_0^{-1} - g^2 \mathcal{G}_0} = \frac{1}{\omega - v_F k_{||} - g^2 T^{2\Delta - 1} f(\frac{\omega}{T})}$$

Three interesting features:

- For $\Delta \leq 1$, \mathcal{G}_0 dominates \mathcal{G}_0^{-1} at small ω/T : **NFL**.
- ② For T > 0, matches NFL susceptibility with $z = 2/(2\Delta 1)$.
- **3** For $\Delta = 1$, T = 0: $\mathcal{G}_0 \rightarrow c \omega \ln \omega$ which would give...

Pirsa: 11040083

Semi-holographic theories - II

Large $N \Rightarrow$ compute susceptibility via

$$\chi = \sum_{n=1}^{\infty} g^{2n} G_0^{n+1} \mathcal{G}_0^n = \frac{1}{G_0^{-1} - g^2 \mathcal{G}_0} = \frac{1}{\omega - v_F k_{||} - g^2 T^{2\Delta - 1} f(\frac{\omega}{T})}$$

Three interesting features:

- For $\Delta \leq 1$, \mathcal{G}_0 dominates \mathcal{G}_0^{-1} at small ω/T : **NFL**.
- ② For T>0, matches NFL susceptibility with $z=2/(2\Delta-1)$.
- **3** For $\Delta = 1$, T = 0: $\mathcal{G}_0 \to c \omega \ln \omega$ which would give...

$$\chi \sim \frac{1}{\omega - v_F k_{||} - g^2 c \omega \ln \omega},$$

Ingredients

Necessary components:

- Free propagating fermions (these are easy to get).
- 2 Locally critical fermions in large N CFT (harder)

Pirsa: 11040083 Page 13/81

Ingredients

Necessary components:

- Free propagating fermions (these are easy to get).
- 2 Locally critical fermions in large N CFT (harder)

One way to get locally critical Ψ 's is via AdS_2 dual.

AdS₂ arises in deep IR for low-*T* finite density systems, e.g. AdS-RN [Faulkner, et al], probe branes [KJ, et al].

[Also get the propagating ψ 's from near AdS_{d+1} fluctuations]

Pirsa: 11040083

Semi-holographic theories - II

Large $N \Rightarrow$ compute susceptibility via

$$\chi = \sum_{n=1}^{\infty} g^{2n} G_0^{n+1} \mathcal{G}_0^n = \frac{1}{G_0^{-1} - g^2 \mathcal{G}_0} = \frac{1}{\omega - v_F k_{||} - g^2 T^{2\Delta - 1} f(\frac{\omega}{T})}$$

Three interesting features:

- For $\Delta \leq 1$, \mathcal{G}_0 dominates \mathcal{G}_0^{-1} at small ω/T : **NFL**.
- ② For T > 0, matches NFL susceptibility with $z = 2/(2\Delta 1)$.
- **3** For $\Delta = 1$, T = 0: $\mathcal{G}_0 \to c \omega \ln \omega$ which would give...

$$\chi \sim \frac{1}{\omega - v_F k_{||} - g^2 c \omega \ln \omega},$$

Ingredients

Necessary components:

- Free propagating fermions (these are easy to get).
- 2 Locally critical fermions in large N CFT (harder)

Pirsa: 11040083 Page 16/81

Ingredients

Necessary components:

- Free propagating fermions (these are easy to get).
- 2 Locally critical fermions in large N CFT (harder)

One way to get locally critical Ψ 's is via AdS₂ dual.

AdS₂ arises in deep IR for low-*T* finite density systems, e.g. AdS-RN [Faulkner, et al], probe branes [KJ, et al].

[Also get the propagating ψ 's from near AdS_{d+1} fluctuations]

Pirsa: 11040083 Page 17/81

Also: DC resistivity

One-loop bulk calculation for AdS-RN [Faulkner, et al],

For $\Delta \leq 1$, gives $\rho \sim T^{2\Delta-1}$.

Gives $\rho \sim T$ for marginal Fermi liquid!

Pirsa: 11040083

Also: DC resistivity

One-loop bulk calculation for AdS-RN [Faulkner, et al],

For $\Delta \leq 1$, gives $\rho \sim T^{2\Delta-1}$.

Gives $\rho \sim T$ for marginal Fermi liquid!

Pirsa: 11040083 Page 19/81

Pirsa: 11040083 Page 20/81

■ NFL phase, anomalous transport?

Pirsa: 11040083 Page 21/81

- NFL phase, anomalous transport?
 √
- ② Related to quantum criticality: √

Pirsa: 11040083 Page 22/81

- NFL phase, anomalous transport?
 √
- ② Related to quantum criticality: √
- FL/NFL transition: ×
- Underlying lattice structure: ×

Pirsa: 11040083 Page 23/81

- NFL phase, anomalous transport?
 √
- ② Related to quantum criticality: √
- FL/NFL transition: X
- Underlying lattice structure: ×

A few more issues:

- Δ determined by field theory; what Δ s are natural?
- AdS-RN has lots of low—T instabilities.

Pirsa: 11040083 Page 24/81

- NFL phase, anomalous transport?
- ② Related to quantum criticality: √
- FL/NFL transition: X
- Underlying lattice structure: ×

A few more issues:

AdS-RN has lots of low—T instabilities.

Pirsa: 11040083 Page 25/81

For example, scalar condensation: $m_{\rm IR}^2 R_2^2 = \frac{m^2 R_{d+1}^2}{d(d-1)} - q^2 e^2$

- $m_{
 m IR}^2 < m_{
 m BF}^2$ in IR \Rightarrow condensation at low T
- Charged condensate: superfluid [Hartnoll, Herzog, Horowitz]
- Neutral condensate possible for small m^2 [Iqbal, et al].

Pirsa: 11040083 Page 26/81

- NFL phase, anomalous transport?
 √
- ② Related to quantum criticality: √
- 3 FL/NFL transition: ×

Pirsa: 11040083 Page 27/81

Ingredients

Necessary components:

- Free propagating fermions (these are easy to get).
- 2 Locally critical fermions in large N CFT (harder)

One way to get locally critical Ψ 's is via AdS_2 dual.

AdS₂ arises in deep IR for low-*T* finite density systems, e.g. AdS-RN [Faulkner, et al], probe branes [KJ, et al].

[Also get the propagating ψ 's from near AdS_{d+1} fluctuations]

Pirsa: 11040083

- NFL phase, anomalous transport?
 ✓
- ② Related to quantum criticality: √
- 3 FL/NFL transition: ×
- Underlying lattice structure: ×

A few more issues:

AdS-RN has lots of low—T instabilities.

Pirsa: 11040083

For example, scalar condensation: $m_{\rm IR}^2 R_2^2 = \frac{m^2 R_{d+1}^2}{d(d-1)} - q^2 e^2$

- $m_{
 m IR}^2 < m_{
 m BF}^2$ in IR \Rightarrow condensation at low T
- Charged condensate: superfluid [Hartnoll, Herzog, Horowitz]
- Neutral condensate possible for small m^2 [lqbal, et al].

Pirsa: 11040083 Page 30/81

For example, scalar condensation: $m_{\rm IR}^2 R_2^2 = \frac{m^2 R_{d+1}^2}{d(d-1)} - q^2 e^2$

- $m_{
 m IR}^2 < m_{
 m BF}^2$ in IR \Rightarrow condensation at low T
- Charged condensate: superfluid [Hartnoll, Herzog, Horowitz]
- Neutral condensate possible for small m^2 [Iqbal, et al].

But: in general Einstein-Maxwell setup, we could pick few charged scalars so maybe no superfluid instability.

Pirsa: 11040083 Page 31/81

For example, scalar condensation: $m_{\rm IR}^2 R_2^2 = \frac{m^2 R_{d+1}^2}{d(d-1)} - q^2 e^2$

- $m_{
 m IR}^2 < m_{
 m BF}^2$ in IR \Rightarrow condensation at low T
- Charged condensate: superfluid [Hartnoll, Herzog, Horowitz]
- Neutral condensate possible for small m^2 [Iqbal, et al].

But: in general Einstein-Maxwell setup, we could pick few charged scalars so maybe no superfluid instability.

BUT AGAIN: in most holographic examples we understand (coming from SUGRA compactifications), lots of SUSY, light charged scalars.

Pirsa: 11040083 Page 32/81

Plan for today

In lieu of shortcomings listed above, goals for today:

- 1. New class of non-Fermi liquids from holography:
 - Obtain stable locally critical CFT via string theory.
 - Use holography to write down Lagrangian for MFL.
 - \bullet Fix allowed choices for Δ by stringy embedding.
- 2. Realize FL/NFL transitions by tuning control parameters.
- 3. Connect to **lattice models** for heavy fermions.

Pirsa: 11040083 Page 33/81

Plan for today

In lieu of shortcomings listed above, goals for today:

- 1. New class of non-Fermi liquids from holography:
 - Obtain stable locally critical CFT via string theory.
 - Use holography to write down Lagrangian for MFL.
 - \bullet Fix allowed choices for Δ by stringy embedding.
- 2. Realize FL/NFL transitions by tuning control parameters.
- 3. Connect to lattice models for heavy fermions.

Simultaneously realize goals in same model.

Pirsa: 11040083 Page 34/81

Plan for today

In lieu of shortcomings listed above, goals for today:

- 1. New class of non-Fermi liquids from holography:
 - Obtain stable locally critical CFT via string theory.
 - Use holography to write down Lagrangian for MFL.
 - \bullet Fix allowed choices for Δ by stringy embedding.
- 2. Realize FL/NFL transitions by tuning control parameters.
- 3. Connect to lattice models for heavy fermions.

Simultaneously realize goals in same model.

NOTE: (2), (3) already realized with probe brane lattices [Kachru, Karch, Yaida]

Pirsa: 11040083 Page 35/81

Kondo lattice - I

Pirsa: 11040083

Kondo lattice - II

Pirsa: 11040083 Page 37/81

SUSY large N Kondo

Pirsa: 11040083 Page 38/81

The D3/D5 system

IIB brane setup [Camino, Parades, Ramallo]

where :: indicates a lattice direction.

In usual holographic limits with $N_f \sim O(1)$, get IIB strings on $AdS_5 \times \mathbb{S}^5$ plus D5 branes wrapping $AdS_2 \times \mathbb{S}^4$ cycles.

Field theory: $\mathcal{N}=4$ SYM plus lattice fermions. Up to 8 SUSYs.

Pirsa: 11040083 Page 39/81

The D3/D5 system

IIB brane setup [Camino, Parades, Ramallo]

where :: indicates a lattice direction.

In usual holographic limits with $N_f \sim O(1)$, get IIB strings on $AdS_5 \times \mathbb{S}^5$ plus D5 branes wrapping $AdS_2 \times \mathbb{S}^4$ cycles.

Field theory: $\mathcal{N}=4$ SYM plus lattice fermions. Up to 8 SUSYs.

ASIDE: Naive slipping mode instability stabilized by mixing with AdS₂ gauge field via WZ term, $T_5 \int P[C_4] \wedge F$.

Pirsa: 11040083 Page 40/81

D3/D5 - spectrum

Brane embedding: wrap \mathbb{S}^4 at constant θ , $2\pi\alpha'F = \cos\theta dt \wedge dr$ \rightarrow with $g_{\mathbb{S}^5} = d\theta^2 + \sin^2\theta g_{\mathbb{S}^4}$

System preserves $SO(5)_{\rm int} \times SO(3)_{\rm AdS}$

Some AdS₂ fields and dual operator spectrum:

field	<i>SO</i> (5) _{int}	$SO(3)_{\mathrm{AdS}}$	Δ
x ⁱ	- 1	3	1
$(A, x^9)_{\pm}$	1	1	$1 + 2 \pm 2$

Slipping mode/AdS₂ A dual to $\sim \bar{\psi} X^I \psi$.

Fermionic superpartners have $\Delta_I = I + 1/2 + \mathbb{Z}$ by SUSY.

The D3/D5 system

IIB brane setup [Camino, Parades, Ramallo]

where :: indicates a lattice direction.

In usual holographic limits with $N_f \sim O(1)$, get IIB strings on $AdS_5 \times \mathbb{S}^5$ plus D5 branes wrapping $AdS_2 \times \mathbb{S}^4$ cycles.

Field theory: $\mathcal{N}=4$ SYM plus lattice fermions. Up to 8 SUSYs.

ASIDE: Naive slipping mode instability stabilized by mixing with AdS₂ gauge field via WZ term, $T_5 \int P[C_4] \wedge F$.

Pirsa: 11040083 Page 42/81

D3/D5 - spectrum

Brane embedding: wrap \mathbb{S}^4 at constant θ , $2\pi\alpha'F = \cos\theta dt \wedge dr$ \rightarrow with $g_{\mathbb{S}^5} = d\theta^2 + \sin^2\theta g_{\mathbb{S}^4}$

System preserves $SO(5)_{\rm int} \times SO(3)_{\rm AdS}$

Some AdS₂ fields and dual operator spectrum:

field	<i>SO</i> (5) _{int}	$SO(3)_{AdS}$	Δ
x ⁱ		3	1
$(A, x^9)_{\pm}$	1	1	$1 + 2 \pm 2$

Slipping mode/AdS₂ A dual to $\sim \bar{\psi} X^I \psi$.

Fermionic superpartners have $\Delta_I = I + 1/2 + \mathbb{Z}$ by SUSY.

D3/D5 - spectrum

Brane embedding: wrap \mathbb{S}^4 at constant θ , $2\pi\alpha'F = \cos\theta dt \wedge dr$ \rightarrow with $g_{\mathbb{S}^5} = d\theta^2 + \sin^2\theta g_{\mathbb{S}^4}$

System preserves $SO(5)_{\rm int} \times SO(3)_{\rm AdS}$

Some AdS₂ fields and dual operator spectrum:

field	<i>SO</i> (5) _{int}	$SO(3)_{AdS}$	Δ
x ⁱ		3	1
$(A, x^9)_{\pm}$	1	1	$1 + 2 \pm 2$

Slipping mode/AdS₂ A dual to $\sim \bar{\psi} X^I \psi$.

Fermionic superpartners have $\Delta_I = I + 1/2 + \mathbb{Z}$ by SUSY.

BAD: No $\Delta = 1$ in spectrum.

Pirsa: 11040083-OOD: New way of getting AdS2; stable in probe limit $N_f \ll_{Page-144/81}$

D3/D5 - transitions

System also has a FL phase: consider $D5/\bar{D5}$ lattice.

NFL phase:

Gapped, FL phase:

First-order transition; order parameter: $\bar{\psi}\psi$. Holographic glass.

Pirsa: 11040083 Page 45/81

Let's compare!

1. New class of non-Fermi liquids from holography:

Pirsa: 11040083 Page 46/81

Let's compare!

- 1. New class of non-Fermi liquids from holography: ✓
- 2. Realize FL/NFL transitions: ✓

Pirsa: 11040083 Page 47/81

Let's compare!

- 1. New class of non-Fermi liquids from holography: ✓
- 2. Realize FL/NFL transitions: ✓
- 3. Connect to lattice models:

Pirsa: 11040083 Page 48/81

Let's compare!

- 1. New class of non-Fermi liquids from holography: ✓
- 2. Realize FL/NFL transitions: ✓
- 3. Connect to lattice models: ✓
- (4.) Get MFL (i.e. $\Delta = 1$) with stringy embedding:

Let's compare!

- 1. New class of non-Fermi liquids from holography: ✓
- 2. Realize FL/NFL transitions: ✓
- 3. Connect to lattice models: ✓
- (4.) Get MFL (i.e. $\Delta=1$) with stringy embedding: \times
 - \rightarrow Didn't work because SUSY protects dimensions to be $1/2 + \mathbb{Z}$.

Aside: AdS₂ from probe branes without lattice

Also get AdS₂ from flavour at nonzero density.

 $AdS_{d+1} \rightarrow AdS_2$ "holographic RG flow" for open string metric.

Similar two-point functions as for charged fields in AdS-RN.

Also get superfluid instabilities (e.g. p-wave [Ammon, et al]), neutral instabilities at nonzero B (e.g. holographic BKT [KJ, et al]).

Pirsa: 11040083 Page 51/81

Let's compare!

- 1. New class of non-Fermi liquids from holography: ✓
- 2. Realize FL/NFL transitions: ✓
- 3. Connect to lattice models: ✓
- (4.) Get MFL (i.e. $\Delta=1$) with stringy embedding: \times
 - \rightarrow Didn't work because SUSY protects dimensions to be $1/2 + \mathbb{Z}$.

Pirsa: 11040083 Page 52/81

Aside: AdS₂ from probe branes without lattice

Also get AdS₂ from flavour at nonzero density.

 $AdS_{d+1} \rightarrow AdS_2$ "holographic RG flow" for open string metric.

Similar two-point functions as for charged fields in AdS-RN.

Also get superfluid instabilities (e.g. p-wave [Ammon, et al]), neutral instabilities at nonzero B (e.g. holographic BKT [KJ, et al]).

Pirsa: 11040083 Page 53/81

Aside: AdS₂ from probe branes without lattice

Also get AdS₂ from flavour at nonzero density.

 $AdS_{d+1} \rightarrow AdS_2$ "holographic RG flow" for open string metric.

Similar two-point functions as for charged fields in AdS-RN.

Also get superfluid instabilities (e.g. p-wave [Ammon, et al]), neutral instabilities at nonzero B (e.g. holographic BKT [KJ, et al]).

But: no SUSY, no lattice, unclear how to get pure Fermi liquids.

Pirsa: 11040083 Page 54/81

2+1d lattice → D2/D2 system

Consider another lattice in IIA:

- 4 ND system ⇒ scalars, fermions at lattice sites
- Up to 8 SUSYs again.
- Field theory: $\mathcal{N}=8$ SYM \oplus fundamental hypers.
- 8 SUSYs +SO(5) ⇒ Coulomb branch metric not renormalized beyond 1-loop.

Manifest global symmetry in theory: $SO(5) \times U(1)_{34} \times U(1)_{12}$.

$$\mathcal{L}_{\text{defect}} = \sum_{j} \bar{\psi}_{j} \left(i \partial_{0} + A_{0} + \sum_{m=5}^{9} \Gamma^{m} \Phi_{m} \right) \psi_{j} + \dots$$

RG flow to M2/M2 system

 $\mathcal{N}=8$ SYM not conformal \rightarrow flows to fixed point. Captured by uplift to M-theory:

- For $N \gg 1$, $N_f \sim O(1)$, get M-theory on $AdS_4 \times \mathbb{S}^7$ plus M2 probes wrapping $AdS_2 \times \mathbb{S}^1$ cycles.
- Global symmetry enhanced: SO(5) → SO(6)

M2/M2 - spectrum

Compute spectrum by analyzing fluctuations of M2 embedding: \rightarrow No A_{μ} on M2: only geometric fluctuations.

field

$$SO(6)$$
 $U(1)_{34}$
 $U(1)_{12}$
 Δ
 w_{\pm}
 1
 I
 ± 1
 $\frac{I}{2} - 1$
 y^i
 6
 I
 0
 $\frac{I}{2} + \frac{1}{2}$

- To match to field thy: consider $SO(5) \subset SO(6)$
- This gives $6 \rightarrow 5 + 1$.

Under SO(5), flavour scalars neutral, flavour ψ 's a 4.

Claim: the **5** is dual to $\bar{\psi}\Phi_{34}^I\psi$ with $\Delta_I=\frac{I}{2}+\frac{1}{2}$.

M2/M2 - spectrum

Compute spectrum by analyzing fluctuations of M2 embedding: \rightarrow No A_{μ} on M2: only geometric fluctuations.

field	50(6)	$U(1)_{34}$	$U(1)_{12}$	Δ
w_{\pm}	1	1	±1	$\frac{1}{2} - 1$
y^i	6	1	0	$\frac{1}{2} + \frac{1}{2}$

- To match to field thy: consider $SO(5) \subset SO(6)$
- This gives $6 \rightarrow 5 + 1$.

Under SO(5), flavour scalars neutral, flavour ψ 's a 4.

Claim: the **5** is dual to $\bar{\psi}\Phi_{34}^I\psi$ with $\Delta_I=\frac{I}{2}+\frac{1}{2}$.

NOTE: flavour fields have dimensions $[\psi] = \frac{1}{4}$, $[q] = -\frac{1}{4}$. \rightarrow Interpretation: $\bar{\psi}\Gamma^m\Phi_m\psi$ dominates $\bar{\psi}iD_0\psi$.

2+1d lattice \rightarrow D2/D2 system

Consider another lattice in IIA:

- 4 ND system ⇒ scalars, fermions at lattice sites
- Up to 8 SUSYs again.
- Field theory: $\mathcal{N}=8$ SYM \oplus fundamental hypers.
- 8 SUSYs +SO(5) ⇒ Coulomb branch metric not renormalized beyond 1-loop.

Manifest global symmetry in theory: $SO(5) \times U(1)_{34} \times U(1)_{12}$.

$$\mathcal{L}_{\text{defect}} = \sum_{j} \bar{\psi}_{j} \left(i \partial_{0} + A_{0} + \sum_{m=5}^{9} \Gamma^{m} \Phi_{m} \right) \psi_{j} + \dots$$

M2/M2 - spectrum

Compute spectrum by analyzing fluctuations of M2 embedding: \rightarrow No A_{μ} on M2: only geometric fluctuations.

field	50(6)	$U(1)_{34}$	$U(1)_{12}$	Δ
W_{\pm}	1	1	±1	$\frac{1}{2} - 1$
yi	6	1	0	$\frac{1}{2} + \frac{1}{2}$

- To match to field thy: consider $SO(5) \subset SO(6)$
- This gives $6 \rightarrow 5 + 1$.

Under SO(5), flavour scalars neutral, flavour ψ 's a 4.

Claim: the **5** is dual to $\bar{\psi}\Phi_{34}^I\psi$ with $\Delta_I=\frac{I}{2}+\frac{1}{2}$.

M2/M2 - spectrum

Compute spectrum by analyzing fluctuations of M2 embedding: \rightarrow No A_{μ} on M2: only geometric fluctuations.

field	50(6)	$U(1)_{34}$	$U(1)_{12}$	Δ
W±	1	1	±1	$\frac{1}{2} - 1$
yi	6	1	0	$\frac{1}{2} + \frac{1}{2}$

- To match to field thy: consider $SO(5) \subset SO(6)$
- This gives $\mathbf{6} \rightarrow \mathbf{5} + \mathbf{1}$.

Under SO(5), flavour scalars neutral, flavour ψ 's a 4.

Claim: the **5** is dual to $\bar{\psi}\Phi_{34}^I\psi$ with $\Delta_I=\frac{I}{2}+\frac{1}{2}$.

NOTE: flavour fields have dimensions $[\psi] = \frac{1}{4}$, $[q] = -\frac{1}{4}$. \rightarrow Interpretation: $\bar{\psi}\Gamma^m\Phi_m\psi$ dominates $\bar{\psi}iD_0\psi$.

M2/M2 - fermions

What about the fermionic spectrum? Rather than analyzing fermionic part of M2 action [Grisaru, Knutt]

$$S_{\psi} \sim \int d^3\xi \sqrt{-P[g]} \bar{\psi} (1 - \Gamma_{M2}) \Gamma^i D_i \psi,$$

use SUSY:

- Superpartners of slipping modes: $\Delta_l = \frac{l}{2} + 1$.
- Transform as 4 of SO(5).
- Candidate operator: $\bar{\psi}\Phi_{34}^I\partial_t q + \text{h.c.}$

Pirsa: 11040083 Page 62/81

Let's compare again!

1. New class of non-Fermi liquids from holography:

Pirsa: 11040083 Page 63/81

Let's compare again!

- 1. New class of non-Fermi liquids from holography: ✓
- 2. Realize FL/NFL transitions: √
- 3. Connect to lattice models: ✓

Pirsa: 11040083 Page 64/81

Let's compare again!

- 1. New class of non-Fermi liquids from holography: ✓
- 2. Realize FL/NFL transitions: ✓
- 3. Connect to lattice models: ✓
- (4.) Get **MFL** (i.e. $\Delta = 1$) with stringy embedding: \checkmark \rightarrow superpartner of half-integer Δ bosonic operator.

Pirsa: 11040083 Page 65/81

Beyond holography?

So far we found these results in the probe regime $N \gg N_f$, neglecting $O(N_f/N)$ effects.

Question: do we need the probe/holographic limits to get MFL?

Pirsa: 11040083 Page 66/81

Beyond holography?

So far we found these results in the probe regime $N \gg N_f$, neglecting $O(N_f/N)$ effects.

Question: do we need the probe/holographic limits to get MFL?

Two ways to answer: (work in progress)

In field theory, use non-renorm. thms plus IR dual

② In holography, consider Veneziano limit $N_f/N \sim O(1)$.

Pirsa: 11040083 Page 67/81

Dual description: ABJM

IR fixed point of $\mathcal{N}=8$ SYM also described by ABJM at k=1.

- Recall: $\mathcal{N} = 6 \ U(N)_k \times U(N)_{-k}$ Chern-Simons matter theory
- SUSY enhanced to $\mathcal{N}=8$ for k=1,2.
- Matter: A_i , B_i ; SO(6) R-symmetry also rotates A's, B's

Engineer ABJM with IIB brane setup: [Hanany, Witten], [ABJM]

- N D3s along 0126
- NS along 012345
- (1, k) along $012[3, 7]_{\theta}[4, 8]_{\theta}[5, 9]_{\theta}$
- 6 direction compact

Lifts to N M2s probing $\mathbb{C}^4/\mathbb{Z}_k \to \mathbb{C}^4$ for k=1.

Beyond holography?

So far we found these results in the probe regime $N \gg N_f$, neglecting $O(N_f/N)$ effects.

Question: do we need the probe/holographic limits to get MFL?

Two ways to answer: (work in progress)

In field theory, use non-renorm. thms plus IR dual

② In holography, consider Veneziano limit $N_f/N \sim O(1)$.

Pirsa: 11040083 Page 69/81

Dual description: ABJM

IR fixed point of $\mathcal{N}=8$ SYM also described by ABJM at k=1.

- Recall: $\mathcal{N}=6$ $U(N)_k \times U(N)_{-k}$ Chern-Simons matter theory
- SUSY enhanced to $\mathcal{N}=8$ for k=1,2.
- Matter: A_i , B_i ; SO(6) R-symmetry also rotates A's, B's

Engineer ABJM with IIB brane setup: [Hanany, Witten], [ABJM]

- N D3s along 0126
- NS along 012345
- (1, k) along $012[3, 7]_{\theta}[4, 8]_{\theta}[5, 9]_{\theta}$
- 6 direction compact

Lifts to N M2s probing $\mathbb{C}^4/\mathbb{Z}_k \to \mathbb{C}^4$ for k=1.

Pirsa: 11040083 Page 70/81

Many ways to add flavour to ABJM. M2/M2: [Ammon, et al].

- In IIB, add N_f D3s along 0346.
- D3s split on NS, (1, k): add flavour to both U(N)s.
- k = 1, $N \gg 1$: lifts to M2 probes on $AdS_4 \times \mathbb{S}^7$ same embedding studied above.

Manifest global symmetry of ABJM: $SU(4) \times U(1)$.

 \rightarrow M2 probe preserves $SU(2) \times U(1) \times U(1) \times U(1)_{12}$.

Pirsa: 11040083 Page 71/81

Dual description: ABJM

IR fixed point of $\mathcal{N}=8$ SYM also described by ABJM at k=1.

- Recall: $\mathcal{N} = 6 \ U(N)_k \times U(N)_{-k}$ Chern-Simons matter theory
- SUSY enhanced to $\mathcal{N}=8$ for k=1,2.
- Matter: A_i , B_i ; SO(6) R-symmetry also rotates A's, B's

Engineer ABJM with IIB brane setup: [Hanany, Witten], [ABJM]

- N D3s along 0126
- NS along 012345
- (1, k) along $012[3, 7]_{\theta}[4, 8]_{\theta}[5, 9]_{\theta}$
- 6 direction compact

Lifts to N M2s probing $\mathbb{C}^4/\mathbb{Z}_k \to \mathbb{C}^4$ for k=1.

Pirsa: 11040083 Page 72/81

Many ways to add flavour to ABJM. M2/M2: [Ammon, et al].

- In IIB, add N_f D3s along 0346.
- D3s split on NS, (1, k): add flavour to both U(N)s.
- k = 1, $N \gg 1$: lifts to M2 probes on $AdS_4 \times \mathbb{S}^7$ same embedding studied above.

Manifest global symmetry of ABJM: $SU(4) \times U(1)$.

 \rightarrow M2 probe preserves $SU(2) \times U(1) \times U(1) \times U(1)_{12}$.

Pirsa: 11040083 Page 73/81

Many ways to add flavour to ABJM. M2/M2: [Ammon, et al].

- In IIB, add N_f D3s along 0346.
- D3s split on NS, (1, k): add flavour to both U(N)s.
- k = 1, $N \gg 1$: lifts to M2 probes on $AdS_4 \times \mathbb{S}^7$ same embedding studied above.

Manifest global symmetry of ABJM: $SU(4) \times U(1)$.

- \rightarrow M2 probe preserves $SU(2) \times U(1) \times U(1) \times U(1)_{12}$.
- \rightarrow Enhanced to $SO(6) \times U(1) \times U(1)_{12}$ for k = 1.

Pirsa: 11040083 Page 74/81

Many ways to add flavour to ABJM. M2/M2: [Ammon, et al].

- In IIB, add N_f D3s along 0346.
- D3s split on NS, (1, k): add flavour to both U(N)s.
- k = 1, $N \gg 1$: lifts to M2 probes on $AdS_4 \times \mathbb{S}^7$ same embedding studied above.

Manifest global symmetry of ABJM: $SU(4) \times U(1)$.

- \rightarrow M2 probe preserves $SU(2) \times U(1) \times U(1) \times U(1)_{12}$.
- \rightarrow Enhanced to $SO(6) \times U(1) \times U(1)_{12}$ for k = 1.

ADVANTAGES: ABJM description gives extra "knob", k. Also: CSM useful to describe IR dynamics.

Pirsa: 11040083 Page 75/81

Operator spectrum, fermions

In M-theory and probe limits $(N \gg 1, k^5 \ll N, N_f \sim O(1))$, bosonic spectrum:

 \rightarrow slipping modes decompose as $\textbf{2}_0\oplus \textbf{1}_{+1/2}\oplus \textbf{1}_{-1/2}\oplus 2\times \textbf{1}_0$

field	SU(2)	$U(1)_{\psi}$	$U(1)_{34}$	$U(1)_{12}$	Δ
W±	1	0	1	±1	$\frac{1}{2} - 1$
ξί	2	0	1	0	$\frac{1}{2} + \frac{1}{2}$
ψ_{\pm}	1	$\pm \frac{1}{2}$	1	0	$\frac{7}{2} + \frac{1}{2}$
θ_i	1	0	1	0	$\frac{7}{2} + \frac{1}{2}$

i.e. spectrum k-independent.

Candidates: $\sim \bar{\psi}_1 A_1 (A_2 B_2)^{h_1} \psi_2 + \dots, \ \bar{\psi}_1 A_1 B_2 (A_2 B_2)^{h_2} \psi_1 + \dots$ \rightarrow Consistent with **free field dimensions**.

Get $\Delta = 1$ fermion for all k, $\bar{\psi}_1 A_1 \partial_t q_2 + \dots$

IIA description

Also get holographic description for $k^5 \gg N$, $N/k \gg 1$:

- IIA strings on $AdS_4 \times \mathbb{CP}^3$
- M2 probes \to D2 probes wrapping AdS₂ \times S¹

Same spectrum as for M-theory limit!

Pirsa: 11040083 Page 77/81

IIA description

Also get holographic description for $k^5 \gg N$, $N/k \gg 1$:

- IIA strings on $AdS_4 \times \mathbb{CP}^3$
- M2 probes \rightarrow D2 probes wrapping AdS₂ \times S¹

Same spectrum as for M-theory limit!

NOTE: Gauge field mixes with slipping mode; these are the θ_i .

Pirsa: 11040083 Page 78/81

Remaining questions

Lots of interesting questions to answer:

- Do lattice d.o.f. induce local criticality for bulk fields?
- ② Alternatively, does the IR theory flow to z = 1?
- **3** What does bulk geometry look like for $N_f \sim N$?
- ① Does $k \gg N$ theory yield a weakly coupled MFL?

Pirsa: 11040083 Page 79/81

Remaining questions

Lots of interesting questions to answer:

- Do lattice d.o.f. induce local criticality for bulk fields?
- ② Alternatively, does the IR theory flow to z = 1?
- 3 What does bulk geometry look like for $N_f \sim N$?
- ① Does $k \gg N$ theory yield a weakly coupled MFL?

Today, we looked at holographic lattice models which give (among other things)

- New holographic NFL phases
- Lagrangian description of MFL
- NFL/FL transitions
- Stabilize AdS₂ with SUSY (in probe limit)

Pirsa: 11040083 Page 80/81

Thank you!