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Abstract: After reviewing the basics of Coleman del uccia tunneling, especialy in the thin-wall limit, I discuss an (almost) exact tunneling solution
in a piecewise linear and quadratic potential. A comparison with the exact solution for a piecewise linear potential demonstrates the dependence of
the tunneling rate on the exact shape of the potential.

Finally, I will mention applications when determining initial conditions for inflation in the landscape. Based on arXiv:1102.4742 [hep-th].
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Motivation

What does String Theory predict for r?



Motivation

» large field models (detectable gravity waves)

A J

small field models (undetectable gravity waves)

» relative frequency of potentials of either shape

» populating the initial condition

» ignore measure problem

» best observations will be able to detect r ~ 0.01

» Lyth bound Aé > VrANMs 2



Toy model

initial velocity zero

slowly accelerating

entering the inflection part with finite speed
sufficient infiation AN > 60




Cdl_ tUﬂr"e“ﬂg oleman (1977), Coleman. De Lucta (1980

. [
> Tunnel rate per unit volume: - = Ae®

» calculate B = SE(JE) = SEl:fj-_ )
» O(4) symmetric bounce og minimizes Euclidean action

H"l.

“arr ( ;-;;-’2 +V(9) |
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CdL tunneling

Potential - Inverted Potential

o

» Eom a
¢ +—¢ —a,;V =0
r
» Exactly solvable for special case of linear potential (Duncan

and Jensen. 1992)




Thin wall approximation

» |n the limit of e = V_ — V. — 0 no need to solve eom
» Instead

2712 S; i s ,\ §
. 51:/ dov/2(V(9) — V(¢+))

» Tunnling process 0. — og = 06—
> 0rB|,—g, = 0 = bubble radius Ay =32 3



CdL tunneling

Potential Inverted Potential

o

» Eom
3

0" +—-0 —0zV=0
r
» Exactly solvable for special case of linear potential (Duncan

and Jensen, 1992)




Thin wall approximation

» In the limit of e = V_ — V.. — 0 no need to solve eom
» Instead

2 4 0
e %_ St = / do/2(V(9) - V(e-))

» [unnling process o+ — g = 60—
> 9,B|,_5. = 0 = bubble radius Ay =32




Thin wall approximation

e= V.-V V=V + Ole)

' 3 r e i .
o +—0 —0V=0 - ¢ =08,
r

» Away from the wall: ' =0
» Atthe wall: r > ¢’
» neglecting friction = energy conservation

1
5::1’2 — Vp=const= .



Thin wall approximation

» |nside the bubble

rH
B, = 2:2 /

- - o
arr(V_o—V.)=—RHV -V.)= —R3
Jo 2 2"

» Within the wall

Br+Ar 1, ~
By = 22 / drr® 562+ Vo(s) - Va(6) |
JHr—Ar _ /

2% RS / do —2 (Vo — Vo(0-))

o (T}

22 [ do/2(Vo — Vilo))

Ny

o

St

» Qutside of the bubble B,,; =0
— tunneling amplitude B = 2-2R3S; — T R4«




Plecewise linear and quadratic potential

» Plecewise potential

I T2 +Vo+ A6, 0<0

=< 5 2
| Z(o-02+ W, 6>0
» boundary conditions

or(0) = g > 0.0;5(0) =0.9y(R.) = 0+.0)(R.) =0

> €0

3 _
o' +—d —a,V =0 .8



Comment on numerics

» ideally: start integrating inwards from o_., run until field
stops
» but: limited numerical precision
= Integrate from oy, searching trajectory that ends at o
» Mathematica package

\ 1 T -




Other exact solutions

Duncan Jensen (1392) Hamarz=ki Sasaki Tanaka Yamamaoto (1995]), Pasiras (2011

» Duncan and Jensen: really exact, no approximations
necessary

» Hamazaki et al, Pastras: B in terms of Hr




Strategy

@,

» Solve eom for the left and right part of the potential

» Observe boundary conditions:
» Bubble nucleates at 05(0) = og at rest 0j5(0) =0
(subsequently starts rolling)
» False Vacuum outside of the bubble A. > Hr.
3 (r > R.) =const, ¢, (r > A.) =0

» Match solutions at o(Ar) =0
» Integrate the action for the solutions = B




Plecewise linear and quadratic potential

» Piecewise potential

V= I %?f;}g_ 2 3 V{} +Ag, 0<0
g o ¥ L
1 3 (f_} u_) V[j . 0>0
» boundary conditions
05(0) = dg > 0.05(0) =0.9,(A.) = 0..0)(R.) =0

> S0

=
r.’_"*” +—— V=0 2



Comment on numerics

» ideally: start integrating inwards from o, run until field
stops
but: limited numerical precision
= integrate from oy, searching trajectory that ends at ¢
afica package




Comment on numerics

» ideally: start integrating inwards from o_., run until field
stops
» but: limited numerical precision
= Integrate from oy, searching rajectory that ends at ¢
atica package




Other exact solutions

Duncan Jensen (1392) Hamazzki Sasaki Tanaka Yamamoto (1995), Pastras (2011

» Duncan and Jensen: really exact, no approximations
necessary

» Hamazaki et al, Pastras: B in terms of Hr




Strategy

@

» Solve eom for the left and right part of the potential

» Observe boundary conditions:
> Bubble nucleates at 0g(0) = ¢g at rest 05(0) =0
(subsequently starts rolling)
» False Vacuum outside of the bubble A. > Hr.
3 (r > R.) =const, ¢} (r > A.) =0

L

» Maich solutions at o(Rr) =0
» Integrate the action for the solutions = B




Plecewise linear and quadratic potential ||

&,

» can solve eom exactly for both pieces

_ N’
og=9¢_+ 2[;;‘:-,3 —0_) - -
mr
» ris O(4) symmeiric initial radius of the bubble

» need to determine A. . oy by matching conditions for
oL(Ar) = oa(Ar) =0,¢,(Ar) = dx(Rr)




Action as a function of nucleation radius

» compute B as a function of the tunneling radius A7 exactly

1/4 —~ b(mAr))
g = 2I. D Hr 0 —2(3.1‘15 Mmﬁﬂr-) mﬁ‘r

— A 1
—mzﬁ%

0 i 2\(_) n
A

=

2 2
Q_ meo~

» Hr from
lb(mAr)

2a +VAmR; = mR
o — v AMm m rh("ﬂﬁr)

» Hrnotirom d,Blg. =0
» take limits mAT > 1. mAT < 1




What are a.. A?

» variables: \. = A, 0. =a
» plus: m.o_
» for fixed m, o_: a = width (in field space) of the potential

lharrmar A 2 ralatnmm okt AF #Ha mimima




large mAr

= .r_"f :
bz 0

a=05,A =09 mRy = 49

b(mAr) o 3

20+ VAMA; = mA
e mTumH,a 2

3+4a 1 o (3+4a)mPe”

Hy =~ — —
o 2 1-VA %
by = ,_.~__(1 .. \El(mH ]3 2 —mAr
t"_"fz_ ~2 2772
B~ SxfeA)=oem'®@+4a)'=20S =




large mAr

—

|ﬂr_' 0

a=05A=09 mAr =49
» = sets the scale of B

» agreement with thin-wall if A — 1 or equivalently e — 0
» Non-thinwall A< 1.a> 0= mAr > 1




large mAT — Non-Thin wall

.

és 0

a=5A=05 mAr =39
» large At was crucial for thin-wall approximation

| 4




small mA+
.9

g——

i i) h ) R T R.

a=10"2A=10".mAr =0.3

h(mRr) 1

200+ EmFET = MAT h (mAy)
I

2(VA+v2a+ D),

1672 ¢°
. ;—quu—a}

| . 20\ | | 20 -
-+ A & A2 o T S
(a+A)"+A (1 r ) (1 \ 1 A ) 3

rJ



small mRr

._‘_1———_

a=10"2A=10"mAr =03
» agreement with DJ
» MAT = 2'(& E ++/2a + ﬁ‘;)
» B agrees to order 6 in At

» Bscales as ;;— just like the large mA7 case




Intermediate mA |

v. @

ki

a=01.A=10"2. mARr =093.mAsa — 091 mRZ%* =17



Intermediate mR+ |l

zm\1—\1—% . A< (08a-05)

~ i
ool
A
P

(0.8 — 0.5 < A

1A’

» numerical solution easy: algebraic equation instead of
differential equation

» Combination of large and small mAy limits is not too bad:

nnnnn O e FY el -~ e B T



Comparsion with thin wall and DJ

MAT Beae Bpy

~=001 06 00023 0.0022
a=~0.1 1.2 0.3 0.04
a=05 25 239 06

» All values for A =0.01

» Regions where neither thin wall nor the linear
approximation holds



Inclusion of gravity

i M

; :I
» only in thin wall limi

» idea: pull of dS from outside vs pull of dS from inside =
smaller B

» gravitational correction stronger for wider barrier in field
space 2



Conclusions and Qutlook

» exact tunneling amplitude B in terms of Ar
> Fﬁ' from

» Solving algebraic equation

» analytic approximation (with < 50% errors for B)
» populating initial conditons for inflation
» TODO:

> include gravity

» determine the length of inflation
» actimata tha ralativa framianery nf hinth unoe Af natantale ‘8"



