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Abstract: Various self-similar spherically symmetric spacetimes admit naked singularities, providing a challenge to the cosmic censorship
hypothesis. However, it is not clear if the naked singularities are artefacts of the high degree of symmetry of the spacetimes, or if they are potentially
generically present. To address this question, we consider perturbations of (various cases of) these spacetimes, focusing particularly on the
behaviour of the perturbations as they impinge on the Cauchy horizon. We describe recent results on self-similar Lemaitre-Tolman-Bondi
spacetime, indicating stability of scalar and odd parity perturbations, and instability of even parity perturbations.
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Outline

e Gravitational collapse and the cosmic censorship hypothesis.

e Spherically symmetric self-similar space-times: definition,
geometric and physical properties.
e | TB space-time

e Perturbations:

e scalar field;
e odd parity perturbations;
e even parity perturbations

e Conclusions and comments.

Joint work with Emily Duffy and Thomas Waters.
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Gravitational collapse and singularties.

e Singularities inevitably form in gravitational collapse.

e Standard picture: Instability, implosion, horizon, singularity.
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Collapse to a naked singularity

e However, gravitational collapse may result in a naked
singularity, causing problems:

e | ack of predictability of Einstein equations.
e Emission of arbitrary information/energy from the singularity.
e Note the presence of a Cauchy horizon: the first light ray that
emerges from the naked singularity.
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Cosmic censorship

e Penrose 1969: Nature abhors a naked singularity.

¢ Weak cosmic censorship hypothesis: In generic situations,

gravitational collapse from a regular initial configuration leads
to the formation of a black hole.

e Strong CCH: In generic situations, gravitational collapse from

a regular initial configuration cannot lead to the formation of
a naked singularity.

e Conditions on the matter are also assumed (energy condition,
Lagrangian fields, singularity-free in flat space-time).
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Examples of naked singularities

e Numerous examples of naked singularity formation have been

found:

Charged and/or rotating black hole interiors;
Self-similar perfect fluid collapse;
Self-similar scalar field collapse;

Shell-focussing/shell-crossing singularities in dust;

Critical solutions at threshold of BH formation.

e Q. How does the censor deal with these?

e A. Look for instabilities, particularly at the Cauchy horizon.
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Examples of Cauchy horizon/naked singularity instability

e Charged /rotating black holes

e Penrose 1969: On crossing the Cauchy horizon, an observer
sees, in one final flash, the entire history of the external
universe — blue-shift instability.

e Penrose’s initial observation confirmed by increasingly
sophisticated and realistic analyses; cf. especially
Chandrasekhar and Hartle (1983), Poisson and Israel (1989),
Ori (1991) and Dafermos (2001).
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Spherical collapse of a scalar field. Data giving rise to NS are
unstable (Christodoulou 1999).

Black holes in de Sitter background (Brady, Moss and Myers,
1998).

Plane wave Cauchy horizons (Helliwell and Konkowski, 1997).

Compact Cauchy horizons are non-generic; Isenberg and

Moncrief (1983), Friedrichs, Racz and Wald (1999).
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Spherically symmetric self-similar spacetimes

e We consider space-times (M. g) which

e are spherically symmetric
e admit a homothetic Killing vector field

e satisfy the dominant energy condition
e satisfy certain regularity conditions.

e Using advanced Bondi co-ordinates, we can write

ds®> = —2GeYdv’> + 2e¥dvdr + r’dQ?

o G—G(x), v —Y(x) wherex—"; £ —v & i3

F -.

5
o

e Co-ordinate freedom: v — V/(v). Remove by taking v to be
proper time along the regular center r = 0.
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Spherically symmetric self-similar spacetimes

e We consider space-times (M. g) which

e are spherically symmetric
e admit a homothetic Killing vector field

e satisfy the dominant energy condition
e satisfy certain regularity conditions.

e Using advanced Bondi co-ordinates, we can write

ds’ — —2Ge¥ dv” L 2e¥ dvdr - r*dQ?

o G—G(x), v —(x) where x —; £ = v'j—ff - r,’:,

e Co-ordinate freedom: v — V/(v). Remove by taking v to be
proper time along the regular center r = 0.

Pirsa: 11040078 Page 15/62



Dominant energy condition
o

For every future-pointing timelike vZ,
° —Tgvb is non-spacelike and future-pointing;
o T o™ >0

e [his results in eg
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Regularity conditions | - differentiability.

e Metric and curvature are finite along the axis r =0 for v < 0.
These result in

1
im G—=—_—_, Im ¥v—=0

X——0 X——0

e {v =0} is the past null cone N of the scaling origin
O = {(v.r) =(0.0)}. We take G.v € C*(—2<.0].

e Except in the trivial case (flat space-time), there is a
curvature singularity at O.
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Regularity conditions |l - absence of trapped surfaces.

e Studying collapse from a regular initial configuration, so want
to rule out trapped surfaces in early stages.

e The 2-sphere (v.r) is trapped iff G(v/r) < 0. Thus we take

G(x) >0 forall x<(—oc.0].
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curvature singularity at O.
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Naked singularities

A necessary and sufficient condition for O to be naked is that there
exists a future directed outgoing radial null geodesic (ORNG) with
past endpoint O.

e O is naked iff there exists a positive root of
xG{x) —1.

e The first positive root (x.) of xG(x) = 1 is the Cauchy
horizon of the space-time.

o [he level surfaces of x are space-like for 0 < x < x..

e G'(x) <0 for 0 < x < xc.
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Naked singularities
A necessary and sufficient condition for @ to be naked is that there
exists a future directed outgoing radial null geodesic (ORNG) with
past endpoint O.

e O is naked iff there exists a positive root of

xG(x) = 1.

e The first positive root (x.) of xG(x) = 1 is the Cauchy
horizon of the space-time.

o [he level surfaces of x are space-like for 0 < x < x..

o &lx)<0f@<x<x.
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Global structure

Pirsa: 11040078 Page 23/62



Self-similar Vaidya space-time

e Thick shell of photons; Minkowski space-time inside the inner
radius, Schwarzschild space-time outside.

o Matter filled region:

m(v)

-

ds= = —(1 -2

)dvZ + 2dvdr + r*dQ°.

r

® Energy-StrEES-momentu m tensor:

o Self-similar: m(v) = Av.
e O is naked iff A £ (0.1/16).
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Global structure
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Global structure
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Self-similar Vaidya space-time

e Thick shell of photons; Minkowski space-time inside the inner
radius, Schwarzschild space-time outside.

e Matter filled region:
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| emaitre- Tolman-Bondi space-time

e Spherically symmetric dust filled space-time (73" = pu?u®).
> 9 RI L. > > Y
ds? — a2+ B0 o\ poey yag?
1+1f(r)

o SclEsamilbw: f{r) —O. R{E. r) —r(d =}/ . z—§fr

9 & I e — 3 = .
e O is naked iff 0 < K < K« e a5 AN = 0.638.
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Scalar waves

ree 110000s U — O+ 1S Tinite in the limit 7 — 7.

We consider minimally coupled, massless scalar field: [lo = 0.
After usual angular mode decomposition we get (p = log r)

aQ 12 :}r_‘.:_-,-p—‘* r_‘:_pp—(:_'t’—2 :_f)r_‘)_r—( 3 2 )f_‘ﬁ_p—i'({—l)r_‘r = (1)
Cauchy horizon isat T =7.; a = —-27(1 —7G) < 0 on

(0.7.); a(7.) =0.

Note that (1) is also satisfied by 0 ,. 0 ,,. ... (self-similarity
of the PDE).

Strategy: study evolution in 7 of different energy norms for o
to obtain H'? bounds, then apply Sobolev-type inequality to
obtain pointwise bounds.

L ocal energy: having obtained bounds on ¢ and its spatial
derivatives, integrate the transport equation (1) to show that
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| emaitre- Tolman-Bondi space-time

e Spherically symmetric dust filled space-time ( T3% = puu®).
- >, R(t. - - .
&2 g2y BN o g2 ao?
1+1(r)

o SelEsamibw- f{r) —0. R{&. r) —r(d - =272, ——ifr

J-] . I ) %L k- . — 3 — siim
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Scalar waves

e 110000s U = O+ 1S Tinite in the limit 7 — 7.

We consider minimally coupled, massless scalar field: [lo = 0.
After usual angular mode decomposition we get (p = log r)

AP 1200 +p+ 10 ppHa +28)é B +27)d p—€((+1)o =0 (1)
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Note that (1) is also satisfied by o ,. 0
of the PDE).
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to obtain H'-? bounds, then apply Sobolev-type inequality to
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op- - - - (self-similarity

L ocal energy: having obtained bounds on ¢ and its spatial
derivatives, integrate the transport equation (1) to show that
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Global structure
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Global structure
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Examples of Cauchy horizon/naked singularity instability

e Charged/rotating black holes

e Penrose 1969: On crossing the Cauchy horizon, an observer
sees, in one final flash, the entire history of the external
universe — blue-shift instability.

e Penrose’s initial observation confirmed by increasingly
sophisticated and realistic analyses; cf. especially
Chandrasekhar and Hartle (1983), Poisson and Israel (1989),
Ori (1991) and Dafermos (2001).

™
V4 3
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Global structure
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Scalar waves

e 110000s U — O+ 1S Tinite in the limit 7 — 7.

We consider minimally coupled, massless scalar field: [lo = 0.
After usual angular mode decomposition we get (p = logr)

O 2 jr_‘:_rp—‘* r_‘J_pp—(r_'tr—2 j—r')r_‘;_lr—( 3 24 )f_‘)_p—i ({—]_)r_‘r —§ (1)
Cauchy horizonisat T =7.; a = —27(1 —7G) < 0 on

(0.7); a(7.) =0.

Note that (1) is also satisfied by 0 ,. 0 ,,. ... (self-similarity
of the PDE).

Strategy: study evolution in 7 of different energy norms for o
to obtain H'? bounds, then apply Sobolev-type inequality to
obtain pointwise bounds.

L ocal energy: having obtained bounds on © and its spatial
derivatives, integrate the transport equation (1) to show that
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Step One

Rewrite (1) as a first order symmetric hyperbolic system, with the
Cauchy horizon moved out to t = :

Standard argument gives

e existence and uniqueness on [7;.7.) x R for smooth initial
data with compact support and

o E (1) < eP'E (0), where

B(0) = BIAM = [ 17Pdp
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Step Two

Introduce another energy integral

-

Ej(,-_) = Ez[r_‘;](,_) — [ —{) r_‘;.z.__ = S f_-_J.—}__J - ;(; b ].)E-_'L-r_'.iz dj."-

Key lemma: there exist 773 € (0.7.) and mg > 0, which depend
only on G. . f such that

ij:: < mgE. x € |m.7c)-
Then
Blol(7) < GEa|g](0). x € |7, 7]
and so

>

/ 0 (Te. p)| + |05, (<. p)| dp < GE[F](0) < . (1)
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Step Three

For each 7 € [17. 7). we can apply the Sobolev inequality

Taking a limit yields
r_'J(,_. ;_}) = < CgEl[f](O) T E [-r'_f'. '_Cl' p N,
Note: Existence of the function ©|chg can be proven using Lipschitz

property of o for 7 < 7.
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Notes

e H'-2 and pointwise bounds: These hold for all smooth initial
data with compact support. By applying the inequality to
sequences of such data and taking a limit, it also holds for
solutions with

o(1;) € H*(R). o.-(1;) € [AH(R).
® | ocal energy bound extends to

I = 3.2/ — P22 ey
r_)(.-_;) =H (itﬁ_). "-7_:—(1_.5) cH (_ﬁi).

e The same results hold for 0, = r*o, k € [0. k.) with 5. > 0
determined by G.v'. Thus © need not vanish at the origin. In
fact blow up of © at O may occur, but is not mediated to the

Cauchy horizon.

) = . B o
w10 17> and pointwise bounds also hold for minimally coupled ru s

maccive field



Step Three

For each 7 € [1;. 7). we can apply the Sobolev inequality

. a8 e e Jlra
f_'.!( B ‘;_}) jij = E / :_'J(,_, ;_}) T r_'J_r__—-,(._. J.‘_li) i d;,),
Taking a limit yields
f_'J(._, ‘;_}) 2 < C3E1[f](0) TE [_‘ '_c':]- p < R.
Note: Existence of the function ©|cg can be proven using Lipschitz

property of o, for 7 < 7.
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Notes

e H'-2 and pointwise bounds: These hold for all smooth initial
data with compact support. By applying the inequality to
sequences of such data and taking a limit, it also holds for
solutions with

o(t;) € HI'E(R). o-(17) € Lz(:{)
® | ocal energy bound extends to
o(ti) € H32(R). o..(mi) € H2(R).

e The same results hold for 0, = r*o, k € [0.k.) with . > 0
determined by G.v'. Thus © need not vanish at the origin. In
fact blow up of © at O may occur, but is not mediated to the

Cauchy horizon.

-y : = e
w10 17> and pointwise bounds also hold for minimally coupled rue

mAaccive field



Perturbations - Gerlach-Sengupta formalism

e Decompose non-spherical part of the perturbation into (scalar,
vector, tensor) harmonics £ = 0.1.....
hagY | e S thddSa

symm | rPK~v,5Y + r*GZ,; - hS,

\ |

e |dentify gauge invariant parts of the metric and matter
perturbations: tensor fields on the Lorentzian 2-space.

e Specify matter model: perturb within that model.

e Complete set of g.i. varniables exists for £ > 2; gauge fixing
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Gauge invariant variables

e Even parity perturbations:
metric: kag. k matter: Tag. Ta. T2. T°.
e Odd parity perturbations:

metric: kap matter: La. L.
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Perturbations - Gerlach-Sengupta formalism

e Decompose non-spherical part of the perturbation into (scalar,
vector, tensor) harmonics £ =0.1.....

|
( hagY | Y+ S,

symm | rPKv,5Y + r*GZ,; - hS,;

\ |

o |dentify gauge invariant parts of the metric and matter
perturbations: tensor fields on the Lorentzian 2-space.

e Specify matter model: perturb within that model.

e Complete set of g.i. variables exists for £ > 2; gauge fixing
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Gauge invariant variables

e Even parity perturbations:
metric: kag. k matter: Tag. Ta. T2. T°.
e Odd parity perturbations:

metric: kap matter: La. L.
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Odd-parity (axial) perturbations

e Problem reduces to an inhomogeneous self-similar wave
equation for a g.i. scalar I

e [he inhomogeneity is an initial data function.

e [1is both (i) a potential for the g.i. metric perturbation and
(i1) the gauge and tetrad invariant perturbation of the Weyl

scalar W>.

e Results for 1 as for © above (Vaidya and LTB).
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e For odd-parity, there is a full set of tetrad and gauge invariant
perturbed Weyl scalars, oW 4. A=0—4.

e These involve terms in (7)1 -

e Introduce null (characteristic) coordinates (U. V), with
Veg = 0. Wave equation reads

Myy + E(U. V)T = J.

and F is analytic on sufficiently small characteristic diamonds
with the Cauchy horizon on the N-W boundary.

e By work above, characteristic data on S-W and S-E
boundaries may be assumed continuous. Calculating
oW 4(U. V) shows that these are all finite at the Cauchy
horizon.

e Conclusion: odd-parity linear stability of the naked singularity
e 0a007e 11y self-similar Vaidya and LTB spacetime. Page 5362



Even parity (polar) perturbations of LTB.

Pirsa: 11040078

The g.i. treatment yields a first order symmetric hyperbolic
system in 5 dimensions with a (non-trivial) propagating
constraint.

Variable is & - metric, matter perturbations plus their time
derivatives.

System has the same general properties as the homogeneous
scalar case - coefficients are smooth, uniformly bounded but
with time derivatives of the form a(7)d-.

Existence, uniqueness on [7;. 7.) straightforward, along with
(exponentially growing) bound on the energy.
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Evolution equations

e [ hese have the form

(7 — 7c)0rw + D(7)dpw + A(T)w = 0.

with w € R>.
e D= D(7), A= A(7) analytic on [7;. 7], but A is problematic
(eigenvalues 04 -~ a3
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Results 1
e Take data w(7;) € (°(R.R>) = X.

e Define the blow-up condition

B:||w(t)|ljpg =< as 7—7. forall 1<p<x.

e Theorem 1: There is a subset Xg C X such that (i) solutions
with data in X satisfy the blow-up condition B and (ii)
X; = X \ Xg has codimension 1 in X.

e Theorem 2: There is an open dense subset of (X. || -|/;1) such

that all solutions with initial data in this set satisfy the
blow-up condition B.
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Proof-

e Study the behaviour of

w(T) = / w(T. p)dp.

which satisfies an ODE (singular at 7). The general solution
satisfies

W~ (Tc — T]_k:. e
e Generic blow-up of this quantity yields generic power-law
blow-up in [1 of w.

e Support spreads as In 7 — T,

» [P embedding:

w(7)||e < Vol[supp(w(7))])"? " 9||w||Lq

irsa: 11040078
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o Define u=%w.

e Apply previous methods to show that u remains finite at the
Cauchy horizon.

o However, this finite value might be zero...
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Results 2

o Define u =% w.

e Apply previous methods to show that u remains finite at the
Cauchy horizon.

o However, this finite value might be zero...

e [heorem 3: lt's not zero.
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Results 2

Pirsa: 11040078

_ K2

Define u = w.

Apply previous methods to show that u remains finite at the
Cauchy horizon.

However, this finite value might be zero...

Theorem 3: lt's not zero.

Theorem 3: There is an open dense subset Yy C Y such that
solutions with initial data in Yj satisfy

w(T)|j2 — as T — T¢

Furthermore, there is an interval | such that for all p =/,
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Note
Consider function

sin( tx
VX
and take its even extension to the real line. Then

(1) limg—g f(t.x) =0 for all x € R;

(ii) Jg f(t.x)dx = Vz—’""— x as t— 0.
Proof requires the construction of a Cauchy sequence of functions
fu(p) = x(7p- p) with 7, — 7. and use of [P completeness and the

dominated convergence theorem to show that x(7.. p) cannot

vanish everywhere.
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Conclusions and comments.

e QOverall, the Cauchy horizon of self-similar LTB space-time is
unstable to linear perturbations.

e Instability is found in the even parity sector and corresponds
to divergence of gauge invariant perturbed curvature scalars.
o Next: study perfect fluid space-times.

e [ry to address analytically the stability of the Cauchy horizon
in critical collapse space-times.

e | ikewise for the general relativistic Larson-Penston space-times
- numerically, attractors with a naked singularity.
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