Title: Thick-wall tunneling in a piecewise linear and quadratic potential

Date: Apr 19, 2011 02:00 PM

URL: http://pirsa.org/11040082

Abstract: After reviewing the basics of Coleman deLuccia tunneling, especially in the thin-wall limit, I discuss an (almost) exact tunneling solution in a piecewise linear and quadratic potential. A comparison with the exact solution for a piecewise linear potential demonstrates the dependence of the tunneling rate on the exact shape of the potential.

Finally, I will mention applications when determining initial conditions for inflation in the landscape. Based on arXiv:1102.4742 [hep-th].

Pirsa: 11040082 Page 1/35

Thick wall tunneling in a piecewise linear and quadratic potential

Pascal M. Vaudrevange in collaboration with Koushik Dutta and Alexander Westphal

arXiv:1102.4742 [hep-th]

Outline

Motivation

Review of CdL tunneling

Piecewise linear and quadratic potential

Conclusions and Outlook

Motivation

What does String Theory predict for r?

Motivation

- large field models (detectable gravity waves)
- small field models (undetectable gravity waves)
- relative frequency of potentials of either shape
- populating the initial condition
- ignore measure problem
- best observations will be able to detect $r \approx 0.01$
- ▶ Lyth bound $\Delta \phi > \sqrt{r\Delta N} M_P$

Toy model

- initial velocity zero
- slowly accelerating
- entering the inflection part with finite speed
- ▶ sufficient inflation $\Delta N > 60$

CdL tunneling Coleman (1977), Coleman, De Luccia (1980)

- Tunnel rate per unit volume: $\frac{\Gamma}{V} = Ae^{-B}$
- calculate $B = S_E(\phi_B) S_E(\phi_+)$
- \triangleright O(4) symmetric bounce ϕ_B minimizes Euclidean action

$$S_E = 2\pi^2 \int_0^\infty dr \, r^3 \left(\frac{1}{2} \phi'^2 + V(\phi) \right)$$

CdL tunneling

► Eom

$$\phi'' + \frac{3}{r}\phi' - \partial_{\phi}V = 0$$

 Exactly solvable for special case of linear potential (Duncan and Jensen, 1992)

- ▶ In the limit of $\epsilon = V_- V_+ \rightarrow 0$ no need to solve eom
- Instead

$$B = \frac{27\pi^2}{2} \frac{S_1^4}{\epsilon}, \quad S_1 = \int_{\phi_-}^{\phi_+} d\phi \sqrt{2(V(\phi) - V(\phi_+))}$$

- ▶ Tunnling process $\phi_+ \rightarrow \phi_0 \approx \phi_-$
- ▶ $\partial_r B|_{r=R_T} = 0$ ⇒ bubble radius $R_T = 3\frac{S_1}{\epsilon}$

CdL tunneling

► Eom

$$\phi'' + \frac{3}{r}\phi' - \partial_{\phi}V = 0$$

 Exactly solvable for special case of linear potential (Duncan and Jensen, 1992)

- ▶ In the limit of $\epsilon = V_- V_+ \rightarrow 0$ no need to solve eom
- Instead

$$B = \frac{27\pi^2}{2} \frac{S_1^4}{\epsilon}, \quad S_1 = \int_{\phi_-}^{\phi_+} d\phi \sqrt{2(V(\phi) - V(\phi_+))}$$

- ▶ Tunnling process $\phi_+ \rightarrow \phi_0 \approx \phi_-$
- ▶ $\partial_r B|_{r=R_T} = 0$ ⇒ bubble radius $R_T = 3\frac{S_1}{\epsilon}$

$$\epsilon = V_{+} - V_{-}, \qquad V = V_{0} + O(\epsilon)$$

$$\phi'' + \frac{3}{r}\phi' - \partial_{\phi}V = 0 \quad \rightarrow \quad \phi'' = \partial_{\phi}V_{0}$$

- Away from the wall: $\phi' = 0$
- At the wall: $r \gg \phi'$
- ▶ neglecting friction ⇒ energy conservation

$$\frac{1}{2}\phi'^2 - V_0 = \text{const} = V_{\pm}$$

Inside the bubble

$$B_{\text{in}} = 2\pi^2 \int_0^{R_T} dr \, r^3 (V_- - V_+) = \frac{\pi^2}{2} R_T^4 (V_- - V_+) = -\frac{\pi^2}{2} R_T^4 \epsilon$$

Within the wall

$$B_{\text{wall}} = 2\pi^{2} \int_{R_{T} - \Delta r}^{R_{T} + \Delta r} dr \, r^{3} \left(\frac{1}{2} \phi'^{2} + V_{0}(\phi) - V_{0}(\phi_{+}) \right)$$

$$= 2\pi^{2} R_{T}^{3} \int_{\phi_{-}}^{\phi_{+}} d\phi \, \frac{1}{\phi'} 2 \left(V_{0} - V_{0}(\phi_{+}) \right)$$

$$= 2\pi^{2} R_{T}^{3} \int_{\phi_{-}}^{\phi_{+}} d\phi \, \sqrt{2 \left(V_{0} - V_{0}(\phi_{+}) \right)}$$

$$= 2\pi^{2} R_{T}^{3} \int_{\phi_{-}}^{\phi_{+}} d\phi \, \sqrt{2 \left(V_{0} - V_{0}(\phi_{+}) \right)}$$

➤ Outside of the bubble B_{out} = 0

$$\Rightarrow$$
 tunneling amplitude $B = 2\pi^2 R_T^3 S_1 - \frac{\pi^2}{2} R_T^4 \epsilon = \frac{27\pi^2}{2} S_1^4$

Piecewise linear and quadratic potential

Piecewise potential

$$V = \begin{cases} \frac{m^2}{2} \phi_-^2 + V_0 + \lambda_+ \phi, & \phi < 0 \\ \frac{m^2}{2} (\phi - \phi_-)^2 + V_0, & \phi > 0 \end{cases}$$

boundary conditions

$$\phi_R(0) = \phi_0 > 0, \phi'_R(0) = 0, \phi_L(R_+) = \phi_+, \phi'_L(R_+) = 0$$

eom

$$\phi'' + \frac{3}{2}\phi' - \partial_{\phi}V = 0$$

Comment on numerics

- ideally: start integrating inwards from φ₊, run until field stops
- but: limited numerical precision
- \Rightarrow integrate from ϕ_0 , searching trajectory that ends at ϕ_+
 - Mathematica package

```
Needs ['tunnel']; tunnel 'SetStartStop[0, 10^8]; tunnel 'SetVprime[Vp]; tunnel 'ComputeSolution[\phi_m, \phi_+];
```


Other exact solutions

Hamazaki Sasaki Tanaka Yamamoto (1995), Pastras (2011)

- Duncan and Jensen: really exact, no approximations necessary
- Hamazaki et al, Pastras: B in terms of R_T

Strategy

- Solve eom for the left and right part of the potential
- Observe boundary conditions:
 - ▶ Bubble nucleates at $\phi_R(0) = \phi_0$ at rest $\phi_R'(0) = 0$ (subsequently starts rolling)
 - False Vacuum outside of the bubble R₊ > R_T,
 φ_L(r > R₊) =const, φ'_L(r > R₊) = 0
- ▶ Match solutions at $\phi(R_T) = 0$
- Integrate the action for the solutions ⇒ B

Piecewise linear and quadratic potential

Piecewise potential

$$V = \begin{cases} \frac{m^2}{2}\phi_-^2 + V_0 + \lambda_+\phi, & \phi < 0\\ \frac{m^2}{2}(\phi - \phi_-)^2 + V_0, & \phi > 0 \end{cases}$$

boundary conditions

$$\phi_R(0) = \phi_0 > 0, \phi'_R(0) = 0, \phi_L(R_+) = \phi_+, \phi'_L(R_+) = 0$$

eom

$$\phi'' + \frac{3}{2}\phi' - \partial_{\phi}V = 0$$

Comment on numerics

- ideally: start integrating inwards from ϕ_+ , run until field stops
- but: limited numerical precision
- \Rightarrow integrate from ϕ_0 , searching trajectory that ends at ϕ_+
 - Mathematica package

```
Needs ['tunnel']; tunnel 'SetStartStop[0, 10^8]; tunnel 'SetVprime[Vp]; tunnel 'ComputeSolution[\phi_m, \phi_+];
```


Comment on numerics

- ideally: start integrating inwards from ϕ_+ , run until field stops
- but: limited numerical precision
- \Rightarrow integrate from ϕ_0 , searching trajectory that ends at ϕ_+
 - Mathematica package

```
Needs ['tunnel']; tunnel 'SetStartStop[0,10^8]; tunnel 'SetVprime[Vp]; tunnel 'ComputeSolution[\phi_m, \phi_+];
```


Other exact solutions

Hamazaki Sasaki Tanaka Yamamoto (1995), Pastras (2011)

- Duncan and Jensen: really exact, no approximations necessary
- Hamazaki et al, Pastras: B in terms of R_T

Strategy

- Solve eom for the left and right part of the potential
- Observe boundary conditions:
 - ▶ Bubble nucleates at $\phi_R(0) = \phi_0$ at rest $\phi_R'(0) = 0$ (subsequently starts rolling)
 - False Vacuum outside of the bubble R₊ > R_T,
 φ_L(r > R₊) = const, φ'_L(r > R₊) = 0
- ▶ Match solutions at $\phi(R_T) = 0$
- Integrate the action for the solutions ⇒ B

Piecewise linear and quadratic potential II

can solve eom exactly for both pieces

$$\phi_R = \phi_- + 2(\phi_0 - \phi_-) \frac{I_1(mr)}{mr}, \quad \phi_L = \phi_+ + \frac{\lambda_+}{8r^2} (r^2 - R_+^2)^2$$

- ightharpoonup r is O(4) symmetric initial radius of the bubble
- need to determine R_+ , ϕ_0 by matching conditions for $\phi_L(R_T) = \phi_R(R_T) = 0$, $\phi_L'(R_T) = \phi_R'(R_T)$

Action as a function of nucleation radius

 \triangleright compute B as a function of the tunneling radius R_T exactly

$$B = 2\pi^{2}\phi_{-}^{2}R_{T}^{2}\left[\alpha^{2} + \frac{1}{2}\left(\frac{4}{3}\alpha\sqrt{\Delta} + \frac{l_{2}(mR_{T})}{l_{1}(mR_{T})}\right)mR_{T} - \frac{1-\Delta}{8}m^{2}R_{T}^{2}\right]$$

with

$$\alpha = -\frac{\phi_+}{\phi_-}, \Delta = \frac{-2\lambda\phi_+}{m^2\phi_-^2}$$

► R_T from

$$2\alpha + \sqrt{\Delta} mR_T = mR_T \frac{l_2(mR_T)}{l_1(mR_T)}$$

- $ightharpoonup R_T$ not from $\partial_r B|_{R_T} = 0$
- ▶ take limits $mR_T \gg 1$, $mR_T \ll 1$

What are α , Δ ?

- ▶ variables: $\lambda_+ \Rightarrow \Delta$, $\phi_+ \Rightarrow \alpha$
- ▶ plus: m, φ_
- for fixed m, ϕ_- : $\alpha \Rightarrow$ width (in field space) of the potential

large mR_T

$$\alpha = 0.5, \Delta = 0.9, mR_T = 49$$

$$2\alpha + \sqrt{\Delta} mR_T = mR_T \frac{I_2(mR_T)}{I_1(mR_T)} \approx mR_T - \frac{3}{2}$$

$$mR_T \approx \frac{3+4\alpha}{2} \frac{1}{1-\sqrt{\Delta}} \xrightarrow{\epsilon \to 0} \frac{(3+4\alpha)m^2\phi_-^2}{2\epsilon}$$

$$\phi_0 \approx \phi_- \left(1 - \sqrt{\frac{\pi}{2}} (mR_T)^{3/2} e^{-mR_T}\right)$$

$$B \approx \frac{\phi_{-}^2}{m^2} \times f(\alpha, \Delta) = \frac{\pi^2}{96c^3} m^4 \phi_{-}^8 (3 + 4\alpha)^4 = \frac{27\pi^2}{3c^3} S_1^4$$

large mR_T

$$\alpha = 0.5, \Delta = 0.9, mR_T = 49$$

- $\rightarrow \frac{\phi_{-}}{m}$ sets the scale of B
- ▶ agreement with thin-wall if $\Delta \rightarrow 1$ or equivalently $\epsilon \rightarrow 0$
- ▶ Non-thin wall $\Delta \ll 1$, $\alpha \gg 0 \Rightarrow mR_T \gg 1$

large mR_T – Non-Thin wall

$$\alpha = 5, \Delta = 0.5, mR_T = 39$$

▶ large R_T was crucial for thin-wall approximation

small mRT

$$\alpha = 10^{-2}, \Delta = 10^{-5}, mR_T = 0.3$$

$$2\alpha + \sqrt{\Delta} mR_T = mR_T \frac{I_2(mR_T)}{I_1(mR_T)} \approx \frac{1}{4} m^2 R_T^2$$

$$mR_T \approx 2(\sqrt{\Delta} + \sqrt{2\alpha + \Delta}), \quad \phi_0 \approx \phi_- \left(1 + \frac{8}{mR_T}\right)^{-1}$$

$$B \approx \frac{16\pi^2}{3} \frac{\phi_-^2}{m^2} (2\alpha + \Delta)$$

$$\times \left[(\alpha + \Delta)^2 + \Delta^2 \left(1 + \frac{2\alpha}{\Delta} \right) \left(1 + \sqrt{1 + \frac{2\alpha}{\Delta}} \right) \right]$$

small mR_T

$$\alpha = 10^{-2}, \Delta = 10^{-5}, mR_T = 0.3$$

- agreement with DJ
 - $MR_T = 2(\sqrt{\Delta} + \sqrt{2\alpha + \Delta})$
 - B agrees to order 6 in R_T
- ▶ B scales as $\frac{\phi^2}{m^2}$ just like the large mR_T case

Intermediate mR_T I

$$\alpha = 0.01, \Delta = 10^{-5}, \textit{mR}_{T} = 0.30, \textit{mR}_{T}^{\text{small}} = 0.30, \textit{mR}_{T}^{\text{large}} = 1.5$$

$$\alpha = 0.1, \Delta = 10^{-5}, mR_T = 0.93, mR_T^{\text{small}} = 0.91, mR_T^{\text{large}} = 1.7$$

Intermediate mR_T II

- numerical solution easy: algebraic equation instead of differential equation
- ➤ Combination of large and small mR_T limits is not too bad:

Comparsion with thin wall and DJ

	mR_T	Bexact	B_{DJ}	$B_{thin-wall}$
$\alpha = 0.01$	0.6	0.0023	0.0022	72.4
$\alpha = 0.1$	1.2	0.3	0.04	113.3
$\alpha = 0.5$	2.5	23.9	0.6	529.8

- ▶ All values for $\Delta = 0.01$
- Regions where neither thin wall nor the linear approximation holds

Inclusion of gravity

Parke (1981)

$$\eta_- = \frac{m^2}{V_-}$$

- only in thin wall limit
- idea: pull of dS from outside vs pull of dS from inside ⇒ smaller B
- gravitational correction stronger for wider barrier in field space

Conclusions and Outlook

- exact tunneling amplitude B in terms of R_T
- ► R_T from
 - solving algebraic equation
 - analytic approximation (with < 50% errors for B)
- populating initial conditions for inflation
- ► TODO:
 - include gravity
 - determine the length of inflation
 - estimate the relative frequency of both types of notentials.

