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Abstract: If the universe is a quantum mechanical system it has a quantum state. This state supplies a probabilistic measure for alternative histories
of the universe. During eterna inflation these histories typically develop large inhomogeneities that lead to a mosaic structure on superhorizon
scales consisting of homogeneous patches separated by inflating regions. As observers we do not see this structure directly. Rather our observations
are confined to a small, nearly homogeneous region within our past light cone. This talk will describe how the probabilities for these observations
can be calculated from the probabilities supplied by the quantum state without introducing a further ad hoc measure. The talk will emphasize the
principles behind this result --- a quantum state, quantum spacetime leading to an ensemble of classical histories, quantum observers, afocusin local
observations, and the use of coarse-grainings adapted to these observations. The principles will be illustrated in ssmple modelsin particular using the
no-boundary wave function as a model of the quantum state. Applied to a model landscape we obtain specific predictions for features of the CMB
spectrum and improvements in the “anthropic' bounds on the cosmological constant.
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A Quantum Universe

If the universe is a
quantum mechanical
system it has a

quantum state.
What is it?

'That is the problem of
|Quantum Cosmology.
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A Quantum Mechanics of
Cosmological History

The state is not an initial
condition
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A Quantum Mechanics of
Cosmological History

The state is not an initial
condition

It predicts probabilities for
all possible alternative 4-d
histories of the universe ---
what went on then
what goes on now
what will go on in the
P 10010 future.




Aims of this Talk

Understand the origin of
eternal inflation
in the context of
quantum cosmology.

Understand the implications of
eternal inflation
for predictions of our observations
in quantum cosmology.
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Can the
quantum state of the universe
predict the probabilities for
our local observations
in histories with
eternal inflation
without a further measure’?
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Five Pillars

Quantum state V: Specifying probabilities of alternative
W coarse-grained histories of the universe.

Quantum spacetime: An ensemble of alternative classical
= histories of spacetime with probabilities from ¥ .

ﬁ Quantum Observers: Observers as physical systems with a
& probability to exist in any Hubble volume and a probability to
be replicated in many.

Our Observations: Focus on probabilities for our
i observations in our Hubble volume which are conditioned on
a description of the observational situation.

I Adapted Coarse Grainings: Use coarse grainings that follow
L .@hservations and ignore unobservable features of the .......
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® Box Models: Where we will learn how a quantum
theory of the observer can lead to top-down weighting
for probabilities for observation.

® One minimum: Where we will learn how to calculate
probabalities for histories exhibiting eternal inflation

A\ g = Ly

from a wave function of the universe. ~ *

Parts of the Tall

® |[andscapes: Where we will learn how to calculate the
probabilities that we are in different minima in a toy
landscape
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A Model Universe
Hubble Volumes

A universe with two possible configurations of Hubble
volumes (1 and 2), with colors red and blue (CMB).

N1 boxes, all red, occurring with probability p(1).

N2 boxes, all blue, occurring with probability p(2)
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Model Universe - Observers

® As observers we are physical systems within the
universe with only a probability to have evolved in
any Hubble volume.

® We are not certain to exist in any Hubble volume,

and in a very large universe may be replicated
elsewhere.

® This is modeled by assuming a probability pe for an
observer like us to exist (E) in any Hubble volume
the same for all of them. (More realistic than most.)
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Model Universe - Observers

® As observers we are physical systems within the
universe with only a probability to have evolved in
any Hubble volume.

B Wé| pe includes the probability of the ime.
anci accidents of 3 Gyr of biological evolution
= and is very, very small.

® This is modeled by assuming a probability pe for an
observer like us to exist (E) in any Hubble volume
the same for all of them. (More realistic than most.)
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Model Universe -- Histories

Alternative histories are defined by 1 or 2 and by
which Hubble volumes are occupied by observers.

More generally: p(history) = p(k)p}E(1 — pg) ™"

These are called bottom up (BU) probabilities.
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Vhat is the probability that we see red ?

® Assume we are equally likely to be any of the incidences
of E (typicality assumption).

® The probability that we see red (WSR) is the probability
that we are in the history with all red boxes.

® This is NOT the probability that the history 1 with all

red boxes occurs, p(1), because that could happen with
no observers.

® Rather the probability that we see red is proportional
. t-the probability that 1 occurs with at least one ...

e B e e e



The probability that we see red (VWSR)

The probability that there is at least one instance of E
in the history k is

p(at least one E) =1 —p(no E) =1 — (1 —pg)"
p(W SR) x p(1 ) § (1 —PE]NIJ
p(WSB) o p(2)[1 — (1 — pe)™]

(DI — (1 —pe)™]
> (k)1 —(1 —PE) k|

p(WSR) =

Such conditional probabilities are called top-down
_(TD) probabilities and the factor [1 —(1—pg) "]

11111111111111
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B |mportant Limiting Cases ETEE
N < 1/pe We are rare, N > 1/pg  We are common.
p(D[1 — (1 —pe)"]
> xP(k)[1 — (1 —pg)Ne
Nip(1)
Nip(1) + Nap(2)
This is volume weighting --- favors large N.

-]
[ ve

p(WSR) =

peN1 K 1 pelN, < 1 p(WSR) =

p(1)
p(1) + Napep(2)

peN1>1 peNa<1  p(WSR) ~ ~ 1

Suppresses small N.
peN1>1  peNa>1 p(WSR) = p(1)

No top-down weighting.
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In all three cases, pe drops out!



B |mportant Limiting Cases [T

N < 1/pe We are rare, N > 1/pe We are common.

p(1)[1 — (1 — pg)™]
2k P(R)[1 = (1 —pE)™s]
Nip(1)
Nip(1) + Nop(2)

This is volume weighting --- favors large N.

p(WSR) =

peN1 <1 peNa <1 p(WSR)=

p(1)
p(1l) + Napep(2)

peN1>1 peNa2<K1 p(WSR) =~ ~ 1

Suppresses small N.

peN1>1  peNa>1 p(WSR) = p(1)
No top-down weighting.
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What Top-Down Weighting is Not
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® Not a new principle of QM -- just usual QM applied to
observation with the observer part of the system.
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What Top-Down Weighting is Not

Not a new principle of QM -- just usual QM applied to
observation with the observer part of the system.

Not an option -- the probability of every observation is
conditioned on the observational situation.

® Not an ad hoc choice -- just usual QM applied to
observation.

® Not particular to the NBWF -- required for any state.
® Not always volume weighting --- depends on pe N.

® Not inconsistent with causality -- an observer at a given
position is affected only by events in their past light
eone. But we don’t know our position and have to~sum
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B Volume Weighting B

Vhen p=N: < 1and PeV2 €1 we are rare in both histories

Nip(1 )

p(WSR) = - ‘ —
Nip(1) + Nop(2)

*Since we are rare, the weighting by N’s can be understood
as a sum over our unknown location according to the
usual rules of QM.

* The probability that we observe red can differ significantly
from the probability that the universe is red and favors
large N.

* This difference does not arise from a perturbation by the
abserver (negligible) but rather because in a larger ...

LR IvAarca fharn cla=-aasTal o= n|nr‘nc fnr 11Ic hn



B Volume Weighting EEE

Vhen pzN: < 1and PeV2 <1 we are rare in both histories

Nip( 1)
Nipl 1) + Nop(2)

2

p(WSR)

*Since we are rare, the weighting by N’s can be understood
as a sum over our unknown location according to the
usual rules of QM.

* The probability that we observe red can differ significantly
from the probability that the universe is red and favors
large N.

* This difference does not arise from a perturbation by the
abserver (negligible) but rather because in a larger ...
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Common Limit
f peN1>1 and PeN2 > lwe are common in both histories.
p(WSR) =~ p(1)
* This result for our observations in our Hubble volume is

independent of the structure outside ---N’s and patterns
of E's. Top-down=Bottom-up.

*We derived it by first calculating the summing over the
patterns of large scale structure E’s and N'’s and letting
the N’s become large.

*But it can be derived directly by coarse-graining over all
boxes outside ours. (later)

¢«That's important if the N’s are infinite.
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An Improved (Y,G) Model

* Two kinds of Hubble volumes k=1,2. Each has a
probability py- to be yellow (Y) and p. =1 — p} green
(G). There are an infinite number of boxes in each kind

(common limit). A fine-grained history is a configuration
of Y’s and G’s for each k.

*The probability of any particular fine-grained history is
p(k)(py)™ (pe)"™e =0
*Physical alternatives are coarse-grainings of these

histories. Their probabilities are sums of those for the
-+nfimite number of fine-grained histories in each  cwsn
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Coarse-graining T T I [

® What is the probability that we see Y?

® Calculating for finite N’s (cutoffs) and taking limits (as
before) leads to ambiguities from the ratio N/Na.

® Rather calculate directly using a coarse-graining that
follows the color in our box and ignores the others,
summing over the probabilities of whether they
others areY or G.
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Qualitative El V)=

*A scalar field (@ moving in a
potential V( @ ) =(1/2)m%p? :
I

//
* A quantum state ¥ (NBWF) _/ ,l

%

*From Y derive the (BU) probabilities for the ensemble
of homoliso classical background histories labeled by the

value g at the start of roll down (the p(k)).

>
; -

*Add linear fluctuations in the scalar field and geometry.
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Selection for El

2

*Regime of eternal inflation V* > (1)

*Fluctuations that leave the horizon
during El grow large and make the
universe inhomogeneous on
superhorizon scales.

*Constant density surfaces become
large. TD weighting suppresses
histories that do not have EL

pil) =1
p(1) + Napep(2)

*For-El histories TD=BU.

p(WSR) =

A\_ e\ V = (1/2)m*¢?
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Selection for El

2

*Regime of eternal inflation V* > (1)

*Fluctuations that leave the horizon
during El grow large and make the
universe inhomogeneous on
superhorizon scales.

*Constant density surfaces become
large. TD weighting suppresses
histories that do not have EL

p(1) - |
p(1) + Nopep(2)

*For-El histories TD=BU.
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Qualitative El 1 Vo)

*A scalar field (® moving in a
potential V( ¢ ) =(1/2)m%p?
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* A quantum state ¥ (NBWF) _/ |

*From V¥ derive the (BU) probabilities for the ensemble
of homol/iso classical background histories labeled by the

value g at the start of roll down (the p(k)).

¥\

*Add linear fluctuations in the scalar field and geometry.
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*Regime of eternal inflation V* > (17)?

*Fluctuations that leave the horizon
during El grow large and make the
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Coarse Graining the
Future in NRQM

'‘Consider a state |V)and
yrojections { P, (t)}onto a set of
anges of x, {A.}

The probability that the particle 2

Is in region X1 at a time t; T
p(ar) = || Py (t1)[9) |I°

*We could calculate this probability by first ca

culating

the probabilities of future histories and then summing

p(ﬂ”' e 'ﬂl) - HPf_l_rl(i_H) = Ru(fl)|\l[> ‘2

Page 115/377

defined because these probabilities so to zero.
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Coarse Graining the
Future in NRQM

'‘Consider a state |V)and
rojections { P, (t)}onto a set of
anges of x, {A.}

The probability that the particle 2
IS In region 1 at a time t|

1

p(ar) = || Pa, (t1)[¥)||*

*We could calculate this probability by first ca

culating

the probabilities of future histories and then symming

Its easier and more secure to calculate
directly the coarse grained
*The || probabilities that ignore the future to

Pirsa: 11030103

definée the time of interest.

well
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The no-boundary wave function
(NBWF) is a model of the quantum
state determining probabilities for
classical histories (p(k)) and for the

observations in a Hubble volume
k
(py).

\II:/C595<258XP(—I[97¢5])
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Minisuperspace Models

Geometry: Homogeneous, isotropic, closed.

ds® = (3/A) [N*(N)dN\* + a*(\)dQ3]

Matter: cosmological constant A plus homogeneous
scalar field moving in a quadratic potential.

S
Lr((I)) — :Z_mE(I)H

Theory: Low-energy effective gravity.

: m; = |
Iclgl = d x(g)”"“(R — 2A) + (surface terms)
\%i Page 145/377
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Minisuperspace Models

Geometry: Homogeneous, isotropic, closed.

ds® = (3/A) [N2(A\)d)2 + a*(\)dQ2]

Matter: cosmological constant A plus homogeneous
scalar field moving in a quadratic potential.

—
V(®) = ~m>®°
2

Theory: Low-energy effective gravity.

_ m: e , ‘
Iclgl = d*x(g)”"“(R — 2A) + (surface terms)
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No-Boundary Wave Function (NBWVF)

ds® = (3/A) [N*(N)dX* + a®(\)dQ3)]

W (b, x) *,/Cé“i\*é‘aéhoexp([[_\*()\).a(/\).o()\)]/h)'

The integral is over all (a(A). o(\))which are
regular on a disk and match the (b, x) on its
boundary. The complex contour is chosen so that
the integral converges and the result is real.
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No-Boundary Wave Function (NBVVF)

ds* = (3/A) [N*(\)dX* + a*(\)d2]

(b, y) = /C 5Nbasé exp(~I[N(N).a(A). 6(N)] /h)

The integral is over all (a(A). o(\))which are
regular on a disk and match the (). x) on its
boundary. The complex contour is chosen so that
the integral converges and the result is real.

Pirsa: 11030103



No-Boundary Wave Function (NBWF)

ds® = (3/A) [N*(N)dX* + a*(\)dQ3]

U (b, x) = /C 5N3asé exp(~I[N(N).a(\). 6(N)] /h)

The integral is over all (a(\).#(\))which are
regular on a disk and match the (b, x) on its
boundary. The complex contour is chosen so that
the integral converges and the result is real.

Pirsa: 11030103



No-Boundary Wave Function (NBWVF)

ds® = (3/A) [N*(N)dX* + a*(\)dQ3]

U (b, x) = /<, 5Nbasé exp(~I[N(N).a(A). 6(N)] /h)

The integral is over all (a(A). o(\))which are
regular on a disk and match the (b, x) on its
boundary. The complex contour is chosen so that
the integral converges and the result is real.

Pirsa: 11030103



No-Boundary Wave Function (NBWF)

= (3/A) [N2(\)d)? + a®(\)d2]

(b, x) = /C 5Nbaséexp(~I[N(N).a(\). 6(N)]/h)

The integral is over all (a(A). o(\))which are
regular on a disk and match the (b, x) on its
boundary. The complex contour is chosen so that
the integral converges and the result is real.

Pirsa: 11030103



No-Boundary Wave Function (NBVVF)
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Not all classical spacetimes predicted

"he NBWVF in the semiclassical approximation:

W(b, x) = exp{|—Igr(b, x) +2S(b. x)|/h}
Predicted classical histories:

pa=VaS prob(class hist) oc exp(—2Ig/h)
Provided! |Valgr| < |VaS| A
|
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BOttom U P Minisuperspace Models
) ro ba b i I ity fo r Efo I d S Geometry: Homaogeneous, isotropic, dosed.

ds”™ = (3/A) [N*(\)dX* + a*(X)dO5]

|One parameter ((p0) fam i ly Matrer: cosmological constant A plus homogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = 5me’
NBWF probabilities p(go). ™7™

'N(po)=number of efolds of field driven inflation.

N
= —2I /h :
: : p(®o) x € 7
7 - 6L
8 . 51
5 .
=
3 N 3
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BOttom U P Minisuperspace Models
) rto ba b i | ity fo r Efo I d S Geometry: Homogeneous, isotropic, closed.

ds> = (3/A) [NH XdX* + a~{ X)1dDs]

;One parameter ((po) fam i Iy Matrer: cosmological constant A plus hamogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = Lme?
NBWF prObabllltiES p((pO). Tn-ecﬂ’.}". Lo:rjer}fr-gl;.reﬁe%uvegrwmy. |

'N(@o)=number of efolds of field driven inflation.
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BOtto m U P Minisuperspace Models
) r-o ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, closed.

is” = (3/A) [NHN)dX* +a (X)dO3]

rOne parameter ((pO) fa m i Iy Matrer: cosmological constant A\ plus homogeneous

scalar field moving in a2 quadratic potential.

of classical histories with BU V@) = Lme?
NBWF probabilities p(wpo). T Lﬂjﬁ}ﬁéeﬁfnmww .

'N(po)=number of efolds of field driven inflation.
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BOtto m U p Minisuperspace Models
) r-o ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, dosed.

ds® = (3/A) [NZ(N)dX* + a*(N)dD2]

pOne parameter ((pO) fam i Iy Matter: cosmological constant A plus homogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = 3me’
NBWF probabilities p(o). ™ L“jf}f’#ﬂ*’fﬁ“”“"’ _

'N(@o)=number of efolds of field driven inflation.
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BOtto m U P Minisuperspace Models
) ro ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, dlosed.

ds> = (3/A) I'". H N AE + o '\.!r.”_'i_-:__

rOne parameter ((po) fam i Iy Matrer: cosmological constant A\ plus homogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = gme?
NBWF probabilities p(wo). = =

Ibm o

'N(po)=number of efolds of field driven inflation.
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BOtto m U P Minisuperspace Models
) ro ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, closed.

ds” = (3/A) [NH XN dXE + aZ( X)dD]

rOne parameter ((pO) fam i Iy Matrer: cosmological constant A plus homogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = sm’e?
NBWF probabilities p(wo). s Lﬂ:ff;érzrefffmegm-q. .

'N(po)=number of efolds of field driven inflation.
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BOtto m U P Minisuperspace Models
) ro ba b i I ity fo r Efo | d S Geometry: Homogeneous, isotropic, dosed.

- P b s ¥, 3 1 - 27
Is™ = (3/A) | NT{AjaX +a {A)dly

|One parameter ((p0) fam i Iy Matrer: cosmological constant A plus homogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = 5me’
NBWF probabilities p(o). ™ L“jf}f’%"ﬂ*’f“”‘“‘“‘ _

'N(po)=number of efolds of field driven inflation.
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BOtto m U p Minisuperspace Models
) ro ba b i I ity fo r Efo | d S Geometry: Homogeneous, isotropic, dosed.

ds” = (3/A) [N*(N)dX* + a*(A)d]

;One parameter ((po) fam i Iy Matrer: cosmological constant A\ plus homogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = gm0’
NBWF probabilities p(wo). P Lﬂrf}@eﬁwgm-q. .

'N(po)=number of efolds of field driven inflation.
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(¢o|Ho. p) x exp(3N)p(¢o) x exp(3N — 2IR)

—2Ig 3]




BOtto m U P Minisuperspace Models
) ro ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, closed.

is* = (3/A) [NY(A)dX +a*(A)d03]

I i Matter: cosmological constant A plus homogeneous
one paramEter ((po) fam I Iy scalar field moving in a quadratic potential.

of classical histories with BU V(@) = gm*e?
NBWF probabilities p(wo). e e

Iii% J

'N(@po)=number of efolds of field driven inflation.
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BOttO m U P Minisuperspace Models
) ro ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, closed.

Is” = (3/A) [N AdX + a (X)dI

|One parameter ((pO) fam i |y Matrer: cosmological constant A\ plus homaogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = Lmte?
NBWF probabilities p(wo). e s

'N(@o)=number of efolds of field driven inflation.
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BOtto m U P Minisuperspace Models
) ro ba b i I ity fo r Efo | d S Geometry: Homogeneous, isotropic, closed.

15> = (3/A) [N2(N)dNZ + a*(N)dO3]

rOne parameter ((po) fam i Iy Matrer: cosmological constant A\ plus homogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = Lm*?
NBWF probabilities p(wo). s Lﬂ:je}meﬁgfmegm-w.

'N(po)=number of efolds of field driven inflation.
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BOttom U P Minisuperspace Models
) ro ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, closed.

- B F L, L T 27
Is™ = (3/A) INTTAEX +—a {X)dEE

i 1 Matrer: cosmological constant /A plus homogeneous
One paramEter ((po) fam I Iy scalar field moving in a quadratic potential.

of classical histories with BU V(@) = Gm*e?
NBWF probabilities p(wpo). . Lﬂjf}@e@mgm.q. .

'N(@o)=number of efolds of field driven inflation.
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BOttO m U P Minisuperspace Models
)ro bab i I ity fo r Efo | d S Geometry: Homogeneous, isotropic, dosed.

is” = (3/A) [NH X)X + aZ(N)d02]

+One parameter ((po) fam i ly Matrer: cosmological constant A plus homaogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = Lute?
NBWF probabilities p((po). Th-ecr.}". Lurf}%réyeﬁéfuvegmmy. |

'N(po)=number of efolds of field driven inflation.
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BOttom U p Minisuperspace Models
)ro bab i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, dlosed.

T3 g r ) 3 o ]
Is” = (3/A) INT(AJdX +a {A)dil;

|One parameter ((pO) fam i ly Matrer: cosmological constant A plus homogeneous

scalar field moving in a quadratic potential.

of classical histories with BU V(@) = zm*e?
NBWF probabilities p(wo). P i

J.I.I_._ [

'N(@o)=number of efolds of field driven inflation.
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BOtto m U P Minisuperspace Models
) r-o ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, dosed.

ds™ = (3/A) [NH NdA + aZ(X)d03]

One parameter (o) family S nae="

of classical histories with BU V(@) = Lme?
NBWF probabilities p(wo). S e

'N(@o)=number of efolds of field driven inflation.
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BOtto m U P Minisuperspace Models
)ro ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, closed.

o T e [V E 3 : ¥
ds™ = (3/A) |INT(AdA™ +a {A)diE

i i Matter: cosmological constant A plus homogeneous
One paramEter ((po) fam I Iy scalar field moving in a quadratic potential.

of classical histories with BU V(@) = Lmta2
NBWF probabilities p(wo). e Ln:fje}frzreﬁ_efmegm-q. .

'N(po)=number of efolds of field driven inflation.
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BOtto m U P Minisuperspace Models
) ro ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, closed.

s> = (3/A) [N2(N)d) + a*(A)d02]

I 1 Matter: cosmological constant A plus homogeneous
One pa'ramEter ((po) fa‘m I ly scalar field moving in a quadratic potential.

of classical histories with BU V(@) = Lmte?
NBWF probabilities p(wo). e

|_||T J

'N(po)=number of efolds of field driven inflation.
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Not all classical spacetimes predicted

"he NBWEF in the semiclassical approximation:

U (b, y) ~ exp{[—Ir(b. x) +iS(b. x)]/R}
Predicted classical histories:

pa=VaS
Provided!
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pa=VaS prob(class hist) oc exp(—2Igr/h)

Provided! |Valgr| < |[VaS| /Ff

Pirsa: 11030103



Not all classical spacetimes predicted

"he NBWVF in the semiclassical approximation:

W(b, x) ~ exp{[—Ir(b. x) +iS(b, x)]/R}
Predicted classical histories:

pa—VNaS
Provided!

Pirsa: 11030103
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Not all classical spacetimes predicted

"he NBWF in the semiclassical approximation:

W (b, x) =~ exp{[—Igr(b. x) +iS(b. x)]/h}
Predicted classical histories:

pa=VaS prob(class hist) oc exp(—2Ig/h)
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Not all classical spacetimes predicted

"he NBWF in the semiclassical approximation:
W (b, x) =~ exp{[—Ir(b, x) +iS(b, )]/}
Predicted classical histories:

pa=VaS prob(class hist) oc exp(—2Igr/h)

Provided! |Valg| < |V4S| p/F
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Not all classical spacetimes predicted

"he NBWF in the semiclassical approximation:
W(b, x) ~ exp{[—Ir(b. x) +iS(b, x)]/R}
Predicted classical histories:

pa=VaS prob(class hist) oc exp(—2Ig/h)

Provided! |Valgr| < |VaS| /t*
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Not all classical spacetimes predicted

"he NBWVF in the semiclassical approximation:

U (b, x) ~ exp{[—Ir(b. x) +iS(b. x)]/h}
Predicted classical histories:

pa=VaS prob(class hist) oc exp(—2Ig/h)
Provided! |Valgr| < |VaS| A

*No big empty universes. -

*All histories exhibit scalar field |
driven inflation. L/; B .
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BOttO m U P Minisuperspace Models
) ro ba b i I ity fo r Efo I d S Geometry: Homogeneous, isotropic, closed.

o T r > 2 25wy vd |
Is~ = (3/A) [N (N)dX" +a~(A)d0

I i Matter: cosmological constant A plus homogeneous
One pa'ramEter ((po) fa mi Iy scalar field moving in a quadratic potential.

of classical histories with BU V(@) = Lme?
NBWF probabilities p(wo). R Lﬂ:f}meﬁefmegmw. .

'N(po)=number of efolds of field driven inflation.

N
= / —2Ir/h .
' . p(®o) x e 7
7 6
. . 51
5 4
=
3 G 3_
. T
. "'H«.__E_E_H ‘:"'
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(¢o|Ho. p) x exp(3N)p(0o) x exp(3N — 2IR)




TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(og|Hy. p) x exp(3N )p(odg) x exp(3N — 2Ig)




Fluctuations
Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by @o .

Gauge+constraints leave one gauge-invariant
combination T which can be expanded in S* harmonics.

Action: I = I'P[a(7), o(7)] + I'P[a(7). o(7). {(7)].
NBWEF: ¥(b. x. 2) = exp{[—Iy’ (b.x) +iS” (b.x)]/A}e:(b. x. 2)
w(b.x,z) = / 0 exp(—1I' j][{'t.(:').(;}(r:).g(r]].f’m_
Je

This is QFTCST for the fluctuation fields in the homo/
iso background.
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Fluctuations
Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by @o .

Gauge+constraints leave one gauge-invariant
combination T which can be expanded in S* harmonics.

Action: [ = E" a(7), o(7)] + Fj)[ﬂ(’f_)- o(7),¢(7)].
NBWF: (b x. z) = exp{| [L‘ (b.x) + iS9(p, x)|/R}(b, x. 2)
(b, x,z) = / 6¢ exp(—IP[a(1). (7). ((T)]/R).

This is QFTCST for the fluctuation fields in the homo/
iIso background.
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Fluctuations
Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by o .

Gauge+constraints leave one gauge-invariant
combination T which can be expanded in S* harmonics.

Action: I = I'Y0a(7), o(7)] + I'P[a(1), &(7), C(7)].
NBWF: ¥(b. x. z) = exp{| I '(b.x) + iSSP (5. ) |/R}(b, x, 2)
Ww(b. x.z) = / 6¢ exp(—I9[a(7). o(7). {(T)]/R)
J

This is QFTCST for the fluctuation fields in the homo/
iIso background.
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Fluctuations
Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by o .

Gauge+constraints leave one gauge-invariant
combination T which can be expanded in S* harmonics.

Action: I = I'90a(1), o(7)] + IP[a(7). ¢(7). {(7)].
NBWF: ¥(b. . z) = exp{] I '(b.x) +iSY(b. x)]/R}(b. x. 2)
Y(b.x,z) = / 6 exp(—I'F[a(7). o(7). {(T)]/R)
FE

This is QFTCST for the fluctuation fields in the homo/
iIso background.
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Fluctuations
Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by o .

Gauge+constraints leave one gauge-invariant
combination T which can be expanded in S* harmonics.

Action: I = I®a(7), o(7)] + IP[a(r), o(7). {(7)].
NBWF: Y(b.y.2) = exp{j—[? (b, x) +iSY(b. x)]/R} (b, x. 2)
w(b.x,z) = / 6 exp(—IFa(7). o(1). {(T)]/R)
Je

This is QFTCST for the fluctuation fields in the homo/
iso background.

PR B O e e e e R . e e R e e e PR ge 268/377



Fluctuations
Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by o .

Gauge+constraints leave one gauge-invariant
combination T which can be expanded in S* harmonics.

Action: I = I'Va(7), o(7)] + I?a(r), 6(7), ¢(7)].
NBWF: ¥(b. x.z) = exp{[—I’ (b.x) +iS (b. x)]/h}v:(b. . 2)
w(b.x,z) = / 6¢ exp(—I'P[a(7). d(1). {(T)]/R)
4 C

This is QFTCST for the fluctuation fields in the homo/
iIso background.
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Fluctuations

Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by o .

Gauge+constraints leave one gauge-invariant
combination T which can be expanded in S* harmonics.

Action: I = I'Y0a(7), o(7)] + I'P[a(1), &(7). C(7)].
NBWF: U(b. y.z) =~ f;lxp{:—fg-’]"(!). x) +iSY(b. )]/} (b, x, 2)
w(b. x,z) = /rjﬁ: exp(—I'V[a(1), ¢(7), ((D]/R).

o L

This is QFTCST for the fluctuation fields in the homo/
iIso background.

Rirsasl03010 S e e T e SR S e e e e D0 ge 270/377



Fluctuations
Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by @o .

Gauge+constraints leave one gauge-invariant
combination T which can be expanded in S* harmonics.

Action: I = I'7a(7). 6(7)] + I'¥[a(7). 6(7).{(7)].
NBWFE: ¥(b.y.z) = exp{j—[ﬁ_“(b. x) +iS9(b. )] /R Y (b, x. 2)
(b, x, 2) E/r)gtkp( I¥a(1), d(1). {(T)]/R)
e

This is QFTCST for the fluctuation fields in the homo/
iIso background.
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Fluctuations
Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by o .

Gauge+constraints leave one gauge-invariant
combination C which can be expanded in S? harmonics.

Action: I =1%a(7), o(7)] + IP]a(7), &(7).{(7)].
NBWF: ¥(b. x. z) = exp{| [L” (b. K}ﬂ'—éﬁl” (b, x)|/h}(b. . 2)
w(b. x.z) = /(Kexp(_fgi[a(f).f,}(rj.(;(r)]’ﬁ}
®

This is QFTCST for the fluctuation fields in the homo/
iso background.
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(@o|Ho. p) x exp(3N )p(@o) x exp(3N — 2IR)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(®o|Ho. p) x exp(3N)p(op) x exp(3N — 21g)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(oo|Hy. p) x exp(3N)p(dg) x exp(3N — 21g)

= -

1 bo

G_bl'} ‘Ib[]ﬁ Pagggti-g/?}??



TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(¢o0|Ho. p) x exp(3N)p(¢o) x exp(3N — 2Ig)




TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(oo|Ho, p) < exp(3N )p(9g) x exp(3N — 21g)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(@o|Ho. p) o exp(3N)p(0p) x exp(3N — 2IR)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(do|Ho, p) o< exp(3N)p(do) x exp(3N — 21g)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(¢o|Ho. p) < exp(3N)p(¢g) x exp(3N — 2Ig)




TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(@o|Ho. p) x exp(3N)p(0o) x exp(3N — 2IR)

éﬂp (;bn G"J[}ﬁ Pagg:z'a/":??




TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(¢o|Ho. p) x exp(3N)p(¢o) x exp(3N — 2Ig)




TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(¢o|Ho, p) x exp(3N)p(¢o) x exp(3N — 2IRg)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(¢o|Ho. p) x exp(3N)p(0o) x exp(3N — 2IR)

—2Ig 3IN—2Ig . ===
Fr— e ‘d: CLASSICALTT

do

E | _ =
ch S P
(fbf} Cb[} Pagg; 1377



TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(¢o0|Ho. p) x exp(3N)p(¢o) x exp(3N — 2Ig)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(oo|Hy. p) x exp(3N)p(og) x exp(3N — 21g)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(og|Hy. p) x exp(3N )p(dg) x exp(3N — 2IR)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(®o|Ho, p) x exp(3N )p(0g) x exp(3N — 21R)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(@o|Ho. p) x exp(3N)p(¢o) x exp(3N — 21R)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(@o|Ho. p) x exp(3N)p(0o) x exp(3N — 21R)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(¢0|Ho. p) < exp(3N)p(¢o) x exp(3N — 2IR)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(@o|Ho. p) x exp(3N)p(oo) x exp(3N — 21R)
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TD Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(®o|Ho, p) o< exp(3N )p(0g) x exp(3N — 21g)
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Fluctuations

Scalar perturbations of metric and matter from homo/
iso backgrounds labeled by o .

Gauge+constraints leave one gauge-invariant
combination T which can be expanded in S* harmonics.

Action: I = I'9a(7), 6(7)] + IP[a(1), o(7). ((7)].
NBWE: ¥(b. x. z) = exp{[—I} (b.x) +iSY(b. x)]/A}(b. x. 2)

U(b.x,z) = /ri( exp(—I'¥[a(7), ¢(7), {(T)]/R).

4 C

This is QFTCST for the fluctuation fields in the homo/
iIso background.
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E ; : D,%,Z
~luctuation Saddle Points

Regularity at the SP and matching
at the boundary determine a
unique complex fuzzy instanton

giving the semiclassical approx to
the NBWF path integral.

9%

Starting from 0 at the SP

fluctuations oscillate until they
¥ leave the horizon” when they

become classical and graw..
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NBWF Fluctuation Probabilities
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where €. and H, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

— > 1 or
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NBWF Fluctuation Probabilities

€
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where €. and FH, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

—>1 or

IV
-

® That is eternal inflation.
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NBWF Fluctuation Probabilities
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where €. and F, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

-~ >1 or
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NBWF Fluctuation Probabilities

'—
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where €. and A, are the slow roll and expansion
parameters when the mode leaves the horizon 7 = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

2

- >1 or —
& V2

® That is eternal inflation.
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NBWF Fluctuation Probabilities
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where €. and H, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. M,

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when
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NBWF Fluctuation Probabilities
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where €. and F, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .,

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

=~ >1 or
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NBWF Fluctuation Probabilities
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where €. and FH, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

-~ >1 or
& 2

® That is eternal inflation.
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NBWF Fluctuation Probabilities
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where €. and H, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

— > 1 or
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NBWF Fluctuation Probabilities

—

e & 3.9
p(vln'l OGJ i \(’f 20 H?2 €xXp _-')Hi L ~“(n)

*

where €. and FH, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

H? v
e or
€ LI
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NBWF Fluctuation Probabilities
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where €. and FH, are the slow roll and expansion
parameters when the mode leaves the horizon 7 = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

— > 1 or

A%
s

® That is eternal inflation.
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NBWF Fluctuation Probabilities
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where €. and FH, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. M,

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

H? vV
= or
. V

® That is eternal inflation.

Pirsa:

(W

AY
s

Page 316/377



NBWF Fluctuation Probabilities
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where €. and F, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

AY
-

=~ >1 or

® That is eternal inflation.
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NBWF Fluctuation Probabilities
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where €. and FH, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

-~ >1 or
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NBWF Fluctuation Probabilities
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where €. and FH, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

— > 1 or

A%
i
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NBWF Fluctuation Probabilities
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where €. and F, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. M,

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

- >1 or

AY
p-—1
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NBWF Fluctuation Probabilities
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where €. and FH, are the slow roll and expansion
parameters when the mode leaves the horizon n = a. .

® This is essentially the Bunch-Davis vacuum (not a
surprise.)

® Fluctuations are large when

-~ >1 or

A%
p-—
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Probabilities for CMB REEHTING
, | us N
TTEITT

p(WSY) = Z;.Ji-p[ k) p(W.S C™) Z p(C?™|dg. F)pldg. F)
Z

Denote superhorizon fluctuations by F. Consider the
local observable ¢;”in our Hubble volume and the ansatz:

P(CfbH' 0o, F') = p(C *Ub:| ¢o, £ =0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL
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Probabilities for CMB RE AT
, | us \
TR ITT

p(WSY) = Z;Ji-pl k) p(W'S C™) = Z;m obst 5 F)p(dg. F)

Oy

Denote superhorizon fluctuations by F. Consider the
local observable ¢;”in our Hubble volume and the ansatz:

p(Cf’b“' D0 - F) f-u[)( bebl(?() F — U)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL
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Probabilities for CMB REH AN
! S \
| l‘“] #

(WSY) Z p‘f pl k) WS C™) = Z p(C%%|py. F)p( oy, F)
g F

Denote superhorizon fluctuations by F. Consider the
local observable ¢”in our Hubble volume and the ansatz:

p(C™| o, F) = p(C™|de, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during El
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Probabilities for CMB REHEHTING
! S \
" o :

p(WSY) = Z pEp(k) p(WS C5™) =Y " p(C™|dy. F)p(do. F)

Denote superhorizon fluctuations by F. Consider the
local observable ¢;”in our Hubble volume and the ansatz:

P(C3™| o, F) = p(C™| o, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL

very Hubble volume is then the same and coarse

Pirsa:
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Probabilities for CMB RE BTG
! - ¥
TR ITT

W SY ) = Z E-;r',i'.f;l k) p(W .S {’_"I.‘""'“ = Z p(C°%%|dy. F)p(dg. F)

i

Denote superhorizon fluctuations by F. Consider the
local observable ¢”in our Hubble volume and the ansatz:

P(CE™| 0, F) = p(C™|60, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL

very Hubble volume is then the same and coarse

Pirsa:
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Probabilities for CMB REH AT
T VT

p(WSY) = Z ;Ji-pl k) WS C™) = Z p(C°%%|dy. F)p( g, F)
-‘I-n .f.'Jr....!"_

Denote superhorizon fluctuations by F. Consider the
local observable ¢”in our Hubble volume and the ansatz:

p(C™|do, F) = p(C™|¢g, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL

very Hubble volume is then the same and coarse

Pirsa:

oraininc Aatitcide Aatire ic aacvy ac in the ( 72 model
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Probabilities for CMB REH AN
| &S k.
T77/ 4

p(WSY) Z;J (A p(W S C™) Z;)I( obs| b F)p(dg. F)

Oy L

Denote superhorizon fluctuations by F. Consider the
local observable ¢;”in our Hubble volume and the ansatz:

p(C7™ |60, F) = p(C7™|po, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL

lllll Page 328/377

oraininc Aaititcide Aatire ic aacvy ac in the (2 maodeal



Probabilities for CMB RE AT
TR T T T “ 3

W SY) = Z;Ji;'-f.ﬂl_ k) p(W S C5=) Z p(C%|dy. F)pl(dg. F)

Denote superhorizon fluctuations by F. Consider the
local observable ¢”in our Hubble volume and the ansatz:

p(Ce™|dg, F) =~ p(C:™| ¢, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL
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Probabilities for CMB REH AN
, _ us \
R ITT

W SY) = Z lf;ri'-f;r k) p(W S ff'l.l"l"'“_‘_! = Z pl (P'_:}h'* on- F )p(@g. F)
q'., :’Ll.:....'..:l

Denote superhorizon fluctuations by F. Consider the
local observable ¢”in our Hubble volume and the ansatz:

p(C'fb”'i@(-;.. F) =~ P(C*?bﬂﬁ?(}- F =0

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during El

very Hubble volume is then the same and coarse

Pirsa:
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Probabilities for CMB R AN
, | Us \
TR TTT

p(WSY) Z Py pA p(W S CT5=) = Z p(C°P%| oy, F)p( . F)

. E
......

Denote superhorizon fluctuations by F. Consider the
local observable ¢7”in our Hubble volume and the ansatz:

p(C™| o, F) = p(C™| ¢, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL
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Probabilities for CMB RE AT
TRV T

H W SY) Z pyp(k) p(W S C2=) = Z p(C%%%|py. F)p( g, F)
g, F

Denote superhorizon fluctuations by F. Consider the
local observable ¢”in our Hubble volume and the ansatz:

[)(Cfb“" 0o, F) = p(C ’”b”|(?” rF—u

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL
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Probabilities for CMB REH AN
_ | us \
TR TTT

p(WSY) Z;; (A p(W'S C9) = Z;J[(f"j”‘“ do. F)p(dg, F)
.f.'Jr....!‘-l

Denote superhorizon fluctuations by F. Consider the
local observable ¢7”in our Hubble volume and the ansatz:

P(C2™| o, F) = p(C3™| o, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL
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Probabilities for CMB RE AT
- /A l‘“l L

W SY ) = Z lg,u,i'.f;l k) p(W S C=) = Z p(C°%%|dy. F)p(dy. F)

Dy . f

Denote superhorizon fluctuations by F. Consider the
local observable ¢”in our Hubble volume and the ansatz:

p(C™| by, F) =~ p(C™|pg, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL

very Hubble volume is then the same and coarse

Pirsa:
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Probabilities for CMB ReEiING
< >
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p(WSY) = Z pEp(k) p(W'S C%) = Z p(C®|dy. F)p(dg. F)
i, ".J....f:

Denote superhorizon fluctuations by F. Consider the
local observable ¢”in our Hubble volume and the ansatz:

p(C™|¢o, F) = p(C7™|¢o, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL

very Hubble volume is then the same and coarse

Pirsa:
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Probabilities for CMB REEHTING
TR TTT

p(WSY) Z;J p(k) (WS Cob= ?_ZPI( B by F)pl g, F)

Denote superhorizon fluctuations by F. Consider the
local observable ¢7”in our Hubble volume and the ansatz:

p(CfEbm do. F) ( ﬂ:_‘.-]f}:n| do. F_U)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL
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Probabilities for CMB REH I
, | us \
TR ITT

p(WSY) = Z ps-p(k) WWS C™) = Z p(C%%%| oy F)p(dp. F)

Dy . L

Denote superhorizon fluctuations by F. Consider the
local observable ¢7”in our Hubble volume and the ansatz:

p(C3™| o, F) = p(C™| ¢, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL

very Hubble volume is then the same and coarse

Pirsa:
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Probabilities for CMB REH i
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W SY ) = Z lf;r"{f'-f;[ k) p(W .S (_"rl:-i:-a} = Z p(C°%%| oy F)p(dg. F)

Dy L

Denote superhorizon fluctuations by F. Consider the
local observable ¢7”in our Hubble volume and the ansatz:

p(C™| ¢, F) = p(C7>| o, F = 0)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon
modes that left their horizons during EL

very Hubble volume is then the same and coarse

Pirsa:

oraininc Aaititcide Aatire ic aacvy ac in the (72 modeal

Page 338/377



Probabilities for CMB

AL

|

W SY) = Z py-p(k)

REHEAT!
su&r:”q

S \

p(WS C™) =Y " p(C™|¢y. F)p(do. F)

Denote superhorizon fluctuations by F. Consider the
local observable ¢7”in our Hubble volume and the ansatz:

4(®

Do- F) "-*[)( bebl Qg , F = U)

l.e. assume that for the purpose of calculating local
observables we can ignore the back reaction on the
reheating surface produced by large superhorizon

modes that left their horizons during EL
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Support for the Ansatz
p(C%| g, F) = p(C2* |y, F = 0)

® Cosmic no-hair theorems: These say just the ansatz
provided there are a sufficient number of efolds after
N the exit from El. Since N ~ 1/m ~ 10° this
condition seems ok.

® Explicit calculation in solutions with big
inhomogeneities on large scales and linear fluctuations
on small scales like the GHT bubble instanton.

® This ansatz is not a new principle of quantum
mechanics or a further measure but a testable
approximation.
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Support for the Ansatz
p(C|do, F) = p(C™|¢ho, F = 0)

® Cosmic no-hair theorems: These say just the ansatz
provided there are a sufficient number of efolds after
N the exit from El. Since NV ~ 1/m ~ 10° this
condition seems ok.

® Explicit calculation in solutions with big
inhomogeneities on large scales and linear fluctuations
on small scales like the GHT bubble instanton.

® This ansatz is not a new principle of quantum
mechanics or a further measure but a testable
approximation.
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Support for the Ansatz
p(C™| g, F) = p(Ce™|do, F = 0)

® Cosmic no-hair theorems: These say just the ansatz
provided there are a sufficient number of efolds after
N the exit from El. Since N ~ 1/m ~ 10° this
condition seems ok.

® Explicit calculation in solutions with big
inhomogeneities on large scales and linear fluctuations
on small scales like the GHT bubble instanton.

® This ansatz is not a new principle of quantum
mechanics or a further measure but a testable
approximation.
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Support for the Ansatz
p(C3™| e, F) = p(C™|¢p, F = 0)

® Cosmic no-hair theorems: These say just the ansatz
provided there are a sufficient number of efolds after
N the exit from El. Since NV ~ 1/m ~ 10° this
condition seems ok.

® Explicit calculation in solutions with big
inhomogeneities on large scales and linear fluctuations
on small scales like the GHT bubble instanton.

® This ansatz is not a new principle of quantum
mechanics or a further measure but a testable
approximation.
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Support for the Ansatz
{J(C’Ebﬂ(}ﬂ. F} ~ [)(C;,th @Dq- - DJ

® Cosmic no-hair theorems: These say just the ansatz
provided there are a sufficient number of efolds after
N the exit from El. Since NV ~ 1/m ~ 10° this
condition seems ok.

® Explicit calculation in solutions with big
inhomogeneities on large scales and linear fluctuations
on small scales like the GHT bubble instanton.

® This ansatz is not a new principle of quantum
mechanics or a further measure but a testable
approximation.
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Local Predictions of CMB

From the NBWEF calculate the fluctuation probabilities

| e "

> _ 2
— e =

exp

Pem|00) =\ o YeE
From these probabilities calculate the correlators.
<:[r1'"] <(n/ }>

From the correlators calculate the expected C: .

The probabilities for the ¢¢"are a chi-squared
distribution with the mean ¢, .

The results for the € will not differ significantly from
the usual inflation story.
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A Model Landscape
¥ g

| ¢

oDifferent minima K with

Vi(9) = Ax + pr o™
and big potential barriers between them (no
tunnelling in leading order semiclassical.)

»Objective:The probability P(7.\. i|D) for the
parameters of our minimum given our data D.

3333333333333333



Mechanisms for the Selection
of Landscape Regions ( Potentials’)
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Mechanisms for the Selection
of Landscape Regions ( Potentials’)

AN,

® Selection for potentials that allow a classical realm
(an ensemble of classical histories.)
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Mechanisms for the Selection
of Landscape Regions ( Potentials’)
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® Selection for potentials that allow a classical realm
(an ensemble of classical histories.)
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Mechanisms for the Selection
of Landscape Regions ( Potentials’)

AN,

® Selection for potentials that allow a classical realm
(an ensemble of classical histories.)
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Mechanisms for the Selection
of Landscape Regions ( Potentials’)

AN,

® Selection for potentials that allow a classical realm
(an ensemble of classical histories.)

® Selection for potentials that allow eternal inflation.

Pirsa: 11030103



Selection for a Classical Realm

. (b, x) ~ exp{—Inlb,) +iS(,1/B}

® Require a potential that leads to

Valr| < |VAS]

® Numerical evidence suggests that this
happens when the potential allows for slow
roll inflation (not too steep).
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Selection for Eternal Inflation

Top-down weighting suppresses histories with
small reheating surfaces compared to histories with

the large (or infinite) reheating surfaces generated
by eternal inflation.

: p(1)
p(WSR) = — — ~ 1
( p(1) + Naopep(2)
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Selection for the History with
the Lowest Exit from Eternal Inflation

p(O(]j{) X exXp ( ; “r )
Ak + Vk(9ok)

Among the selected set of eternally mﬂatmg
histories with @0 > ©.; the one with ®0 = Q.;
will dominate.
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Selection for Eternal Inflation

Top-down weighting suppresses histories with
small reheating surfaces compared to histories with

the large (or infinite) reheating surfaces generated
by eternal inflation.

p(1)
W SR) = _ - — =~ 1
4 ) p(1) + Nopep(2)
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Selection for the History with
the Lowest Exit from Eternal Inflation

p(dox) x exp ( = )
Ax + Vi (%ok)

Among the selected set of eternally inflating
histories with ©o > ©¢; the one with ©o = Oc;
will dominate.
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Pruning the Landscape
AV

1

7

The dominance of the history with the lowest exit
from eternal inflation means that the structure of
the potential much above that is irrelevant for the
prediction of local observations. That means the
results hold for a more general class of models.

Pirsa: 11030103
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Pruning the Landscape

W,
v ":-_ ! 1' \‘\///
E %

i

The dominance of the history with the lowest exit
from eternal inflation means that the structure of
the potential much above that is irrelevant for the
prediction of local observations. That means the
results hold for a more general class of models.
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Pruning the f\ /

The dominance of the history with the lowest exit
from eternal inflation means that the structure of
the potential much above that is irrelevant for the
prediction of local observations. That means the
results hold for a more general class of models.
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Pruning the Landscape

L\
¥ E:; ; h\///

{

The dominance of the history with the lowest exit
from eternal inflation means that the structure of
the potential much above that is irrelevant for the
prediction of local observations. That means the
results hold for a more general class of models.
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Quadratic Minima Dominate
V}((@) ~ AK - HK@TLK

i

Assume A’S approx.zero and the Y’s
approx. comparable (to be justified self-
consistently).

In the region selected for classicality and EL
and for the dominant history at the exit of El

pnklpk) x exp |m/V(Dei)| xexp(pﬁ:’f =

Assuming the [U’S are comparable this implies
that the lowest value of nk =2 dominates.

Standard CMB calculations mean that we
''''' pnedlct a Spectral index of .97 and a scalar ¥ rwsr

I al 1 D I Ay




"Anthropic’ Selection
(TD weight)= 1-(1-pe )N
pe = p(D|n, A, p)

*For parameters where the data can’t exist pe =0
then TD weight =0 no matter what N is.

*This is traditional anthropic’ selection emerging
at a fundamental level by including observers as
quantum physical systems within the universe.

Pirsa: 11030103
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"Anthropic’ Selection
(TD weight)= 1-(1-pe )M
pe = p(Dn, A, u)

*For parameters where the data can’t exist pe =0
then TD weight =0 no matter what N is.

*This is traditional "anthropic’ selection emerging
at a fundamental level by including observers as
quantum physical systems within the universe.
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Predicting A m from NBWF

1
V=A+-
+2T?’?@

We are interested in the probability p(A.m|D)
for the parameters given some part of our data D.
p(D|A, m)p(A, m)

e o > am P(DIA, m)p(A, m)

Take D to include the fact that we live in a Hubble
volume of galaxies |3.7Gyr after the big bang.

p(D|A,m) x py(Ngy(A,m))

WNy(Aom)) is the expected number of galaxies in a
Hubble volume in the state of the fluctuations. p,is
~uwghe probability that we evolved in one galaxy --- wwsn
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Anthropic 2 S

L L

Selection
WDIA.m) is the basis for - ANTHROPICALLY
raditional anthropic =1 B
ielection. Non-zero p is = GALAXIES
inthropically allowed. e s H:ﬁ. 8Y &y
OBSERVALLIUN
VWeinberg got gooFl r NG HALOS
-esults by putting in the |
sbserved m and assuming | Qe
1 uniform prior for A. 13 — '-:—"‘1 1 -
3ut Livio & Rees, Tegmark & Rees etc showed the result

sot worse by letting Q scan with uniform priors.

irsa: 11030103
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NBWF Aided l SSERsREaaT
Anthropics

p(A,m|D) < p(D|A, m)p(A. m)

p(A.m) = exp(w/V(o.;))

logy Q
/V
:
0]

~ exp|7/(A +m/2)] 5.' ANTH + NBINF. > 9 BY 13Gy. 1

. L i i 4

~ exp(27/Q) - OBENVRICN J

r NO HALOS |

NBWF favors the lowest ""{ J
ralue of Q in the F e |
inthrop. allowed range. e T 10

Iﬂglu A

This restores Weinberg’s anthropic argument for A.

— | —12:
i) ~ 1072, A ~ 10715,



Anthropic

Selection

(DI|A.m) is the basis for
raditional anthropic
ielection. Non-zero p is
inthropically allowed.

o
=

VWeinberg got good
“esults by putting in the
observed m and assuming
1 uniform prior for A.

BLACK  HOLER

ANTHROPICALLY ®

ALLOWED
SALAXIES
= __:; : BY I3 5?%;1
NBSERVATION
NO HALCS
th:.- "lf"f"L_,

— : e _
130 125 120 -115

logjp A

3ut Livio & Rees, Tegmark & Rees etc showed the result
sot worse by letting Q scan with uniform priors.

irsa: 11030103

| But the NBWF sunplies the prior! |
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Assumptions and Predictions’

*Quantum mechanics, the NBWF, quantum spacetime,
and quantum observers.

* A toy landscape with power law potentials.

*A |3Gyr universe of galaxies.

‘e|nflation

eCMB: ns~ .97, S/T~ .1

‘eParameters: Q ~107°, A~ 10715
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A landscape provides
a mechanism for
the parameters
in effective theories to vary.
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A landscape provides
a mechanism for
the parameters
in effective theories to vary.

"Anthropic reasoning’ is then
a necessary consequence of
realistic models of obsevers.
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Quantum Cosmology El

Traditional El

Target
Probabilities

Probabilities for observations
in our Hubble volume

Probabilities for observations in
our Hubble volume

Spacetime

Ensemble of classical
spacetime histories with
quantum probabilities

One classical spacetime in
which quantum events take
place (eg. nucleation)

Observers like

Quantum systems within the
U with a probability pE to

Classical -- assumed to exist in

us = all hospitable environments
exist in any H-vol.
Observers -- Rare in sufficiently small
rare or universes, common Rare
common? |(replicated) in very large ones
Ratios of numbers of

Orrigin of - ——— — environments for observers of

Probabilities different kinds definedby a
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The Main Points Again

If the universe is a quantum system it has a quantum state.
This supplies probabilities (BU) for alternative classical
histories of the universe.

Observers of the universe are physical systems within it with
only a probability to exist in any Hubble volume.

Probabilities for observation (ID) are necessarily
conditioned on a description of the observational situation
including what’s doing the observing.

TD probabilities favor large universes because there are
more places for us to be. But the observer’s details cancel.

By coarse graining over everything outside the past light cone
of our H-vol, probabilities for observation can be calculated
.£yen with the large inhomogeneities generated by El without
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Put Quantum Mechanics
to Work
for Cosmology !
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0711.4630
0803.1663
0905.3877
1001.0262
1009.2525

0704.2630
0906.0042
1004.3816



