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Abstract: In this talk 1 will discuss a new class of cosmological scalar fields. Similarly to gravity, these theories are described by actions linearly
depending on second derivatives. The latter can not be excluded without breaking the generally covariant formulation of the action principle.
Despite the presence of these second derivatives the equations of motion are of the second order. Hence there are no new pathological degrees of
freedom. Because of this structure of the theory the scalar field kinetically mixes with the metric without direct non-minimal couplings to curvature
- the phenomenon we have called Kinetic Gravity Braiding. These theories have rather unusual cosmological dynamics which is useful to model
Dark Energy and Inflation. | will discuss an equivalent hydrodynamical formulation of these theories and cosmological applications.
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IMPERFECT DARK ENERGY

OF
KINETIC
GRAVITY
BRAIDING

| Alexander Vikman

(CERN)



» Non-canonical scalar field gié which “acts” like
imperfect fluid: on general (not exact FRW)
background

T Bt~ 1 ' P

° C}.’ﬁ kinetically mixes / “braids” with the metric

(00)” 0, (V—g9""0y0) cf. FD (A% F@m (By)
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» Manifestly stable (no ghosts and no gradient instabilities)
and large violation of the Null Energy Condition (NEC) is
possible even in minimally coupled stable theories: stable
Phantom ) < —1

» Vanishing shift-charge (charge with respect to ®—o+c)
corresponds to cosmological attractors similar to Ghost
Condensate / “bad” k-Inflation. These atiractors can be
manifestly stable (no ghosts and no gradient instabilities)
and their exact properties depend on external matter. These
attractors generically evolve to de Sitter in late time

asymptotic. Interesting for DE!
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BRAIDING METRIC
WITH A SCALAR FIELD




WHAT IS

KINETIC GRAVITY BRAIDING?

S, = [ d'zy=g[K (6, X) + G (¢, X) 0]
where X = %ngﬂqbv,,qﬁ
Minimal coupling to gravity Stot — S(p + SEH

However, derivatives of the metric are coupled

to the derivatives of the scalar, provided

Gx #0
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ACTION FOR KINETIC GRAVITY BRAIDING IS
SIMILAR TO
EINSTEIN-HILBERT ACTION
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ACTION FOR KINETIC GRAVITY BRAIDING IS

SIMILAR TO
EINSTEIN-HILBERT ACTION

» The second derivatives (higher derivative -HD)
enter the action but only line arly

® One can eliminate the HD only by breaking the
Lorentz-invariant formulation of the theory.

* Boundary terms are required!

» Despite the HD in the action, the
equations of motion are still of the 2nd order:

NO new degrees of freedom -
"N Ostrogradsky’s ghosts




KINETIC GRAVITY BRAIDING IS SIMITLLARTO
GALILEON ((© Nicolis, Rattazzi, Trincherini 2008)

BUT

» Does not require the Galilean
symmetry:

@ — @+c and 0,0 — 9,0+ c,
» General functions K (¢, X) and G (¢, X)

» Minimal coupling to gravity, NO (bT“ ,
NO higher order therms like K-Essence,

. LY 1 :
pirsa;msog?;)‘q)TA (( ‘ﬁ&)z = ¢’;,uv¢5”u - E‘rﬁ’mé?ﬂR) e




EXPANSIONS IN

GRADIENT TERMS

e K-Essence, DBI etc

K(6,X)~X(14+ec(¢) X +ea(o) X2+ ..)

» Kinetic Gravity Braiding — integrate the canonical kinetic
energy by parts

G (0. X)
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EQUATION OF MOTION I

L**V V¢ + (Vo Vge) QP (V,V,0) +
+Z —GxREEV 0V ,0 =0
Braiding
EOM is of the second order: L,,.Q%*, Z
constructed from field and it’s first derivatives

Qaﬁﬂ’f is such that EOM is a 4D Lorentzian
generalization of the Monge-Ampere Equation,
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EQUATION OF MOTION II

» Shift-Charge Current: J L

» New Equivalent Lagrangian: P

» Equation of motion is a “conservation law”:
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EQUATION OF MOTION II

» Shift-Charge Current: o L

» New Equivalent Lagrangian: P
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V,J* =P,

Pirsa: 11030110




EQUATION OF MOTION II

» Shift-Charge Current: J w
Juo=(Lx —2G4) Vo — GxV, X
» New Equivalent Lagrangian: P

P=K—2XGy —GxV*¢VrX

» Equation of motion is a “conservation law”:

V,J" =P,
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BRAIDING

Einstein Equations (¢. 09, 08¢, g. g, d9g) = 0
oEoM (¢. 06,009, g. 0g.0dg) = 0

Cannot solve separately !!!!

characteristics (cones of propagation )

depend on external matter




IMPERFECT FLUID

FOR TIMELIKE GRADIENTS

* Four velocity U, = \Vzﬁﬁi projector:_l_#y: Guv — UpUy
. . ' d _
* Time derivative ( ) — =u"V,
dr

® Acceleration a L = U L

— A 3
» Expansion v, :_LM V)\'UJM — V/V\
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EFFECTIVE MASS &

CHEMICAL POTENTIAL

e charge density: 7] — J“”UJM — no —|— KJQ

“Braiding”
o energy density: £ — THV’UJM’U;V — 80 4 Omk
» effective mass per shift-charge / chemical potential:

mz(%) :V2X:g§
on Vi
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SHIFT-CURRENT AND DIFFUSION

K s /lefusmn
JU’ — ’}’L’u,u _L[.& VAm
T
§ 59, L&L, vol. 6
o 2X G Is a “diffusion”/
e — X  transport coefficient



IMPERFECT FLUID

ENERGY-MOMENTUM TENSOR

. 1 .
e P = ST“"’ 1= Fp — D

* Energy Flow {, E—Lﬂ)\ T;\UV = m J_”V Y

qu — — K Z V,,m No Heat Flux!

* Energy Momentum Tensor
Ly = Eupuy— Ly P+ 2uuqy)

rGoleing for 1M for small gradients or small |5, one obtains bulk viscosityrgezuss



ENERGY CONSERVATION IN

COMOVING VOLUME

Energy conservation: ,V,T"" =0
) 4
dE = —PdV 23 mdeif

Euler relation: § — mn — P 0

Momentum conservation:
i 1y 'V AT’”" =




SHIFT-CURRENT AND DIFFUSION

K " . /lefusmn
JH’ =— ’n,’u,u _L}A VAm
T
§ 59, L&L, vol. 6
o 2X G Is a “diffusion”/
R = X  transport coefficient



IMPERFECT FLUID

ENERGY-MOMENTUM TENSOR

’ 1 _
Pressure D = STuv J—m/: PO _ K

» Energy Flow q” E_l_u)\ T;\UV — 717t _]_“V JV

Q[JJ — — K Z Vym No Heat Flux!

* Energy Momentum Tensor
Ty = Eupuy— Ly P+ 2uuqy)

rGoleing for 1M for small gradients or small |5, one obtains bulk viscosityragezss



ENERGY CONSERVATION IN

COMOVING VOLUME

Energy conservation: «,V,T"" =0
v
dE = —PdV 2 2 mdeif

Euler relation: § — mn — P 0

Momentum conservation:
i 1 oe 'V AT""” =3




IMPERFECT FLUID

ENERGY-MOMENTUM TENSOR

. 1 _
p— P = 3fl”‘“"" 1= Fo — D

» Energy Flow q“ E—L)U»)\ T:,\UV =27 —]—;w JV

Q[JJ — — K Z v]jm No Heat Flux!

* Energy Momentum Tensor
Ly = Eupuy— Ly P+ 2uuqy)

rGoleing for 1M for small gradients or small |5, one obtains bulk viscosityragezss



ENERGY CONSERVATION IN

COMOVING VOLUME

Energy conservation: u,V,T"" =0

\ 4
dE = —PdV + mdeif

Euler relation: § — mn — P 0

Momentum conservation:
i il BoS V;\T}”" == ff}]




VACUUM-ATTRACTORS

Euler relation: 5 — mn — PO

\ 4
for no particles: n* = O
k4

I almost dS!



qH:O and OZSH

Friedmann Equation:
1
H2 — kmH - 3 (80 + pext)

/-

-1 _ K171 “crossover” scale in DGP

Fe
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CHARGE

CONSERVATION

n+ 3Hn =Py
If there is shift-symmetry then

Po =10
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INFLATION BRINGS
THE SCALAR TO
ATTRACTOR

n, =0




EXAMPLE:

SIMPLEST IMPERFECT DARK ENERGY

Only one free parameter [/

L= X (@14 pu0g)

» shift-charge density

n=m(3uHm — 1)
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NONTRIVIAL

ATTRACTOR
No Particles: 7}, — O
Y




HIGH FREQUENCY

STABILITY

Effective metric for perturbations

2K 4
G = D, +82 1, —-HICFH — 26,0, Uy
— R\
P Extrinsic curvature for ¢ = const
RY Em — KO 3 =
NO ”D — | aliz
Ghosts e \
n+ Va (HJ’IL ) 1
= —K
m 2
In general propagation is anisotiropic, but in cosmology:
5 b —2xH
£ =
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SOUND SPEED

Pm + 25+ k (480 — km /2)

= Em — 3k (H — km/2) 7

P
&
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“p ext

Total Energy negative o .
04 2 L X 0.6 0.7 0.8

/ Dynamically inaccessible
03

T— -

Pressure singularity

Phase portrait for scalar field & dust



SOUND SPEED

Pm + 25 + & (480 — km /2)

s Em — 36 (@ — km/2) 7

P
é
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HIGH FREQUENCY

STABILITY

Effective metric for perturbations

2K
Gy = Drayom, + 2 1, “EK:W-’ — 26,0, Uy)
3_ . Exirinsic :}urvature for qb — const
| E _—k 3
No #»p- =
Ghosts e \
n+ V., (Hfu, ) 1
s 1@
m 2
In general propagation is anisoiropic, but in cosmology:
5 o —2x1
L =
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PF' ext

| Dynamically inaccessible
00— Total Energy negative

02 03 04 9,X 08 0.7 08

Pressure singularity

Phase portrait for scalar field & dust



0.7 H| 1
06- Phantom
[ Wx{—l Wx}—l
0.5 - |
E 04- 4':9 \ - :
=y FRN Cr . Crossing
03- N O \ -
02- D<0 E‘ﬂ\\“m\\\
 Ghosty ~
0.1 _*"____d_
[ /" Dynamically inaccessible
00° / _ Total Energy negative -
02 ;,6.3 04 9,X 06 0.7 08

Pressure singularity

Phase portrait for scalar field & dust



DARK ENERGY

3 L /2 _
assume today \/;ﬂpext < 3 * Hf ~ g gp 1

T iz, | \/§ 1
5 3,u ~ 3pCDM » o PCDMHE = o <

Mass Scale ~ p =13 ~ (HZMp)) Y3 ~ 10713eV

Length Seale: 1000 km

In Quintessence - the size of the universe
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loga

Evolution of dark energy properties in the Friedmann universe also contain-
ing dust and radiation. The scalar evolves on its attractor throughout the pre-

sented period. During matter domination wx = —2, while wy = —7/3 during

radiation domination. The sound speed is superluminal when the scalar energy
density is subdominant, becoming subluminal when Qyx =~ 0.1 and wx =~ —1.4



EXAMPLE:?

SIMPLEST IMPERFECT DARK ENERGY

Only one free parameter [/

e L= X (&1 4 p0g)

» shift-charge density

n=m(3uHm — 1)
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NONTRIVIAL

ATTRACTOR
No Particles: 7}, — O
Y

m, = (3uH) ™ m, =0
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DARK ENERGY

3 | S -
assume today \/;ﬂ'pext <1 » HE ~ 6 5“ 1

1 /2 _, \/§ 1
5 3# ~ 3pCcDM » o PCDMHE = o <

Mass Scale ~ p =13 ~ (HZMp)) Y3 ~ 10713eV

Lengith Seale: 1000 km

In Quintessence - the size of the universe
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Evolution of dark energy properties in the Friedmann universe also contain-
ing dust and radiation. The scalar evolves on its attractor throughout the pre-
= —2, while wx = —7/3 during

sented period. During matter domination wx
radiation domination. The sound speed is superluminal when the scalar energy
density is subdominant, becoming subluminal when Qx =~ 0.1 and wx =~ —1.4
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Evolution of DE properties in the Friedmann universe which also contains
dust and radiation. The energy density in the sealar is .J-dominated (off at-
tractor) until a transition during the matter domination epoch. This allows
the scalar to increase its contribution to the total energv budget throughout
radiation domination (wx = 1/6) and provide an early DE peaked at matter-
radiation equality, from whence it begins to decline with wyx = 1/4. The transi-
tion to the attractor behaviour is rapid. The equation of state erosses wx = —1
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0.1 < 2, < 0.5 and Qxeq < 0.1. The shading contours correspond to the
energy density of DE today (lyg. Two parameterisations of DE behaviour are
shown: wy and w'y evaluated today. and wy evaluated today and at z = 1/2.
The requirement that the energy density in DE at matter-radiation equality be
small. QF < 0.1 forces the value of the shift charge to be small today Qg < 10~2.
This means that in the most recent history. the evolution has effectively been
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wxo

The shading representing the contribution of DF to energy density at matter-
radiation equality. We choose to cut the parameters such that the contribution

to this early DE at that time is no larger than 10%. It can clearly be seen that
values of wyx closer to —1 are obtained when the shift charge is larger, but this
ieads to more early DE., eventually disagreeing with current constraints




FURTHER

DEVELOPMENT

Kinetic Gravity Braiding with (3 oc X "

arXiv:1011.2006vz2 [astro-ph.CO], Rampei Kimura. Kazuhiro Yamamoto
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FIG. 1: Left panel: The effective equation of state w.g as a function of redshift for ACDM (=olid curve) and the kinetic braiding

o 1103%1?(9& with n = 1 (dashed curve), n = 2 (dash-dotted curve), and n = 3 (dotted curve), respectively, Right panel: The comovi
7 distance r{z), normalised by Hy. as a function of redshift for ACDM and this model.
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CONSTRAINTS FROM CMB AND SN TA

Logn

FIG. 3: The left panel is the contour of xSy on the plane €, and n for the kinetic braiding model, The

<
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solid curve are the 1 o and 2 7 contours, respectively. The right panel is the same but of y55-

The SCP Union2 Compilation i2 a eollection of 357 Iype la suparnovas data whasa range of the redshift iz 0015 <2< 1.4
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GROWTH FACTOR

1.00 7= = g :

037 Acom ]

s 080F 1=
ey E iy, Rt 1 =
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d d

FIG. 4: Left panel: The growth factor divided by scale factor as a funetion of seale factor for the A CDM model (solid curve)
and the kinetic braiding model n = 1 (dashed curve). n = 2 (dash-dotted curve). and n = 3 (dotted curve). respectively. Right
panel: The linear growth rate as a function of scale factor.

Kinetic Gravity Braiding with (3 oc X ™
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EFFECTIVE NEWTON CONSTANT

FOR PERTURBATIONS
AND THE SOUND SPEED
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Kinetic Gravity Braiding with (3 oc X "
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THANKS A LOT FOR
YOUR ATTENTION!




GROWTH FACTOR
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FIG. 4: Left panel: The growth factor divided by scale factor as a function of scale factor for the A CDM model (solid curve)

and the kinetic braiding model n = 1 (dashed curve). n = 2 {dash-dotted curve), and n = 5 (dotted curve), respectively. Right
panel: The linear growth rate as a function of scale factor.
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CONSTRAINTS FROM CMB AND SN A
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FIG. 3: The left panel is the contour of xSy on the plane €, and n for the kinetic braiding model. The

dashed curve and the
. p L 7 u ey = n
solid curve are the 1 o and 2 7 contours, respectively. The right panel is the same but of y55-
The SCF Union2 Campilation is a collection of 557 type la supernovae data whosa range of the redshift iz 0.015 <z < 1.4 ]
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GROWTH FACTOR
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FIG. 4: Left panel: The growth factor divided by scale factor as a function of seale factor for the A CDM model (solid curve)

and the kinetic braiding model n = 1 (dashed curve). n = 2 {dash-dotted curve). and n = 5 (dotted curve), respectively. Right
panel: The linear growth rate as a function of scale factor.
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EFFECTIVE NEWTON CONSTANT

FOR PERTURBATIONS
AND THE SOUND SPEED
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FURTHER

DEVELOPMENT

Kinetic Gravity Braiding with (3 oc X "

arXiv:1011.2006vz2 [astro-ph.CO], Rampei Kimura. Kazuhiro Yamamoto
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FIG. 1: Left pane]_ The effective equation of state w.g as a function of redshift for ACDM (solid curve) and the kinetic braiding
= 1103’%1 dE with n = 1 (dashed curve), n = 2 (dash-dotted curve), and rn = 5 (dotted curve), "E::pe-l::t..vel"p" Right panel: The cum:;v

stance r{z), normalised by Hy, as a function of redshift for ACDM and this model. 64/66



I
S
B

i !
Wy

—1:2
-3
-1.4
-1.5
-1.6
.7

Wwxo.5

-1.35 -13 -125 -12 -1.18 -1.1 -1.05 -1
wxo

The shading representing the contribution of DFE to energy density at matter-
radiation equality. We choose to cut the parameters such that the contribution

to this early DE at that time is no larger than 10%. It can clearly be seen that
values of wyx closer to —1 are obtained when the shift charge is larger, but this
ieachs to more early DE., eventually disagreeing with current constraints




DARK ENERGY

3 - s 1B _4
assume todayv — H AN = o=
today \/;)u'pext <1 * * 6 3“‘
T iz \/5 1
o 3y 7 = oo o=

Mass Scale ~ p =13 ~ (HZMp)) Y3 ~ 10713eV

Length Seale: 1000 km

In Quintessence - the size of the universe
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