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Course Outline

e Solution of Classical Field Equations Using Finite Difference Techniques
(Luis,Matt)

1. Solving the wave equation using finite difference techniques
3 + 1 approach to the Einstein equations

Dynamical spherically symmetric spacetimes

Spherically symmetric Einstein-Klein-Gordon Evolution
Introduction to Black Hole Critical Phenomena

-

e General Relativistic Hydrodynamics Using Gudonov/HRSC Schemes
(Scott,Luis)

Mathematical structure; Linearly degenerate vs truly nonlinear egqns
Burgers eqn; Godunov Methods & the Riemann problem

3 + 1 Approach to GRHydrodynamics

Stationary solutions, TOV stars & perturbations
Magnetohydrodynamics & miscellaneous topics

- TR B

e Topics in Numerical Relativity (Luis,Frans)
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1. Gravitational waves overview (nature in GR & sources)
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4. Adaptive mesh refinement (AMR)/parallel computation
5. Miscellaneous topics: excision, apparent horizon finders, GW extraction
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Week 1: References

e Mitchell, A. R., and]D. F. Griffiths, The Finite Difference Method in Partial
Differential Equations, New York: Wiley (1980)

e Richtmeyer, R. D., and Morton, K. W., Difference Methods for Initial-Value
Problems, New York: Interscience (1967)

e H.-O. Kreiss and J. Oliger, Methods for the Approximate Solution of Time
Dependent Problems, GARP Publications Series No. 10, (1973)

e Gustatsson, B., H. Kreiss and J. Oliger, Time-Dependent Problems and
Difference Methods, New York: Wiley (1995)
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Solution of Classical Field Equations Using Finite
Difference Techniques

1. Solving the wave equation using finite difference
techniques
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Preliminaries

e Classical field equations = time dependent partial differential equations (PDEs)

e Can divide time-depTendent PDEs into two broad classes:

L. Initial-value Problems (Cauchy Problems), spatial domain has no
boundaries (either infinite or “closed”—e.g. “periodic boundary conditions™)

2. Initial-Boundary-Value Problems, spatial domain finite, need to specify
boundary conditions

e Note: Even if physical problem is really of type 1, finite computational
resources — finite spatial domain — approximate as type 2; will hereafter
loosely refer to either type as an IVP.

o Working Definition: Initial Value Problem

e State of physical system arbitrarily (usually) specified at some initial time
= f[‘j,

e Solution exists for { > t;; uniquely determined by equations of motion
(EOM) and boundary conditions (BCs).

Pirsa: 11040040 Page 11/89
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Preliminaries

e Approximate solution of initial value problems using any numerical method,
including finite differencing, will always involve three key steps

2

2
“

3.

Complete mathematical specification of system of PDEs, including boundary
conditions and initial conditions

. Discretization of the system: replacement of continuous domain by discrete

domain, and approximation of differential equations by algebraic equations
for discrete unknowns

Solution of discrete algebraic equations

e Will assume that the set of PDEs has a unique solution for given initial
conditions and boundary conditions, and that the solution does not “blow up”
in time, unless such blow up is expected from the physics

e Whenever this last condition holds for an initial value problem, we say that the
problem is well posed

e Note that this is a non-trivial issue in general relativity, since there are in
practice many distinct forms the PDEs can take for a given physical scenario
i 1104004y principle infinitely many), and not all will be well-posed in general Page 12/69
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Preliminaries

e Approximate solution of initial value problems using any numerical method,
including finite differencing, will always involve three key steps

1.

2

3.

Complete mathematical specification of system of PDEs, including boundary
conditions and initial conditions

. Discretization of the system: replacement of continuous domain by discrete

domain, and approximation of differential equations by algebraic equations
for discrete unknowns

Solution of discrete algebraic equations

e Will assume that the set of PDEs has a unique solution for given initial
conditions and boundary conditions, and that the solution does not “blow up”
in time, unless such blow up is expected from the physics

e Whenever this last condition holds for an initial value problem, we say that the
problem is well posed

e Note that this is a non-trivial issue in general relativity, since there are in
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Preliminaries

e Approximate solution of initial value problems using any numerical method,
including finite differencing, will always involve three key steps

1. Complete mathematical specification of system of PDEs, including boundary
conditions and initial conditions

Discretization of the system: replacement of continuous domain by discrete
domain, and approximation of differential equations by algebraic equations
for discrete unknowns

3. Solution of discrete algebraic equations

N

e Will assume that the set of PDEs has a unique solution for given initial
conditions and boundary conditions, and that the solution does not “blow up”
in time, unless such blow up is expected from the physics

e Whenever this last condition holds for an initial value problem, we say that the

problem is well posed v R Sglect Tool &
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Preliminaries

e Approximate solution of initial value problems using any numerical method,
including finite differencing, will always involve three key steps

1.

2

-

Complete mathematical specification of system of PDEs, including boundary
conditions and initial conditions

. Discretization of the system: replacement of continuous domain by discrete

domain, and approximation of differential equations by algebraic equations
for discrete unknowns
Solution of discrete algebraic equations

e Will assume that the set of PDEs has a unique solution for given initial
conditions and boundary conditions, and that the solution does not “blow up”
in time, unless such blow up is expected from the physics

e Whenever this last condition holds for an initial value problem, we say that the
problem is well posed

e Note that this is a non-trivial issue in general relativity, since there are in
practice many distinct forms the PDEs can take for a given physical scenario
Pre: 1100004 iy principle infinitely many), and not all will be well-posed in general Page 16/69
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Why Finite Differencing?

e There are several general approaches to the numerical solution of time
dependent PDEs, including

1. Finite differences
2. Finite volume

3. Finite elements
4. Spectral

e Finite difference (FD) methods are particularly appropriate when the solution is
expected to be smooth (infinitely differentiable) given that the initial data is
smooth

e This is the case for many classical field theories including those for a scalar
(linear /nonlinear Klein Gordon), vector (electromagnetism [Maxwell]), rank-2 [
symmetric tensor (general relativity [Einstein])

e In cases where solutions do not remain smooth, even if the initial data is—as
happens in compressible hydrodynamics, for example, where shocks can
risa: 110s00sform—the finite volume approach is the method of choice (next week)  ragezze
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e There are several general approaches to the numerical solution of time
dependent PDEs, including

1. Finite differences
2. Finite volume

3. Finite elements
4. Spectral

e Finite difference (FD) methods are particularly appropriate when the solution is
expected to be smooth (infinitely differentiable) given that the initial data is

smooth

e This is the case for many classical field theories including those for a scalar
(linear/nonlinear Klein Gordon), vector (electromagnetism [Maxwell]), rank-2 [
symmetric tensor (general relativity [Einstein])
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Why Finite Differencing?

e Accessibility: Requires a minimum of mathematical background: if you're
mathematically mature enough to understand the nature of the PDEs you need
to solve, you're mathematically mature enough to understand finite differencing

e Flexibility: Technique can be used for essentially any system of PDEs that has
smooth solutions, irrespective of

e Number of dependent variables (unknown functions)

e Number of independent variables (a.k.a. “dimensionality” of the system:
nomenclature “1-D” means dependence on one spatial dimension plus time,
“2-D”, "3-D" similarly mean dependence on two/three dimensions, plus
time, respectively)

e Nonlinearity I

e Form of equations: technique does not require that the system of equatiops
has any particular/special form (contrast with finite volume methods where
one generally wants to cast the equations in so-called conservation-law form)

Pirsa: 11040040 Page 24/89
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1. Mathematical Formulation
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The 1-D Wave Equation

e Consider the following initial value (Cauchy) problem for the scalar function
o(t,r)

Ot = COpe, —0<zx<00, t>0 (1)
0(0,x) = op(x) (2)
0¢(0,x) = Ilp(x) (3)

where ¢ is a positive constant, we have adopted the subscript notation for
partial differentiation, e.g. ¢, = 9*°¢/t*, and we wish to determine ¢(t, x) in
the solution domain from the initial conditions (2H3]) and the governing

equation (1))
Note the following:

e Since the spatial domain is unbounded, there are no boundary conditions R

e Since the equation is second order in time, two functions-worth of initial data
must be specified: the initial scalar field profile, &g(x), and the initial time
derivative, Ilg(x)

Prsx: 11040409 This system is well posed, and if the initial conditions ¢g(x) and Ily(x) aré™
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The 1-D Wave Equation

e Consider the following initial value (Cauchy) problem for the scalar function

o(t,r)
Opt = COpp. —x<xT<0x, t>0 (1)
o(0,x) = op(x) (2)
0¢(0, ) = Lp(x) (3)

where ¢ is a positive constant, we have adopted the subscript notation for
partial differentiation, e.g. ¢, = 9°¢/dt*, and we wish to determine ¢(t,x) in
the solution domain from the initial conditions (2H3) and the governing
equation (1))

e Note the following:

e Since the spatial domain is unbounded, there are no boundary conditions R

e Since the equation is second order in time, two functions-worth of initial data
must be specified: the initial scalar field profile, oy(x), and the initial time
derivative, Ilg(x)

Prsz: 110400 This system is well posed, and if the initial conditions ¢q(x) and Ily(x) "&¥e™
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The 1-D Wave Equation

e Eqn. ({1]) is a hyperbolic PDE, and as such, its solutions generically describe the
propagation of disturbances at some finite speed(s), which in this case is ¢

e Without loss of generality, we can assume that we have adopted units in which
this speed satisfies ¢ = 1. Our problem then becomes

(:)r!‘ — OII " == < 7 < OO . t " U

(0, x) = oplx)
d¢(0, ) = p(x)

— — —
(o B e
b

e In the study of the solutions of hyperbolic PDEs, using either closed form
(preferred to “analytic” ) or numerical approaches, the concept of characteristic
is crucial

s

e Loosely, in a spacetime diagram, characteristics are the lines/surfaces along
which information/signals propagate(s).

Pirsa: 11040040 Page 38/89
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The 1-D Wave Equation

----- — lefi—directed” characlenstics, x+! = constant A J(x+

- "nght—directed” charactenstics, x-—( = constant , nfx-i

t
A

- - -
X

e General solution of (4]) is a superposition of an arbitrary left-moving profile

(v = —e = —1), and an arbitrary right-moving profile (v = +¢ = +1); i.e.
ot.x)=lx+t)+r(x—1t) (1)
where
B { : constant along “left-directed” characteristics -

r : constant along “richt-directed” characteristics
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The 1-D Wave Equation

~~~~~~ — " "left-directed” characiensics. X+ = constant .| Kx+

“nght—direcied” charactenstics, x—! = constant , ffx—|

t
A

— -
X

e General solution of (4]) is a superposition of an arbitrary left-moving profile

(v = —e = —1), and an arbitrary right-moving profile (v = +¢ = +1); i.e.
ot.z)=lx+t)+r(z—1t) (1)
where
B { : constant along “left-directed” characteristics s

r : constant alone “riecht-directed” characteristics
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The 1-D Wave Equation

------ — "left—directed” characteristics, x+f = constant . ix+

C'nght-airected” charactensics, x—[ = constant , nx—|
t
A
-
X

e General solution of (4]) is a superposition of an arbitrary left-moving profile
(v = —e = —1), and an arbitrary right-moving profile (v = +¢ = +1); i.e.

ot.x)=lx+t)+r(x—1t) (1)
where

{ : constant along “left-directed” characteristics

Pirsa: 11040040 Page 48/89

r : constant alone “richt-directed” characteristics
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The 1-D Wave Equation

----- - " "left-directed” charactenstics, x+f = constant ., ifx+

“right—directed™ characlenstics, x-[ = constant , ffx—i

t
A

o
X

e General solution of (4)) is a superposition of an arbitrary left-moving profile

(v = —¢ = —1), and an arbitrary right-moving profile (v = +¢ = +1); i.e.
ot.x)=lx+t)+r(xz—1t) (1)
where
N ( : constant along “left-directed” characteristics -

r : constant alone “richt-directed” characteristics
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The 1-D Wave Equation

e Observation provides alternative way of specifying initial values—often
convenient in practice

e Rather than specifying u(x,0) and u.(x,0) directly, specify initial left-moving
and right-moving parts of the solution, ¢(x) and r(x)

e Specifically, set

o(x.0) = z)+r(x) (8)
df dr

o (z.0) = l(z)—1'(z) =—(z) — —(2) (9)
dx dx

e For illustrative purposes will frequently take profile functions og(x), £(x), r(xy
to be “gaussians”, e.g.

do(z) = A exp [— ((z — zo) /5)° (10)

Pirsa: 11040040 = A = Page 52/89
where A, xg and 4 are viewed as adjustable parameters that control the overall

e
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The 1-D Wave Equation

e Observation provides alternative way of specifying initial values—often
convenient in practice

e Rather than specifying u(x,0) and u.(z,0) directly, specify initial left-moving
and right-moving parts of the solution, {(x) and r(x)

e Specifically, set

o(x.0) = ¥{z)+r(x) (8)
df dr

&(z,0) = (z)—-1r'(z) =—(x) — —(x) (9)
dx dx

e For illustrative purposes will frequently take profile functions ¢g(x), £(x), r(z}
to be “gaussians”, e.g.

dp(x) = Aexp [— ((z — zo) /6)° (10)
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2. Discretization
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Deriving Finite Difference Formulae

e Essence of finite-difference approximation of a PDE:

e Replacement of the continuum by a discrete lattice of grid points

e Replacement of derivatives/differential operators by finite-difference
expressions

e Finite-difference expressions (finite-difference quotients) approximate the
derivatives of functions at grid points, using the grid values themselves. All
operators and expressions needed here can easily be worked out using Taylor
series techniques.

e Example: Consider task of approximating the first derivative u,(x) of a 3
function u(x), given a discrete set of values u; = u(jh)

Pirsa: 11040040 Page 55/89
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Deriving Finite Difference Formulae

X = ’,--, + JAX = x._} + | h
J - -

eee ) ) T eee

e One-dimensional, uniform finite difference mesh.
e Note that the spacing, Ar = h, between adjacent mesh points is constant.

e Will tacitly assume that the origin, xj, of coordinate system is xy = 0.
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Deriving Finite Difference Formulae

e Given the three values u(x; — h), u(x;) and u(xz; + h), denoted u;_y,u,, and
uj+y respectively, can compute an O(h?) approximation to uz(z;) = (uz); as
follows

e Taylor expanding, have

1.. 1. 1 .
Uj — h(”-r); +§hz(”-rr]_; —= ahj{“rrr}; T H}JJ[IIJ‘J‘.PI]; E i O(h})

”j'—l —
Uj = Uj )
| 1l 4 s "
uji+1 = uj+ h(uz); 'f‘;h'(“.r.rb‘*‘ah {uJ._,._P)J—i—ih (Uzzzz)j + O(h®)

3

e Now seek a linear combination of u;_y, u;, and u;4, which yields (u,); to
O(h?) accuracy, i.e. we seek ¢_. ¢y and c. such that

)
c—Uj—1 + Couj+ e+ uj+1 = (uz)j + O(h°)

Pirsa: 11040040 Page 79/89
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Deriving Finite Difference Formulae

e Results in a system of three linear equations for u;_1,u;, and u;+1:

c_— +cop+ce. = 0
—he_ + hee = 1
1 , | P _
Eh'r"_ - Eh'("_._ =
which has the solution
1
C. = ——
2h
Co = 0
» — { 1
CL — —'—E Q

e Thus, O(h?) FDA (finite difference approximation) for the first derivative is

Pirsa: 11040040
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Deriving Finite Difference Formulae

e Given the three values u(x; —h),u(x;) and u(x; + h), denoted u;_y, u;, and
Uj4+1 respectively, can compute an O(h ) approxnmation to u(x;) = (ug); as
follows

e Taylor expanding, have

1.. 1. . 1 .
u; 1 = u;—h(ug);+ ghz(u_,.l.]f - (—jrl{u_,.”), - ﬁh](f_:”_,_f]_JT + O(h?)
A ) &
u; = U4
L. & 1 1
Uj+1 = U»j‘i‘h(“r)j ‘+‘3h-(“rr)j ‘+‘Fh {lfrrr)J+)_1h (“11‘11‘]}"‘0(’1 )

s

e Now seek a linear combination of u;_y, u;, and u;+; which yields (u,); to
O(h®) accuracy, i.e. we seek c_.co and ¢4 such that

9
c—uj—1+ couj+ e+ uj+1 = (uz); + O(h®)

Pirsa: 11040040 Page 81/89
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Deriving Finite Difference Formulae

e Given the three values u(x; — h), u(x;) and u(x; + h), denoted u;_y,u,, and
uj+q respectively, can compute an O(h?) approximation to uz(Z;) = (v:); as
follows

e Taylor expanding, have

1.. 1. . 1 .

i1 — = h':”—l')i = 3}’2(“"'1']} - ah.l{”rr.r)_}' T ﬁ}ﬁ(”.r'ﬂrr]} B O(h])
uy = Uy

| . 1 | -

Ujpl1 = u}—}—h(ur)j +3h—(“l‘l‘)j+ahJ{ul‘J‘I)J+ﬂh4(“1‘1‘1‘1‘h*0(h'3)

3

e Now seek a linear combination of u;_y, u;, and u;, which yields (u,); to
O(h?) accuracy, i.e. we seek c¢_. ¢y and c. such that

0
C—Uj—1+ CoUj + C4 Uj41 = (Uz)j + O(R°)
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Deriving Finite Difference Formulae

e Results in a system of three linear equations for u;—1.u;, and u;+1:

c—+cg+c+ = 0
—he_ + hee = 1
| = - |
5)’? c_ + Eh .. = @
which has the solution
B 1
= T "o
e = B
r — { l
G.i — ——E %

e Thus, O(h?) FDA (finite difference approximation) for the first derivative is

Pirsa: 11040040 Page 83/89

— u.(x) + O(h%) {11}

u(xz + h) —ulx —h)
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Deriving Finite Difference Formulae

e May not be obvious a priori, that the truncation error of approximation is O(h?)

e Naive consideration of the number of terms in the Taylor series expansion
which can be eliminated using 2 values (namely u(x + k) and u(x — h))
suggests that the error might be O(h).

e Fact that the O(h) term “drops out” a consequence of the symmetry, or
centering of the stencil: common theme in such FDA, called centred difference

approximations

e Using same technique, can easily generate O(h?) expression for the second
derivative, which uses the same difference stencil as the above approximation
for the first derivative.

. — Qu(zx - — | 2 :
u(x + h) _;;(: IR ) O (12)
32

e Exercise: Compute the precise form of the O(h?) terms in expressions ((11))
Pirsa: 11040043 nd @) Page 84/89
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Sample FDA for the 1-D Wave Equation

e Let us consider the 1-D wave equation again, but this time on the finite spatial
domain, 0 < x < 1, where we will prescribe fixed (Dirichlet) boundary

conditions

e [ hen we wish to solve

D¢+
o(0.x)
0 (0, )
o(t.0)

Orr (=1} 0=z2<1 ©t=0 (13)
oo(x)
Ho(x)
o(t.1) =0 (14)

e We will again require that the initial data functions, ¢y(x) and llg(x) be N

smooth

e Moreover, in order to ensure a smooth solution everywhere, the initial values
must be compatible with the boundary conditions, i.e.

Pirsa: 11040040
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Sample FDA for the 1-D Wave Equation

e Let us consider the 1-D wave equation again, but this time on the finite spatial
domain, 0 < x < 1, where we will prescribe fixed (Dirichlet) boundary

conditions

e [ hen we wish to solve

Dtt
o(0.x)
Dy ( 0.r )

o(t,0)

Oxs fe=1) P<z<l &3>0 (13)
®o(x)
Iy(x)
o(t.1) =0 (14)

e We will again require that the initial data functions, @g(x) and lly(x) be N

smooth

e Moreover, in order to ensure a smooth solution everywhere, the initial values
must be compatible with the boundary conditions, i.e.
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