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Abstract: The standard method to study nonperturbative properties of quantum field theories is to Wick rotate the theory to Euclidean space and
regulate it on a Euclidean Lattice. An alternative is & quot;fuzzy field theory& quot;. This involves replacing the lattice field theory by a matrix
model that approximates the field theory of interest, with the approximation becoming better as the matrix size is increased. The regulated field
theory is one on a background noncommutative space. | will describe how this method works and present recent progress and surprises.
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Motivation

@ Regularization of Quantum Field Theory.
@ Physics in noncommutative spacetime.

@ Possible new micro structure for spacetime.
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Qutline

@ Divergences in Quantum Field Theory.

@ Parallels with statistical systems near a continuous phase
transition.

@ Reformulating familiar concepts for a non-commutative world.
@ Matrix models, the basic phenomena

@ Examples of fuzzy spaces.

e Simulations

@ Emergent background geometry.
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Divergences in Quantum Field Theory
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The simplest field theory: A Hermitian Scalar Field

Wick rotate

=
@ o(X.t) = o(x.7), with o also Hermitian, 0* = o
e S[so] — —iSg|o]

S[-] = /drdf"x{ (i,;)z;(f;)zv(;)}

Selo] = [ drdx(3 (j_) + 1 (96)" - vion

@
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Universality

K. Wilson explained that renormasibility is the insensitivity to
micro-scructure. His renormalization group put the Landau theory
of continuous phase transitions on a firmer footing. In Phys. Rev.
B 4 3184 (1971) Wilson explained the relation to the Kadanoff
block spin transformations deriving scailing at the critical point
from block spin transformations via the renormalization group
equations. [ he Wilson renormalization group explained why
critical exponents in critical phenomena depended only on space
dimension and symmetry of the orderpameter.
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The simplest field theory: A Hermitian Scalar Field

Wick rotate

a=i——-r
@ o(x.t) = o(Xx.7), with ¢ also Hermitian, 0* = o

e S[o] — —iSg|o]

S[-] = ./’dtd?'x{% (‘;) —% (?,:)2 — V(¥)}

Sefo] = / drd3x{% (3:)
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B 4 3184 (1971) Wilson explained the relation to the Kadanoff
block spin transformations deriving scailing at the critical point
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The simplest field theory: A Hermitian Scalar Field -

Wick rotate

=i
@ o(X.t) = o(x.7), with o also Hermitian, 0* = o

e S[g] — —iSg|o]

S[s] = / dtd?'X{% (3’;)_ —% (?;)2 — V(¥)}

1 (g
Sefo] = / drd3x{§ ( d:)
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Universality

K. Wilson explained that renormasibility is the insensitivity to
micro-scructure. His renormalization group put the Landau theory
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block spin transformations deriving scailing at the critical point
from block spin transformations via the renormalization group
equations. [ he Wilson renormalization group explained why
critical exponents in critical phenomena depended only on space
dimension and symmetry of the orderpameter.
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Block Spin Transformations
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Superfluid Specific Heat

The Specific Heat of Liquid Helium in Zero Gravity very near the
Lambda Point from J. A. Lipa et al Phys. Rev. B 68, 174518
(2003). The specific heat exponent a = —0.0127 = 0.0003.

G, (Wmole K)

02 0 0.2

irsa: 11030105 Page 13/90



L andau-Ginzburg Model

Superfluid helium-4 is very well described by the microscopic
3-dimensional energy density:

+o51¥
From this, using perturbation theory, the renormalization group
and orther resummation techniques, the most precise estimates of
the specific heat, critical exponents and universal amplitute ratios
as well as scaling functions are determined. All are in excellent
agreement with experiment, but recent space based experiments
are challenging the precision of exponents obtained from 7-loop
calculations.
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Non-perturbative approach to

Field Theory

Use a microscopic lattice structure:
The lattice regulanzation

involves replacing Sg[o] with a lattice
Hamiltonian so that Sglo] — FH|s] with

Hls] =

—% Y s5+) U)
<I > I

if s: € {

—1.1} the model reduces to an Ising model.
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2-d Ising model

Simple Sampling:

@ Choose s; = +1 with equal probability independently at each
\attice site.
o Generate N configurations s(%) = {s!}.

@ Estimate the partition function

Loty N
Z: 2 '___—:.'-‘{SI'-”}
N -
k=1
and observables
= N
2L“'Ll (<l k) I
<) L ]O(SH])
ZN
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—

But very wasteful: For an L x L lattice the fraction of

configurations that is needed for 90% of the partition function in
the 2-d Ising model at the phase transition is (Hasenbusch 2002)

| | Fraction |

2| 0875
3| 0133
4| 00343

5 | 0.00283 |

|.e. exponentially few configurations needed.
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Metropolis Algorithm

ldea: Generate the configurations with the probability distribution

= L —35(s)
P(S) — ft‘
Done by creating a discrete dynamics (Markov Chain) to
approximate a Boltzmann Equation. The late time equilibrium
should be the Boltzmann distribution with energy functional
5(s)
The dynamics is fictional and choosen to best fit the purpose and

N
1 :
= &) —— ) (k)
= N ;_1(, {s* )
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Difficulties for Lattice Field Theory

@ Complex terms in the action functional

@ Fermions

Pirsa: 11030105

Non-local

Fermion doubling

Chiral symmetry on the lattice
Supersymmetry on the lattice

Fermion determinant of no definite sign
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The fuzzy sphere

Berezin (1975), Hoppe (1982) and Madore (1992)

Berezin, Hoppe and Madore treated the sphere as a phase space

and quantized this’.
Take the su(2) generators L; (familiar generators of angular

momentum). [L,. Lp] = i€spclc

2+ 15+ L2 =j(i+ 1)1

rsa: 1100105 S€€ Lectures on fuzzy and fuzzy SUSY physics by A. P. Balachandran. eage e
Seckin Kurkcuoglu and S. Vaidya World Scientific (2007)



A Sphere in 3-space

A discretized sphere a la Mathematica
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A Fuzzy Sphere in 3-space

The fuzzy sphere is naturally round with SO(3) symmetry and
represented by an algebra Maty with additional structure.
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A sphere from matrices

We get a2 sphere

NZ+Ns+N:=1 A nice round “sphere” .

But it is non-commutative.

= 2i
[Ny No] = —Z—Ns

There is an uncertainty principal for spatial position!
But for N — oc we recover a commutative sphere.
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The algebra of functions on S? is the algebra of the spherical
harmonics Y),,. In the fuzzy sphere the

Yfm — & }/fm

with Y}, the polarization tensors of nuclear physics. Simplest
example N = 2,

x —qF

Using the technology of ~-products it is possible to keep the
elements of the algebra as the Y, and only change the
multiplication rule so that

Yr’m : Yf”m" = Y!’m *N Yf’m

and for
N — oc >N — -
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No matter how we dress it up with » products or suggestive
matrices looking like spheres, Maty is just a matrix algebra. To
capture a geometrical object we must supply more structure.
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Can you hear the shape of a drum?
M. Kac, American Mathematical Monthly Vol 73, 1 (1966)
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Fuzzy Spaces

The round fuzzy S is specified by the Laplacian
L =[L.[L.]]
where L; are the irreducible SU(2) generators of dimension

d=L+1

An ellipsoidal geometry can be specified by

Ay = Z %[L;. [L:. ]
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This construction generalizes to CPN by choosing the matrix

dimension to be d; = % and replacing the L; by the
SU(N — 1) generators in this representation.
For example CP> can be specified by choosing the matrix size to

be df = (L +—3)(L+2)(L+1) and the Laplacian to be

0

-

L= [La [La H
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But CP? is rather special since it can be also be realised as an
S0O(6) orbit

»2
(&)

[JaB- [JaB--]]

where Jag are the irreducible SO(6) generators in this
representation. [ he geometry again can be deformed by giving
different coefficients for the different generators.

In fact the same orbit of points can also be realised as an SO(5)
orbit.

D | =

I
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One special family of deformations is that which preserves the
SO(5) subgroup of SO(6) and takes advantage of the fact that
CP3 is an S? bundle over S*. In this case the Laplacian can be
written

£t h(zﬁfS) = 1:(36})

The eigenvalues of L, are n(n+3) — h2m(m — 1) with
n=0.---. Land m=0.--- .n. The term C; = (2[,?5) —ﬁ(zﬁ)) IS

zero on representations that correspond to functions on S* and
non-zero and positive on the remaining representations, i.e.
representations with m %= 0. When the parameter h is chosen large
these non-S* representations are suppressed and the low lying
spectrum coincides with that of S*. If we choose h > L[(L + 3) all
the modes with A < L(L + 3) will correspond to $* modes and
the others will decouple from the low energy physics.
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By choosing the Laplacian to be
L3y =L+ (LL+3)—£F)) - n(2F) - £35). (1

we specify the low energy geometry to be that of a round S3. The
term proportional to A’ makes the top representation associated
with the fuzzy S?* the lowest lying representation of this new
Laplacian and £{24} — %[J,_} 3-[Jas3- -]] breaks the SO(5) symmetry
down to SO(4) and ensures that the new low lying spectrum
coincides with a cutoff version of that for a round S3. Thus if

K > L all modes with eigenvalues < [(L + 2) correspond to S
modes and the others decouple from the low energy physics.
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The unit disc The fuzzy unit disc

(F. Lizzr, P. Vitale, A. Zampini, JHEP 0308 (2003) 057)
is obtained by taking the Laplacian given by

A =4[a". [a.]]

where a' and a are creation and annihilation operators [a. a'] = 1.
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By choosing the Laplacian to be

Ly =L+ H(LL+3)—£F)) ~n(2F - £3). ()

we specify the low energy geometry to be that of a round S3. The
term proportional to A" makes the top representation associated
with the fuzzy S* the lowest lying representation of this new
Laplacian and £ a) = —[J.;k 3-[Ja3- -]] breaks the SO(5) symmetry
down to SO(4) and ensures that the new low lying spectrum
coincides with a cutoff version of that for a round S3. Thus if

K > L all modes with eigenvalues < L(L - 2) correspond to S2
modes and the others decouple from the low energy physics.
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The unit disc The fuzzy unit disc
(F. Lizz1, P. Vitale, A. Zampini, JHEP 0308 (2003) 057)
is obtained by taking the Laplacian given by

A =4[a". [a.]]

where a' and a are creation and annihilation operators [a. a'] = 1.
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Larger Point of View

Quantize CK for some K and find a subsurface in this space.
Restrict to this surface in the quantized space. The simplest
examples are the Moyal-Groenewold plane.

Many examples are based on coadjoint orbits

[though see J. Arnlind, M. Bordemann, L. Hofer, J. Hoppe, H.
Shimada arXiv:hep-th/0602290;

T.R.Govindarajan, Pramod Padmanabhan, T.Shreecharan
arXiv:0906.1660] who give an examples of a fuzzy tori not based
on coadjoint orbits.

However, the ability to retain rotational and higher symmetries is
of significant advantage in applications especially in the
non-perturbative study of field theories.
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The action for fields other than scalar fields involves more than
just the geometry of the underlying space. In the commutative
setting there is typically some bundle structure associated with the
construction.

In the case of spinor fields when the manifold M admits a
spin-structure the fuzzy spinor action can be taken as

= Tr(
=
where Dy is the Dirac operator and WV is a suitably defined spinor

field. On Sﬁ- one can take W to be a two component column vector
with entries from Maty and the Dirac operator to be

S[V] ‘I'(DM + m)W¥)

DS; — KT,;[L,'. ] — 1.

The spectrum is an exact cutoff version of the commutative one.
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A Dirac operator for S*

In the case of S* one can take W to be a four component spinor
with matrix valued entries from Matg, and the Dirac operator
given by

D_c;s_. — KT_;\B[JAB. ] — 2 — hC;

with 45 the generators of Spin(6) in the four dimensional
representation.

: 2 -2
Cr = (2Lr5} _L{t’:})
This construction does not correspond to the fuzzy Kaluza-Klein
construction of the scalar case, but for sufficiently large h the low
lying spectrum is identical to that of a truncated version of the
commutative theory. More generally the spinor field will require

many more components than the minimum.
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Yang-Mills Fields

This includes 3 “normal” scalar field.

v N.__l \

A natural action for Yang-Mills is then

Tf | TEe
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The Simplest Matrix Model

Consider the Gaussian probability distribution

a3 Tr($<)

P(®) = > where = /[ddD]E_ e s 5

This distribution splits into the uniform distribution on
M = SU(N)/U(1)N and a probability distribution for the
eigenvalues of ®:

B 1y, T 7
7> & = Lk K

p({A) = [ (v =) Z /Vol(M)

1<J

which for large N converges to the Wigner semi-circle distribution

PN = /5 — N2

i )
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Generic Features of Random Matrix models.

Random matrix models, of a single random matrix, are typically
characterised by the eigenvalue distribution of the random matrix.
They have the generic features:

@ [he eigenvalues repell one another.

@ [he eigenvalues all fall within a finite domain. The domain

may not be connected— the distribution is concentrated on
[2n ] 2N

VBV

@ The spread in eigenvalues grows (typically) as v/N.

“cuts’ . For the Wigner semi-circle the cut is |

@ Phase transitions occur when cuts merge or separate.
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Example: The ®* matrix model.

V(®) = Tr(bd? + cd?*) with ® an N x N matrix.

Pirsa: 11030105

The model is characterized by the distribution of the
eigenvalues of @,

For ¢ = 0 the eigenvalues have a Wigner semi-circle
distribution.
For ¢ > 0 and b << 0 the eigenvalues fall into two

disconnected regions, i.e. they have a “two cut’ distribution.

The partition is not analytic at b = —2v/Nkc,
only the first two derivatives of In Z are continuous and the
phase transition of 3rd order.

The random matrix " gravity” transition occurs for ¢ < 0 and
b> 0.
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A fuzzy field theory model.

Fuzzy field theories are matrix models with fixed background
matrices. | he scalar field theory of the fuzzy sphere has:
Sn(®.a.b.c) = Tr(—a[L;. ]* + bd? + cd?)

L; are the generators of su(2) in the N dimensional representation.
again with ® an N x N matrix.

The action Sy(®. a. b. ¢) converges for N — o¢ to the action of a
scalar field © on the round commutative sphere.

e = )
am (900 rA) = Sn(®. S Sn ain)
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The matrix ® = [, wpyo, with w the unit volume form on S? and

S

pn is a particular matrix valued function on S°.
PN — Z Ym Yfm
Im

where Y/, are the spherical harmonics and Y/, are polarization
tensors satisfying

[L5.Yim] = mYim and  [Li.[L. Yim] = I(I = 1) Yim

So that if
== 3 Y e
=0 m——
then

¢ = Y y: Cim Y’m
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The phase diagram of fuzzy ®*
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The phase diagram was generated by Monte Carlo simulations
[X. Martin, F. Garcia Flores, D.O'C. 2006; Pamero 2007]. Recent
perturbative efforts to calculate the transition lines [Saemann
2009]. It is controlled by the triple point.

To recover the commutative theory we must move the triple point
off to infinity, preferably along a diagonal.
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The phase diagram of fuzzy ¢*
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The phase diagram was generated by Monte Carlo simulations
[X. Martin, F. Garcia Flores, D.O'C. 2006; Pamero 2007]. Recent
perturbative efforts to calculate the transition lines [Saemann
2009]. It is controlled by the triple point.

To recover the commutative theory we must move the triple point
off to infinity, preferably along a diagonal.
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C— S >85>
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A 3-matrix model with SO(3) symmetry.
Yang-Mills revisited.

The most general quartic single trace 3-matrix model
with global SO(3) symmetry has energy

E = 5 (—z[Di. D + F€iaD;Di Dy + bD? + ¢(D7)?)

The Potential V(D) = Tr(bDf 3T C(Djz)z)
breaks D; — D; + d;1 symmetry.

We are left with zero dimensional Yang Mills with a Myers term.

Z(3.g.b.c) = [[dD]le>'P)  where S(D)= —BE(D)
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The critical points of the model with V = 0 are given by
[Dk. ([Dj Dk] — if_-'j;dD,f)] — i

So representations of the Lie algebra of SU(2) are critical points
with energy Eggie — —lE(D-)

The minimum energy configuration is

D; = L; with By = — N2

[L;. L;] = iejgly and LiL; = M1

These are the familiar commutation relations of angular
momentum.

: 11030105
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Geometry

Consider the Dirac operator
D ol |1

with DV = o;[D;. V] - V.

Then one can see the ground state geometry via the “spectral
triple” (H.Maty.Dg), where the algebra is Maty with trace norm
and

DU = *'TQ[L&. ] — 1.

This Dirac operator has the same spectrum as that of the
commutative sphere but with a cutoff at high energies.
The ground state geometry is that of a fuzzy sphere.
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Small fluctuations

The zero temperature ground state of the model

—— N[ [D D;(] —%EJ-HDJ;D;(D;)
L2

is a round fuzzy sphere with D; = L; and Eg = —-.

Expanding around the minimum solution, D; = L; + A; yields a
noncommutative Yang-Mills action with field strength
Fj_;*{ = ."[Lj‘. AH] — I'[Lj. Ag} == EJ'MA; = I'[AJ,'. Abk]

As written the gauge field includes a scalar field,

&= L (Dj— L)? = {NA; + AiN; + L)

v N-—1 V

It is the component of the gauge field normal to the sphere when

viewed as imbeded in R® with N; = L—E and & = Lf —(N-—1)/4

W e
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Variations of the model have arisen in work by H.Steinacker,

Nucl Phys.B679,66 (2004) and Presnajder Mod.Phys.Lett. A18
(2003) 2415. And a close relative (without the scalar field) has
been solved exactly by H.Steinacker, R.J. Szabo, hep-th/0701041.

The model can be thought of as the low energy dynamics of open
strings moving on S>. The minimum energy configuration
corresponds to a stack of N DO branes wrapping a fuzzy sphere
centered at the origin.

A. Y. Alekseev, A. Recknagel, V. Schomerus, JHEP 010 0005
(2000).

irsa: 11030105 Page 55/90



Increasing the temperature. Monte Carlo Simulations

: _ - . : g ~ >
The singular part of the entropy is given by S/ N< where
S—=<S>adg—0o"
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The entropy jump

- — % as the transition is approached from the fuzzy sphere side,

and jumps to S = % in the high temperature phase.

The infinite temperature entropy does not contribute = but % per
degree of freedom.

So the model remains highly interacting at high temperatures.
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Increasing the temperature. Monte Carlo Simulations

The singular part of the entropy is given by S/N? where
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The entropy jump

-~ 5 e . =
S = 35 as the transition is approached from the fuzzy sphere side,

and jumps to S = % in the high temperature phase.
The infinite temperature entropy does not contribute = but % per

degree of freedom.

So the model remains highly interacting at high temperatures.
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Specific Heat
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Specific Heat Exponent
RIS R R e e

Entropy Jump

The transition is unusual in that it has a jump in the entropy.
AS— % indicating a 1st order transition.

Divergent Specific Heat

But it has a divergent specific heat C =A_(T. — T) ™ typical of

a continuous (or second order) transition. We find the specific

heat exponent o = %

Our analysis gives the critical point 3. = (%)3 and a critical

exponent a = = for the divergence of the specific heat.
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Highlights

We have seen that in a very simple model where a two-sphere, S,
describes the cold phase of the system but the geometry
evaporates as the system is heated.

T'he Dirac operator for S emerge, abruptly, as the system cools.

The same generic features persist in higher dimensional models.

Pirsa: 11030105 Page 62/90



Specific Heat Exponent
e e L R

Entropy Jump

The transition is unusual in that it has a jump in the entropy.
S — % indicating a 1st order transition.

Divergent Specific Heat

But it has a divergent specific heat C = A_(T. — T) ™ typical of
a continuous (or second order) transition. We find the specific

I |

heat exponent o =

Our analysis gives the critical point 3. = (%)3 and a critical
exponent o = = for the divergence of the specific heat.

Pirsa: 11030105 Page 63/90



Highlights

We have seen that in a very simple model where a two-sphere, 52
describes the cold phase of the system but the geometry

abruptly, as the system cools.

h

evaporates as the system is heated.

T'he Dirac operator for S emerg
The same generic features persist in higher dimensional models.
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Eigenvalues in the low temperature phase

Eigenvalue distribution of D3 for N = 24.

N=24

g s cateba o af 1

cgevaiue
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Eigenvalues in the low temperature phase

Eigenvalue distribution of [D1. D] for N = 24.

irsa: 11030105
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A closer look at the transition

@ In the fuzzy sphere phase the eigenvalues fluctuate around the
discrete values corresponding to D, = L,, the irreducible
representation of SU(2) of dimension N.

@ In the matrix phase, the distribution of eigenvalues of

‘a) Da:

Xa:(N:

Is largely independent of a4 and of N.

@ In fact fluctuations are around commuting matrices with a
uniform distribution in a ball of radius 2. E.g for N = 12, the
distribution for X3 ranges from —2 to 2.
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@ Following Berenstein et al. (arXiv:0805.4658) one can expand
small fluctuations around commuting diagonal matrices. This
leads to the conclusion that the eigenvalues form a solid ball

of radius R.
The distribution of eigenvalues of X3 is then:
3 g ==
plx) = W(R- = =

This implies (x?) = % Numerically, R =~ 2.
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From solid ball of eigenvalues to fuzzy S°.

As the system cools a fuzzy S* emerges from the ball

corresponding the the eigenvalues of the commutating matrices at
high temperature.

In passing through the transition the eigenvalue ball of radius 2
expands to a fuzzy sphere of radius ‘Tm
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The Dimer Model

Curiously a very classical model called the dimer model has very
similar thermodynamic properties.

See Nash and O'Connor J. Phys A41 (2009)
012002[arXiv:0809.2960].

Mathematician study it as a2 model to count tilings. E.g. one can
easily establish that there 12988816 domino tilings of a chess
board.

For a physicist it has many faces but it can be thought of as a
lattice model for a two dimensional Fermion.
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Hexagonal Tilings of the Torus
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£,

Activities 2 — e 72, b — e 7 and ¢ — e 7 are assigned to the
bonds.

These determine the probability of a bond being active and of a
rombus tiling of dual triangular lattice.

The partition function is

Z(N.M.a.b.c) =} e alV= pNVe cNe

where N; is the number of active bonds of type i/ and

N, +— Np +— N-. = NM, since the lattice must be completely covered.
When the activities are set to one / counts the number of lozenge
tilings of the dual triangular lattice.
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Hexagonal Tilings of the Torus
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Activities 2 = e 7% b — e 7 and ¢ = e 7 are assigned to the
bonds.

These determine the probability of a bond being active and of a
rombus tiling of dual triangular lattice.

The partition function is
Z(N.M.a.b.c) =} ines alV=pNe cNe

where N; is the number of active bonds of type i/ and

N, +— Np — N-. = NM, since the lattice must be completely covered.
When the activities are set to one / counts the number of lozenge
tilings of the dual triangular lattice.
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It turns out (Kasteleyn, Fisher and Temperley 1961) that on a
simply connected domain

£ = Pfaff(K) = |/ Det(K)

And on a torus Z = = (—Z;;U — /s

¥

Q_erf_z)

(1]

[a| b
|
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In the thermodynamic limit the logarithm of the bulk partition
function per dimer has a phase transition at 3. = In 2, with
In2 — 3 > 0 we have

4./2
3In
The transition is continuous with no latent heat. The specific heat

Is zero in the low temperature frozen phase; there is a phase
transition at 3 = In 2, and the specific heat diverges with critical

exponent @ — % as the transition is approached from the high
temperature side.

(In2 — j’)%

W(3) ~
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Finite size effects.

For large M and N we have

- _Z(N.M)

— 7 I ¢
N.M—-x !__'xNJ"'V”‘V{a,b.cj ZDH’S.::( U)

OI)

:—Z; @

— :ﬁ e'(®+®) with © and ® determinde by 3 (or more generally

the fugacities). Zp;c(7. 6. 0) is the partition function for a Dirac
Fermion prc}pagating on the continuum torus with modular
parameter 7 in the presence of a gauge potential with zero field
strength, i.e. a flat connection, but with holonomies e*? and

-ﬂ‘ "'-'jl

e=™'? round the cycles of the torus.
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As the edge of the transition is approached 7 — 75 and the
continuum geometry collapses.

When the transition is apporached the specific heat diverges with

exponent & — =. and is constant in the new phase.

Here there is no latent heat (or jump in the entropy).
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Conclusions

e Matrix models provide a new arena for the regularization of
field theories.

@ New physical effects not discussed, eg. UV/IR mixing.

@ [ he models are intrinsically non-local, but not as bad as
Fermion determinants.

@ Yang-Mills type models blurr the distinction between
background geometry and the gauge fields.
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| described in detail a 3-matrix model which provides a
concrete model where one can track the geometry as it passes
through a phase transition and dissapears.

Such transitions belong to a new universality class of
topological phase transitions.

The transition is from one where the underlying geometry at a
microscopic level is non-commutative, and described by a
fuzzy sphere with matter fluctuations to one a commutative
sphere of much smaller radius.

The geometrical phase emerges as the system cools. This is
suggestive of 2 geometrical phase emerging as the universe
cools, or perhaps as the relevant coupling runs to a larger
scale.

The fluctuations around the fuzzy sphere phase are consistent
with being U(1) gauge fields in the large mass limit.
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concrete model where one can track the geometry as it passes
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Thank you for your attention!
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