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Abstract: | will discuss the growth of entanglement under a quantum quench at point contacts of simple fractional quantum Hall fluids and its
relation with the measurement of local observables. Recently Klich and Levitov recently proposed that, for a free fermion system, the noise
generated from alocal quantum quench provides a measure of the entanglement entropy. In this work, | will examine the validity of this proposal in
the context of a strongly interacting system, the Laughlin FQH states. We find that local quenching in fractional quantum Hall junctions gives time
dependent correlation functions that have universal behavior on sufficiently long time and length scales. The growth of entanglement entropy and
the noise generated by the quench are generally unrelated quantities.
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» Entanglement entropy measures quantum mechanical correlations in
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extended systems
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» lts behavior at generic quantum critical points is understood in 1D
(from CFT), in some special 2D QCPs (quantum Lifshitz), and in ¢*
QFT within the € expansion.
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(from CFT), in some special 2D QCPs (quantum Lifshitz), and in ¢*
QFT within the € expansion.

It also has a universal behavior in topological phases, e.g. fractional
quantum Hall fluids

Quantum quenches of quantum Hall edge states at point contacts
and recent proposals for measuring dynamical entanglement by
measuring noise after a quantum quench

Quantum noise and dynamical entanglement after a quench in
quantum Hall (Laughlin) junctions
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Jensity Matrix and Entanglement Entropy
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Jensity Matrix and Entanglement Entropy
' » Pure state in AU B: V|[p,4. o8]
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Jensity Matrix and Entanglement Entropy
» Pure state in AU B: V[p,a, o8]

» Density Matrix:
L>E> a
1 I 1 :
\FA-.¥B |f-""AL'E|rqh* By = w[‘r:A' #B| W [?:;4* ?:IB]
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Jensity Matrix and Entanglement Entropy
» Pure state in AU B: V|p,. o]

» Density Matrix:

| L>E> a

. (va. vBlpauelra. ¥8) = Vira. vl ¥ [Pa. ¢Bl

| P

E e | _

| . e » Observing only A = Mixed State
S~ reduced density matrix pa:
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Density Matrix and Entanglement Entro
Y g- Pure state in AP_JYB: Vipa. ¢al

» Density Matrix:

| L>E> a

; (pa.¢8lpavelea. ¥8) = Vira, vB] ¥ [ra. ¢
| P

L i = | .

| .\ __ » Observing only A = Mixed State

| 2 = B reduced density matrix pa:

(valpalea) = tre paus
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Jensity Matrix and Entanglement Entropy

» Pure state in AU B: V|p,. v
» Density Matrix:

L>E€>a
! ! rF \ = = x > I
, (pa. v8lpavslya. ¥8) = Vira. vl V¥ [va. ¢l
_./"//A‘_-\\\
_ ] » Observing only A = Mixed State
e B reduced density matrix pa:

(valpal@a) = tre paus

» von Neumann Entanglement Entropy:
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Jensity Matrix and Entanglement Entropy
» Pure state in AU B: V|[p,. v

» Density Matrix:

L>E(> a
= — = _J N — = = wf _J i
i (Pa, vBlpavelPa- v8) = Vipa, vl ¥ [pa, ¢Bl
< N
L A
\ » Observing only A = Mixed State
p B reduced density matrix pa:

(valpalea) = tre paus

» von Neumann Entanglement Entropy:

S5a= —tr(pa Inpa) = Ss
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Jensity Matrix and Entanglement Entropy
» Pure state in AU B: V|p,. v

» Density Matrix:

L>¢E> a
= = - | = m T = = = _J -
: (pa. v8lpauBlea. £8) = Vira. ¢8] V7 [¢a. ¢Bl
L ’”/AF\
\ » Observing only A = Mixed State
\\__/ I I
B reduced density matrix pa:

(Palpalea) = tre paus

» von Neumann Entanglement Entropy:

Sa = —tr(pa Inpa) = Ss

Symmetric for a pure state in AU B

» Renyi Entropies:
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Jensity Matrix and Entanglement Entropy
» Pure state in AU B: V[p,. o]
» Density Matrix:
L>E> a
(Pa. vBlpauBl@a. ¥8) = VIra. vB] ¥ [Pa, ¢Bl

» Observing only A = Mixed State
B reduced density matrix pa:

¢
L 4 //AF\- x.:
N

(;AlﬂA\'r?‘:q} = IIr'g PAUB

» von Neumann Entanglement Entropy:

Sa = —tr(pa Inpa) = S8

Symmetric for a pure state in AU B

» Renyi Entropies:

Pirsa: 11040071



scaling Behavior of Quantum Entanglement
5 5

Pirsa: 11040071 Page 40
R 2
I 1 T_' VSIS _

HI-'I"J 1 Iy



scaling Behavior of Quantum Entanglement

» Massive relativistic free field theories obey an “area law”
S = const. LP~1 + .. (Srednicki, 1993).
Non-universal area law is the leading generic behavior in all
dimensions.

Pirsa: 11040071 Page o=
Phvsics )
- ] -



>caling Behavior of Quantum Entanglement

» Massive relativistic free field theories obey an “area law”
S = const. LP~1 + . (Srednicki, 1993).
Non-universal area law is the leading generic behavior in all
dimensions.

» Universal behavior in d = 1 critical systems (CFT):

Pirsa: 11040071 Page O)= —"—-'-\
Phsics
T



>caling Behavior of Quantum Entanglement

» Massive relativistic free field theories obey an “area law”
S =const. 1P + . (Srednicki, 1993).
Non-universal area law is the leading generic behavior in all
dimensions.

» Universal behavior in d = 1 critical systems (CFT):

| 4

- log (E) 1 finite terms
3 a
Callan and Wilczek; Holzhey, Larsen and Wilczek; Calabrese and

Cardy

There is information on the CFT in the subdominant corrections
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scaling Behavior of Quantum Entanglement

» Massive relativistic free field theories obey an “area law”
S =const. [P + ... (Srednicki, 1993).
Non-universal area law is the leading generic behavior in all
dimensions.

» Universal behavior in d = 1 critical systems (CFT):

»>

&5 log (E) + finite terms
3 E

Callan and Wilczek; Holzhey, Larsen and Wilczek; Calabrese and

Cardy

There is information on the CFT in the subdominant corrections
» Also obeyed at 1D quantum random fixed points (Refael and Moore).
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>caling Behavior of Quantum Entanglement

» Massive relativistic free field theories obey an “area law”
S =comnst. [P + . (Srednicki, 1993).
Non-universal area law is the leading generic behavior in all
dimensions.

» Universal behavior in d = 1 critical systems (CFT):

>

. = EIt:tg (E) + finite terms
3 a
Callan and Wilczek; Holzhey, Larsen and Wilczek; Calabrese and

Cardy

There is information on the CFT in the subdominant corrections
» Also obeyed at 1D quantum random fixed points (Refael and Moore).

» Universal O(1) term in topological phases in 2D
S=al—v+0(™1), Kitaev and Preskill. Levin and Wen
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>caling Behavior of Quantum Entanglement

» Massive relativistic free field theories obey an “area law”
S = const. LP~1 + __ (Srednicki, 1993).
Non-universal area law is the leading generic behavior in all
dimensions.

» Universal behavior in d = 1 critical systems (CFT):

>

L = Elt:ag (E) + finite terms
3 a
Callan and Wilczek; Holzhey, Larsen and Wilczek; Calabrese and

Cardy

There is information on the CFT in the subdominant corrections
» Also obeyed at 1D quantum random fixed points (Refael and Moore).

» Universal O(1) term in topological phases in 2D
S=al—v+0(™), Kitaev and Preskill, Levin and Wen

» D>1:Universal O(1) terms at QCP (Fradkin and Moore; Hsu,

ris 110001 Mulligan, Fradkin and Kim; Metlitski and Sachdev; Hsu and Ly e
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sround State Entanglement vs "Dynamical Entanglement
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sround State Entanglement vs "Dynamical’ Entanglement

» The scaling of the entanglement entropy is a useful tool to
characterize the correlations in ground states
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sround State Entanglement vs "Dynamical” Entanglement

» The scaling of the entanglement entropy is a useful tool to
characterize the correlations in ground states

» |t is (to say the least) hard to measure

» |t is a static property of the correlations of the ground state
» One can envision the following experiment that tests the dynamics

» Consider two identical systems A and B that are disconnected for
t<0

» At t — 0 they are suddenly and seamlessly connected: a quantum
quench
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sround State Entanglement vs “Dynamical’” Entanglement

>

The scaling of the entanglement entropy is a useful tool to
characterize the correlations in ground states

» |t is (to say the least) hard to measure
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It is a static property of the correlations of the ground state

One can envision the following experiment that tests the dynamics

» Consider two identical systems A and B that are disconnected for
t<0

» At t = 0 they are suddenly and seamlessly connected: a quantum
quench

After the quench the system is in an excited state which with time
as the excitations propagate
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sround State Entanglement vs "Dynamical’ Entanglement

» The scaling of the entanglement entropy is a useful tool to
characterize the correlations in ground states

» It is (to say the least) hard to measure

» |t is a static property of the correlations of the ground state

» One can envision the following experiment that tests the dynamics

» Consider two identical systems A and B that are disconnected for
t<0

» At t = 0 they are suddenly and seamlessly connected: a quantum
quench

» After the quench the system is in an excited state which with time
as the excitations propagate

» This is a close relative of the X-ray edge problem of impurities in
metals

Pirsa: 11040071 Page :q __,___‘\
s
[

| e



sround State Entanglement vs "Dynamical’” Entanglement

» The scaling of the entanglement entropy is a useful tool to
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» Consider two identical systems A and B that are disconnected for
t<0

» At t = 0 they are suddenly and seamlessly connected: a quantum
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as the excitations propagate
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» As the excitations created by the quench evolve, so does the
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sround State Entanglement vs "Dynamical” Entanglement

» The scaling of the entanglement entropy is a useful tool to
characterize the correlations in ground states

» |t is (to say the least) hard to measure

» |t is a static property of the correlations of the ground state
» One can envision the following experiment that tests the dynamics

» Consider two identical systems A and B that are disconnected for
t<0

» At t = 0 they are suddenly and seamlessly connected: a quantum
quench

» After the quench the system is in an excited state which with time
as the excitations propagate

» This is a close relative of the X-ray edge problem of impurities in
metals

» As the excitations created by the quench evolve, so does the
entanglement entropy of A with B

» Can this dynamical entanglement be measured?
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-ractional Quantum Hall states

» Uniform, incompressible fluids, with degenerate ground states on a
torus, and ‘chiral edge states on a disk geometry
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-ractional Quantum Hall states

» Uniform, incompressible fluids, with degenerate ground states on a
torus, and ‘chiral’ edge states on a disk geometry

» Hydrodynamic Picture: Chern-Simons gauge theory

» Laughlin States: 2DEG in a large magnetic field with filling factor
v = 1/m for N electrons in N; = mN flux quanta are
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-ractional Quantum Hall states

» Uniform, incompressible fluids, with degenerate ground states on a
torus, and ‘chiral’ edge states on a disk geometry

» Hydrodynamic Picture: Chern-Simons gauge theory
» Laughlin States: 2DEG in a large magnetic field with filling factor

v = 1/m for N electrons in N; = mN flux quanta are
m_—Y :|=2/42 -
V(z..... zN):H(z,-—zj} e 2il=l . z; = X; + Iy;
i<j
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-ractional Quantum Hall states

» Uniform, incompressible fluids, with degenerate ground states on a
torus, and ‘chiral’ edge states on a disk geometry

» Hydrodynamic Picture: Chern-Simons gauge theory

» Laughlin States: 2DEG in a large magnetic field with filling factor
v = 1/m for N electrons in N; = mN flux quanta are

r T .
V(zm,-... :«:H)=H(z;—zj)"’e'zﬂ‘|z"] - Z; = Xj + Iy;
i<j

The excitations are vortices with fractional charge g = e/m and
fractional (braid) statistics 8 = 7/ m.
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e States of FQH fluids
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~dge States of FQH fluids

» Laughlin states at filling fraction » = 1/ m: the fluctuations of the

edge of the incompressible droplet are described in terms of a chiral
boson o(x, t) (if there is no edge reconstruction)
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~dge States of FQH fluids

» Laughlin states at filling fraction » = 1/ m: the fluctuations of the

edge of the incompressible droplet are described in terms of a chiral
boson o(x, t) (if there is no edge reconstruction)

1 _ _
L =—0x0(0:0 — vO0)

s

i}
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~dge States of FQH fluids

» Laughlin states at filling fraction » = 1/ m: the fluctuations of the

edge of the incompressible droplet are described in terms of a chiral
boson o(x, t) (if there is no edge reconstruction)

B : :
= __F_C}x‘i:' (@t@ — VUXD)

i}

» Edge state current:
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-dge States of FQH fluids

» Laughlin states at filling fraction » = 1/ m: the fluctuations of the

edge of the incompressible droplet are described in terms of a chiral
boson o(x, t) (if there is no edge reconstruction)

| i :
L =—0,0(0:0 — v, 0)

» Edge state current:
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~dge States of FQH fluids

» Laughlin states at filling fraction ¥ = 1/ m: the fluctuations of the

edge of the incompressible droplet are described in terms of a chiral
boson o(x, t) (if there is no edge reconstruction)

-
e 4%("),4:) (Oe0 — vOL0)
» Edge state current:
jx, t) = zn_f/mc"}‘to
» Electron Operator:
V, ~ &V™® dimension - =
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~dge States of FQH fluids

» Laughlin states at filling fraction » = 1/ m: the fluctuations of the

edge of the incompressible droplet are described in terms of a chiral
boson ¢(x, t) (if there is no edge reconstruction)

1 1
== ;on(dto — v, 0)

» Edge state current:

1
X, )= (")to
1061 = o dm
» Electron Operator:
g — = : m
V.~ e'vm™® dimension : —
» Quasiparticle Operator
i 1
T et . -
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_onstrictions and Tunneling
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_onstrictions and Tunneling

» FQH bulk physics can be gleaned from the behavior of its edges
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_onstrictions and Tunneling

» FQH bulk physics can be gleaned from the behavior of its edges

» At a constriction (created by a gate): tunneling
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_onstrictions and Tunneling

» FQH bulk physics can be gleaned from the behavior of its edges

» At a constriction (created by a gate): tunneling

L

———

2DEG A 2DEG

I_J:—  aE—

» Two fixed points:
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_onstrictions and Tunneling

» FQH bulk physics can be gleaned from the behavior of its edges

» At a constriction (created by a gate): tunneling

L
2DEG A 2DEG
i — L = l

» Two fixed points:
» Weak tunneling, A — 0: point contact is open « reflecting BC
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_onstrictions and Tunneling

» FQH bulk physics can be gleaned from the behavior of its edges

» At a constriction (created by a gate): tunneling

L
2DEG A 2DEG
o1 o=

» Two fixed points:
» Weak tunneling, A — 0: point contact is open « reflecting BC

» Strong tunneling A — oo: point contact is closed < transmitting
BC
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_onstrictions and Tunneling

» FQH bulk physics can be gleaned from the behavior of its edges

» At a constriction (created by a gate): tunneling

L
2DEG A 2DEG
V= — V= —

g |-
g |-

» Two fixed points:

» Weak tunneling, A — 0: point contact is open « reflecting BC

» Strong tunneling A — oo: point contact is closed < transmitting
BC

» The point contact splits the 2DEG
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_onstrictions and Tunneling

» FQH bulk physics can be gleaned from the behavior of its edges
» At a constriction (created by a gate): tunneling

L
2DEG A 2DEG
v= — V= —

3|~
g |~

» Two fixed points:
» Weak tunneling, A — 0: point contact is open < reflecting BC

» Strong tunneling A — oo: point contact is closed < transmitting
BC

» The point contact splits the 2DEG

» Change in the bulk entanglement entropy: S..,0 = In/m
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_onstrictions and Tunneling

» FQH bulk physics can be gleaned from the behavior of its edges

» At a constriction (created by a gate): tunneling

» Two fixed points:
» Weak tunneling, A — 0: point contact is open « reflecting BC

» Strong tunneling A — o0o: point contact is closed & transmitting
BC

» The point contact splits the 2DEG
» Change in the bulk entanglement entropy: S, = In/m

» This equals the change in the (Affleck-Ludwig) ground state entropy
e 10000 O the point contact (Fendley, Fisher and Nayak) B
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_onstrictions and Tunneling

» FQH bulk physics can be gleaned from the behavior of its edges
» At a constriction (created by a gate): tunneling

L
2DEG A 2DEG
—_— — V — —

» Two fixed points:
» Weak tunneling, A — 0: point contact is open < reflecting BC

» Strong tunneling A — oc: point contact is closed & transmitting
BC

» The point contact splits the 2DEG
» Change in the bulk entanglement entropy: S.op0 = In/m

» This equals the change in the (Affleck-Ludwig) ground state entropy
e 10000 Of the point contact (Fendley, Fisher and Nayak) Pagerﬁ;%—_.\
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-ntanglement and Noise

» Klich and Levitov: measure entanglement entropy by monitoring
current noise after a quantum quench
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-ntanglement and Noise

» Klich and Levitov: measure entanglement entropy by monitoring
current noise after a quantum quench

» Two free-fermion reservoirs suddenly connected by opening a QPC
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-ntanglement and Noise

» Klich and Levitov: measure entanglement entropy by monitoring
current noise after a quantum quench

» Two free-fermion reservoirs suddenly connected by opening a QPC

» P(q.t), probability that a charge g is transmitted through the QPC
in At.
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-ntanglement and Noise

» Klich and Levitov: measure entanglement entropy by monitoring
current noise after a quantum quench

» Two free-fermion reservoirs suddenly connected by opening a QPC

» P(q.t), probability that a charge g is transmitted through the QPC
in At.

x(A) = Z P(q.At)e = <{ eira(As) e—mq{m;}>

where we use a Schwinger-Keldysh operator ordering
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-ntanglement and Noise

» Klich and Levitov: measure entanglement entropy by monitoring
current noise after a quantum quench

» Two free-fermion reservoirs suddenly connected by opening a QPC

» P(q.t), probability that a charge g is transmitted through the QPC
in At.

X(A) = Z P(q.At)e’® = < {e"kamrl_e—mq{m}}>
=

where we use a Schwinger-Keldysh operator ordering

» The only non vanishing moment is the noise, grows in time

G=5h2E (At > 1)
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-ntanglement and Noise

» Klich and Levitov: measure entanglement entropy by monitoring
current noise after a quantum quench

» Two free-fermion reservoirs suddenly connected by opening a QPC

» P(q.t), probability that a charge g is transmitted through the QPC
in At.

x(A) = i P(q.At)e'™ = < {ef*q{ﬁt)_e—fkqmn} >
g=—20

where we use a Schwinger-Keldysh operator ordering

» The only non vanishing moment is the noise, grows in time
— i =
» |In general, the entanglement entropy of two reservairs described by a

CFT with central charge ¢ grows in time S = £ ln ~L (Calabrese
and Cardy)
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-ntanglement and Noise

>

Klich and Levitov: measure entanglement entropy by monitoring
current noise after a quantum quench

Two free-fermion reservoirs suddenly connected by opening a QPC

» P(q.t), probability that a charge g is transmitted through the QPC

»>

Pirsa: 11040071

Ty

in At.
x(A) = i P(q, At)e' = < {E"*a{ﬁn_e—f«w:m}} >
g=—00

where we use a Schwinger-Keldysh operator ordering

The only non vanishing moment is the noise, grows in time
s =
CZ—:T_:InTt (Af:?'} r)
In general, the entanglement entropy of two resen:oirs described by a

CFT with central charge ¢ grows in time S = £ In £ (Calabrese
and Cardy)

Is there an inherent relation between entanglement and noise?

Pager
S e



-ntanglement and Noise

o

» Klich and Levitov: measure entanglement entropy by monitoring

»>

current noise after a quantum quench
Two free-fermion reservoirs suddenly connected by opening a QPC

P(q. t), probability that a charge g is transmitted through the QPC
in At.

X(A) = i P(q.At)e? = < {ef*q{ﬁt)_e—f«kq{m}} >
g=—oo

where we use a Schwinger-Keldysh operator ordering

The only non vanishing moment is the noise, grows in time

CgZ%,Iﬂ%(&f}}T)

In general, the entanglement entropy of two reservoirs described by a

CFT with central charge ¢ grows in time S = £ In ~L (Calabrese
and Cardy)

Is there an inherent relation between entanglement and noise?
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-ntanglement and Noise

» Klich and Levitov: measure entanglement entropy by monitoring
current noise after a quantum quench

» Two free-fermion reservoirs suddenly connected by opening a QPC

» P(g,t), probability that a charge g is transmitted through the QPC
in At.

x(A) = i P(q.At)e'? = < {e""‘q{ﬁtl_ E—Mq{m}} >
g=—o0

where we use a Schwinger-Keldysh operator ordering
» The only non vanishing moment is the noise, grows in time
G=%5h2 (At>T)

» |In general, the entanglement entropy of two reservoirs described by a

CFT with central charge ¢ grows in time S = 5 In % (Calabrese
and Cardy)

» |s there an inherent relation between entanglement and noise?
e 1M INteracting systems? (see also Le Hur et al (2010)) page.rq |
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I'heory of the Quantum Point Contact
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I'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
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I'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f < x <

5
o

—
—

£x
1A
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irsa: 11040071 PageI i
[ 4 -
;‘T‘? baTat L™



l'heory of the Quantum Point Contact
» QPC generated by a constriction in a FQH fluid

» We have two edges, top (L) and bottom (R), —f < x <
1 ¢ 1 . 9 V4R
= — — D @ (T — Oy )O — 4—() O (c)t + Ok o

Pirsa: 11040071 Page 40 _,____‘\
1 I IVSES =



'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f < x < {

1 == 1 |
L= 4—_3xoL(£?t — 8. )¢t — Fa—}*x«;:*““(c-},f + 8, )oR

» The constriction generates tunneling of quasiparticles at x = 0 (the

QPC)
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'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f < x < ¢

1 1 -
C—FC’O( C))O _EJO (O + Ok )0

» The constriction generates tunneling of quasiparticles at x = 0 (the

QPC)

—

L' = \o(x) cos [v(o® — ob)]
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'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f < x < {

1 | 1
L= Faxoi(at — 8. )¢t — Fa—}»,.,:,f_:;*‘%‘(at + 8, )oR

» The constriction generates tunneling of quasiparticles at x = 0 (the

QPC)
L' = \d(x) cos [ V(R — ob)]

» Charge densities on each edge: p; = %é)xo"“, PR = —%t)xrj‘q
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['heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f < x < {

1 1
L= Eaxoi(at — 8 )¢t — Eaxo”(at + 8, )oR

» The constriction generates tunneling of quasiparticles at x = 0 (the

QPC)
L' = \d(x) cos [(o® — ob)]
» (Charge densities on each edge: p; = %EBXQL, PR = —;’—E&LQR

» Opilx+ 25) — Or.L(X) = qzzTV(I;QR.L

irsa: 11040071 Page _.___'\
I%?ﬁl_ﬁ
I = e



'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f < x < {

1 1
L= Ei?xo"(at — N — Eax@*““(ait + 8, )oR

» The constriction generates tunneling of quasiparticles at x = 0 (the

QPC)
L' = \d(x) cos [V(6® — o")]
» Charge densities on each edge: pp = gﬂxoﬁ PR = —;’—EOXOR

> Or.L(x +2f) — ore(x) =F2r/rQrL
» “Even-Odd” basis: 0. o(x.t) = 12 (ou(x. t) £ or(—x, t));

V2
Qe.a = (QL - - QR) \/5
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'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f<x < ¢

1
== L = S Ry: : R
L= 4#5 63 — D)ot — -8R (3 + Bc)o

» The constriction generates tunneling of quasiparticles at x = 0 (the
QPQC)
L' = \d(x) cos [(o® — o")]

» Charge densities on each edge: p; = £d ot pr = —‘*2”—38,0‘?
> Op.r(x +2f) — oru(x) = :F??T\/?QR.L
» “Even-Odd” basis: 0. o(x.t) = % (or(x, t) £ orp(—x. t));

Qe.-: = (QL - QR) \/E

>
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Juantum Quench ot a FQH Junction
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'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f < x < ¢

1 1
L= Eaxoi(a, = Ea,‘,o*"’(a,E + 8. )oR

» The constriction generates tunneling of quasiparticles at x = 0 (the

QPC)
L' = \3(x) cos [r(o® — o")]
» Charge densities on each edge: p; = 52/—38,( ot PR = —;—fé‘)x oR

» Or.L(x +20) — Ore(x) = F2m/vQrL
» “Even-Odd” basis: ¢, o(x.t) = % (or(x. t) = dr(—x. t));

Qe.a = (QL - QR) \/E

1 > .
irsa: 11040071 Ccﬂd — dxoa(dt = ax)oa + ;\{j (.x")ejI \/EG# + h.C.
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'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f<x < ¢

1 — |
L= Eaxoi(at — N Eaxoﬁ(at + 8, )R

» The constriction generates tunneling of quasiparticles at x = 0 (the

QPC)
L' = \o(x) cos [Vr(o® —o")]
» (Charge densities on each edge: p; = g—f"xo"‘, PR = —ZLEGX oR

» OpL(x +2f) — ore(x) =F2r/vQrL
> “Even-Odd” basis: 0..o(x.t) = % (61(x, t) = 6r(—x. 1));

o= (QL - ~ QR) \/E

== _ = .
irsa: 11040071 Ecﬂd = __ : xoa(at —_— ax)oa "- I\é(X)E‘\/EG' + h.C.
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Juantum Quench ot a FQH Junction
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Juantum Quench of a FQH Junction

—_———

2DEG 2DEG 2DEG

t<0

» Under a quench, we turn on tunneling suddenly :A =0 for t < 0 and
AN—oofort >0
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Juantum Quench of a FQH Junction

2DEG 2DEG 2DEG
t<0

» Under a quench, we turn on tunneling suddenly :A =0 for t < 0 and
AN—ocfort >0

» This implies a change in boundary conditions:
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Juantum Quench of a FQH Junction

2DEG 2DEG 2DEG
t<0

» Under a quench, we turn on tunneling suddenly :A =0 for t < 0 and
AN—=oofort>0

» This implies a change in boundary conditions:
» Perfectly transmitting (A — 0) & Neumann (3.0, = 0)
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Juantum Quench of a FQH Junction

2DEG 2DEG 2DEG
t<@

» Under a quench, we turn on tunneling suddenly :A =0 for t < 0 and
A—oxfort >0
» This implies a change in boundary conditions:
» Perfectly transmitting (A — 0) & Neumann (9.0, = 0)
» Perfectly Reflecting (A — oc) < Dirichlet (¢, = 0)
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Juantum Quench ot a FQH Junction
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'heory of the Quantum Point Contact

» QPC generated by a constriction in a FQH fluid
» We have two edges, top (L) and bottom (R), —f < x < {

L= 4—_0 L oL (O — 8 )o" — 4—.3 ) OB (8 + 8 )R

» The constriction generates tunneling of quasiparticles at x = 0 (the
QPC)
L' = \d(x) cos [(o® — o")]

» Charge densities on each edge: p; = £C) ot, pr = sz/f&)xoﬁ
> Op.L(x +2f) —oru(x) = ¢2F¢;QR.L
» “Even-Odd” basis: 0. o(x.t) = % (ou(x, t) £ or(—x. t));

Qe.a = (QL - QR’) \/i

1
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Juantum Quench of a FQH Junction

2DEG 2DEG 2DEG
t<0

» Under a quench, we turn on tunneling suddenly :\A\ =0 for t < 0 and
A—=oxfort>0
» This implies a change in boundary conditions:

» Perfectly transmitting (A — 0) & Neumann (9,0, = 0)
» Perfectly Reflecting (A — oc) < Dirichlet (¢, = 0)
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Juantum Quench of a FQH Junction

2DEG 2DEG 2DEG
t<0

» Under a quench, we turn on tunneling suddenly :A =0 for t < 0 and
A—sxfort>0
» This implies a change in boundary conditions:
» Perfectly transmitting (A — 0) & Neumann (3.0, = 0)
» Perfectly Reflecting (A — oc) < Dirichlet (6, = 0)

» We computed the generating function of probability distribution of
charge tunneling x(s. At) for all QPCs of Laughlin states
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Juantum Quench of a FQH Junction

2DEG 2DEG 2DEG
t<0

» Under a quench, we turn on tunneling suddenly :A =0 for t < 0 and
A= fort>0

» This implies a change in boundary conditions:
» Perfectly transmitting (A — 0) & Neumann (9,0, = 0)
» Perfectly Reflecting (A — oc) < Dirichlet (6, = 0)
» We computed the generating function of probability distribution of
charge tunneling x(s. At) for all QPCs of Laughlin states

» We also computed the time dependence of the entanglement
entropy after a quench for the Laughlin states
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olvable case: v = 1/2 (bosons!)
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>olvable case: ¥ =1/2 (bosons!)

» This is (literally!) the “Ising Model” of QPCs
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>olvable case: ¥ = 1/2 (bosonsl!)

» This is (literally!) the “Ising Model” of QPCs

» For v = 1/2 the tunneling operator is a “fermion”
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>olvable case: v = 1/2 (bosons!)

» This is (literally!) the “Ising Model” of QPCs

» For v = 1/2 the tunneling operator is a “fermion”

-t

U(x, t) = ——e'%°, {¥(x,t), (X', t)} = 6(x — x)
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>olvable case: v = 1/2 (bosons!)

» This is (literally!) the “Ising Model” of QPCs

» For v = 1/2 the tunneling operator is a “fermion”

1

\/Ee'“%. {¥(x, t), (X, t)} = d(x — x')

Y(x, t) =

e — /dx x)id(x) + V276 (x ) (A(x)y + ,\*ﬂr_'i‘(x)')]

v is a Majorana fermion, {v,7} =2
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>olvable case: ¥ = 1/2 (bosons!)

» This is (literally!) the “Ising Model” of QPCs

» For v = 1/2 the tunneling operator is a “fermion”

¥(x, t) = - el {¥(x, t),¥(x", t)} = d(x — x")

V2T

kit — /dx [r_-T[x)if)xL'(x) — \/E(i(x) (A(x)y + ,\"f-r_j(x)) ]

v is a Majorana fermion, {v.7} =2

» Majorana Representation: v = (m — in2)/2, ¥ = (m +in)/2,
{m:(x), (')} = 28;8(x — x’)
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>olvable case: v = 1/2 (bosons!)

» This is (literally!) the “Ising Model” of QPCs

» For v = 1/2 the tunneling operator is a “fermion”

1

V2w

U(x, t) = ' {v(x, t),¥(x", t)} = d(x — x")

" /dx [L-'T(x)f&)xt'(x) + V2m5(x) (AMb(x)y + ,\*f.u*(x))]

v is a Majorana fermion, {v,7} =2

» Majorana Representation: v = (m — in2)/2, ©' = (m +in2)/2,
{mi(x).nj(x")} = 26;6(x — x')
» 171 decouples but 7 gets “twisted by the impurity:
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Solvable case: v = 1/2 (bosons!)

» This is (literally!) the “Ising Model” of QPCs

» For v = 1/2 the tunneling operator is a “fermion”

1

—

i

idg

¥(x, t) = B

{¥(x, t),¥(x", t)} = d(x — x")

s /dx[L'T(x)f(?xL'(x) + V276(x) (Ab(x)y + ,\*f.uf(x))]

v is a Majorana fermion, {v,~7} =2

> Majorana Representation v = (m —in)/2, ¢ = (m +ip)/2,
{mi(x) mi(x")} = 2656(x — x”)
» 171 decouples but 7p gets “twisted by the impurity:

A — o0 1n2(07)
A—0 112(07)

—12(07)
n2(0~)

Pirsa: 11040071



>olvable case: v = 1/2 (bosons!)

» This is (literally!) the “Ising Model” of QPCs

» For v = 1/2 the tunneling operator is a “fermion”

1
V22w

¥(x, t) =

% {¥(x, t), ¥(x', t)} = d(x — x)

Hoda = / cbe [ (x)idheto(x) + V276 (x) (Ao(x)y + A 79T (x)) |

v is a Majorana fermion, {v.7} =2

» Majorana Representation: ¥» = (m; — in2)/2, ¥ = (m + in)/2,
{mi(x).n;(x")} = 26;6(x — x’)
» 171 decouples but 7p gets “twisted by the impurity:

A—oo  m2(07) =-—n2(07)
A—0 2(07) = n2(07)

irsa: 11040071
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>olvable case: v = 1/2 (bosons!)

» Chiral Majorana fermion (% Ising”) on a circumference of length 2/

with BC's
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>olvable case: v = 1/2 (bosons!)

» Chiral Majorana fermion (% Ising”) on a circumference of length 2/
with BC's
» antiperiodic (AP) for a transmitting QPC
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>olvable case: v = 1/2 (bosons!)

» Chiral Majorana fermion (% Ising”) on a circumference of length 2/
with BC's
» antiperiodic (AP) for a transmitting QPC
» periodic (P) for a reflecting QPC.

» We can now define the twist field o (the “spin”) (with scaling
dimension 1/16) whose effect is to twist the BC's of the Majorana
fermion from AP to P
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>olvable case: v = 1/2 (bosons!)

» Chiral Majorana fermion (% Ising”) on a circumference of length 2/
with BC's
» antiperiodic (AP) for a transmitting QPC
» periodic (P) for a reflecting QPC.
» We can now define the twist field o (the “spin”) (with scaling
dimension 1/16) whose effect is to twist the BC's of the Majorana
fermion from AP to P

Two o2 operators are drawn from the vacuum. Tunneling (of
strength A) is introduced between one of the o2 operators and the
edge. Finally, in the limit A — o0, the edge circumvents the o5
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yolvable case: ¥ = 1/2 (bosons!)
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>olvable case: v = 1/2 (bosons!)

» In the limit A — oo, the (backscattered) tunneling current is

I—0 foxrt<® F— %r;l{ﬂ)rn(0+). fort >0

» | he noise is

= 8t (02(0)ls(t1)ls(t2)02(0))
Qﬁ“*/ d“/ o frrz(O) 72(0))
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>olvable case: v = 1/2 (bosons!)
» In the limit A — oo, the (backscattered) tunneling current is

| =0, fort<0, [= ;—m(om(oﬂ. for t > 0

» | he noise is

at 8¢ (92(0)lb(t1)/s(t2)02(0))
HQ&t f dtlf dt2 C"z( )sz(on

» The twist field 02 changes the BC's on the fermion 12 and allows for
a non-vanishing current
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>olvable case: v = 1/2 (bosonsl!)
» In the limit A — oo, the (backscattered) tunneling current is
;

=0, fort <0, f=2

n1(0)(07). fort >0

» | he noise is

<Q§.t> =

At At ({72(0)[5( t]_)l'b( rZ)JZ(O))
fo ML M (000)02(0))

» The twist field o2 changes the BC's on the fermion 72 and allows for
a non-vanishing current

» The twist field only affects this correlator on long time scales ~ £/ v,
and decouples for Tt At < /v —
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>olvable case: v = 1/2 (bosons!)
» In the limit A — oo, the (backscattered) tunneling current is

=0, fort<0, [—= éql(mm(oﬂ. for t >0

» | he noise is

<Qit> =

At At (02(0)Is(t1)/6(t2)02(0))
/; dtl E dtz (52(0)52(0)>

» The twist field 02 changes the BC's on the fermion 72 and allows for
a non-vanishing current

» The twist field only affects this correlator on long time scales ~ £/v,
and decouples for Tt €K At < /v —

At At 1 1 At

v
—_— dt dt: - |

» There is an operator, 0> in this case, which is a boundary condition
changing operator with scaling dimension 1/16
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>olvable case: v = 1/2 (bosons!)
» In the limit A — oo, the (backscattered) tunneling current is

| =0, fort<0O, F= —r}1(0]rp(0+) fort >0

» | he noise is

<Qit> =

At At (0'2 (O)h,( 1 )lb( tZ)JZ(O))
/0 dty 2 . (72(0)2(0))

» The twist field o2 changes the BC's on the fermion 72 and allows for
a non-vanishing current

» The twist field only affects this correlator on long time scales ~ £/v,
and decouples for T < At <€ /v — ©

At At 1 1 At

v
—_— dt dt . |

» There is an operator, 02 in this case, which is a boundary condition
changing operator with scaling dimension 1/16

irsa‘““°°”A 5|m|lar operator was introduced by Affleck and Ludwig in the ™ 'rl‘kvm
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seneral case

» Using CFT and Schiwnger-Keldysh methods we established the
general validity of this result for all Laughlin states
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seneral case

» Using CFT and Schiwnger-Keldysh methods we established the
general validity of this result for all Laughlin states

» The correlator of the tunneling current after the quench was found
to be (again for 7 < At < £ /v)

<{h_-,( tz]-’b(tl)}> = 2:-2 (r + f(t: - B))?

» |t follows that the Full Counting Statistics is

N 2 + At?
) = ew{ 7 52z [loe () |}
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seneral case

» Using CFT and Schiwnger-Keldysh methods we established the

general validity of this result for all Laughlin states
» The correlator of the tunneling current after the quench was found

to be (again for 7 < At € £/v)

<{fb( tz)-’b(tl)}> = 2:—2 (T + i(t: — £))?

» |t follows that the Full Counting Statistics is

2 2
=eof 2 e (S22

» In general the CFT of the combined edges is an orbifold: A>/Z»
(¥ =1/2) and A3 /Z; (for v =1/3) (a Zs parafermion)
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seneral case

» Using CFT and Schiwnger-Keldysh methods we established the
general validity of this result for all Laughlin states

» The correlator of the tunneling current after the quench was found
to be (again for T K At < £/v)

<{’b( tz)-’b(tl)}> = -

212 (1 + i(th — B2))2

» |t follows that the Full Counting Statistics is

2 52
W -eo{-3 3 [ ()]}

» In general the CFT of the combined edges is an orbifold: As/Z»
(v =1/2) and A3 /Z; (for v =1/3) (a Z4 parafermion)

» The general result has the Klich-Levitov form, but its derivation
requires the knowledge of the modular S-matrices of the CFTs
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Using CFT and Schiwnger-Keldysh methods we established the
general validity of this result for all Laughlin states

The correlator of the tunneling current after the quench was found
to be (again for 7 < At < £/v)

<{"b(t2)- ’b(tl)}>

- » 1
272 (1 + ity — 1))

It follows that the Full Counting Statistics is

2 32
- (222}

In general the CFT of the combined edges is an orbifold: A/Z»
(¥ =1/2) and A3 /Z; (for v =1/3) (a Z4 parafermion)

The general result has the Klich-Levitov form, but its derivation
requires the knowledge of the modular S-matrices of the CFTs
Time-dependence of the entanglement entropy after the quench
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Using CFT and Schiwnger-Keldysh methods we established the
general validity of this result for all Laughlin states

The correlator of the tunneling current after the quench was found
to be (again for T K At < £/v)

<{’b( t), ’b(tl)}>

i 1
272 (1 + i(ts — 8))?

It follows that the Full Counting Statistics is

2 32
- (222}

In general the CFT of the combined edges is an orbifold: A>/Z>
(¥ =1/2) and A3z /Z; (for v =1/3) (a Zs parafermion)

The general result has the Klich-Levitov form, but its derivation
requires the knowledge of the modular S-matrices of the CFTs
Time-dependence of the entanglement entropy after the quench
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_ocal quench in the Ising spin chain
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_ocal quench in the Ising spin chain

N /2+1 N /2+1
H = Z o1(n) + A Z o3(n)oz(n+1)
n——N/2 n——N/2
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_ocal quench in the Ising spin chain

N/2+1 N/ 2+1
H= Y oi(n)+X ) o3(n)oz(n+1)
n——N /2 n——N/2

» @ link (0.1): M(t) =0fort<Oand A(¢t)=1fort >0
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_ocal quench in the Ising spin chain

N/2+1 N/ 2+1
n——N/2 n——N/2

» O link (0.1): AM(t) =0fort<Oand A(t)=1fort >0
» Chain split in two for t < 0; single uniform chain for t > 0
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_ocal quench in the Ising spin chain

N/2+1 N/2+1
N Z o1(n) + A Z o3(n)oz(n+1)
n——N/2 n——N/2

» @ link (0,1): M(t) =0fort<Oand A(t)=1fort >0
» Chain split in two for t < 0; single uniform chain for t > 0
» Majorana fermion description of the critical quantum Ising model
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_ocal quench in the Ising spin chain

N/2+1 N/2+1
= Z o1(n) + A Z oz(n)oz(n+1)
n——N/2 n——N/2

» @ link (0.1): M(t) =0fort<Oand A(t)=1fort >0
» Chain split in two for t < 0; single uniform chain for t > 0
» Majorana fermion description of the critical quantum Ising model

L = inr(0:—0)Nr+inL( O — Ok )L +Hi A(£)0(x )R, nr(x) = nr(—x)
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_ocal quench in the Ising spin chain

N/2+1 N/2+1
= Z o1(n) + A Z o3(n)oz(n+1)
n——N/2 n——N/2

» @ link (0.1): M(t) =0fort<Oand A(t)=1fort >0
» Chain split in two for t < 0; single uniform chain for t > 0
» Majorana fermion description of the critical quantum Ising model

L = ifr(0e—0<)Nr+inL( 9 —O< )L +i A(£)0(x )nLR, nr(x) = nr(—x)
B.C: jr(07) = —j(07)
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_ocal quench in the Ising spin chain

N/2+1 N/2+1
= Z o1(n) + A Z o3(n)oz(n+1)
n——N/2 n——N/2

» @ link (0,1): AM(t) =0fort<Oand A(t)=1fort >0
» Chain split in two for t < 0; single uniform chain for t > 0
» Majorana fermion description of the critical quantum Ising model

L = ifr(Oe —0x)TIR+IML(Oe —Ox )L +iA(£)0(x )mLnR, r(x) = nr(—x)

B.C: 7jr(0™) = —je(07)
» Locally conserved energy density: pe(x) = nrid e — NrRiIOCTIR
» The rate of back-scattering of energy by the modified link is
le = pe(07) — pe(07)
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_ocal quench in the Ising spin chain
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N/2+1 N/2+1
= Z o1(n) + A Z o3(n)oz(n+1)
n=—N”2 rr:—N;’Z

@ link (0.1): AM(t) =0fort<0and A(t)=1fort >0
Chain split in two for t < 0; single uniform chain for t > 0
Majorana fermion description of the critical quantum Ising model

L = ifr(9e —0x)IR+iML(Fe — O )L +iA(£)d(x )nLnR, r(x) = nr(—x)

B.C: 7r(07) = —e(07)

Locally conserved energy density: pg(x) = nridxne — NriOxir
The rate of back-scattering of energy by the modified link is

le = pe(07) — pe(07)

le=0fort<0; pe(07) = —pe(0~) and Ig = 2p(07) for t > 0
Thermal noise E»:

1 o 1 , 1 =
dt; dt = ~
w2 ,/c, — (n — b+ fo) =2 =2 (At)?
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_ocal quench in the Ising spin chain
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N/2+1 N/2+1
H = Z o1(n) + A Z o3(n)oz(n+1)
n——N/2 n=—N/2

@ link (0.1): AM(t) =0fort<Oand A(t)=1fort >0
Chain split in two for t < 0; single uniform chain for t > 0
Majorana fermion description of the critical quantum Ising model

L = inr(Oe—0x)ir+inL(Oe —Ox )L +iA(£)d(x)nLnR, r(x) = nr(—x)
B.C: 7r(07) = —7e(07)

Locally conserved energy density: pg(x) = nrioxne — Nridxiir

The rate of back-scattering of energy by the modified link is

le = pe(07) — pe(07)

Ile=0fort<0; pe(07) = —pe(0~) and Ig = 2p(0™) for t > 0
Thermal noise E»:

I/Mdtdt : = Fe ..
2J)o T i\tn—tat+is) ~ 3m202 =2 (At)?
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_onclusions and Outlook

» We discussed the time dependence of the entanglement entropy
upon a quench of a QPC in a Laughlin state
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_onclusions and Outlook

» We discussed the time dependence of the entanglement entropy
upon a quench of a QPC in a Laughlin state

» We also discussed the time dependence of the current noise
generated by the quantum quench
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_onclusions and OQOutlook

» We discussed the time dependence of the entanglement entropy
upon a quench of a QPC in a Laughlin state

» We also discussed the time dependence of the current noise
generated by the quantum quench

» The entanglement entropy computed here describes the evolution of
excitations, not the entanglement of the ground state
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_onclusions and Outlook

» We discussed the time dependence of the entanglement entropy
upon a quench of a QPC in a Laughlin state

» We also discussed the time dependence of the current noise
generated by the quantum quench

» The entanglement entropy computed here describes the evolution of
excitations, not the entanglement of the ground state

» In the case of the noise this follows from the scaling dimension of
the current (1) while in the entanglement entropy it does not (it
follows from the conformal structure)

» Thus entanglement entropy and noise have the same (logarithmic)
behavior but for very different reasons

» We checked this conclusion in the case of an (honest-to god!) Ising

chain in which the entanglement still grows logarithmically but the
noise (of the energy current) decays as a power law
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