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Abstract: At the time of recombination, 400,000 years after the Big Bang, the structure of the dark matter distribution was extremely simple and can
be inferred directly from observations of structure in the cosmic microwave background. At this time dark matter particles had small thermal
velocities and their distribution deviated from uniformity only through a gaussian field of small density fluctuations with associated motions. Later
evolution was driven purely by gravity and so obeyed the collisionless Boltzmann equation. This has immediate consequences for the present
distribution of dark matter, even in extremely nonlinear regions such as the part of the Galaxy where the Sun resides. | will show how this structure
can be followed in full generality by integrating the Geodesic Deviation Equation in tandem with the equations of motion in a high-resolution
N-body simulation, enhancing its effective resolution by more than 10 orders of magnitude. | will discuss how the predicted distribution at the Sun's
position impacts the expectations for laboratory experiments seeking to detect the dark matter directly, in particular, the possibility of extremely
narrow line signals that may be visible in axion detectors.
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The growth of nonlinear dark matter structures
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Structure grows through gravitational amplification of the seed
fluctuations visible in the CMB
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The growth of nonlinear dark matter structures
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The four elements of ACDM halos

Smooth background halo
-- NFW-like cusped density proiile
-- near-cllipsoidal equidensity contours

I Bound subhalos

-- most massive typically 126 of mamn halo mass
- total mass of all subhalos < 10%

-- less centrally concentrated than the smooth component

11 Tidal streams
-- remnants of tidally disrupted subhalos

V Fundamental streams

-- consequence of smooth and cold initial conditions
-- very low mnternal velocity dispersions

—- produce density caustics at projective catastrophes
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I. Smooth background halo

Aquarius Project: Springel et al 2008
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I. Smooth background halo

Aquarus Project: Springel et al 2008
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I. Smooth background halo

Aquarius Project: Springel et al 2008
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I. Smooth background halo

Agquarius Project: Springel et al 2008
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I. Smooth background halo

Agquarius Project: Springel et al 2008
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I. Smooth background halo

Agquartus Project: Springel et al 2008
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II1. Taidal Streams

=

» Produced bv partial or total tidal disruption of subhalos
» Analogous to observed stellar streams in the Galactic halo
» Distributed along/around orbit of subhalo (c.f. meteor streams)
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» Localised i almost 1-D region of 6-D phase-space (x. V)



II1. Taidal Streams

=

» Produced bv partial or total tidal disruption of subhalos
» Analogous to observed stellar streams mn the Galactic halo
» Distributed along/around orbit of subhalo (c.f. meteor streams)
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Dark matter phase-space structure in the inner MW
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Dark matter phase-space structure in the inner MW
M. Maciejewskl
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Dark matter phase-space structure in the inner MW
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Dark matter phase-space structure in the inner MW
M. Maciejewskl
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I1V. Fundamental streams

After CDM particles become nonrelativistic. but before nonline:
objects form (e.g. z > 100) their distribution function 1s

fix, v, H)=p(0) [1 +o(x,0)] N [{v - V(x,0)} o]

where p(7) 1s the mean mass density of CDM.
o(x, f) 1s a Gaussian random field with finite vanance << 1
Vix,t) = V w(x,t) where Vy o 6.
and N is normal with & << ({V[") (today o~ 0.1 cm/s)

CDM occupies a thin 3-D 'sheet’ within the full 6-D phase-spacs
and 1ts projection onto x-space 1s near-uniform.

Df/ Dt =0 —s only a 3-D subspace 1s occupied at a/l times.
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Nonlinear evolution leads to multi-stream structure and caustics




1V. Fundamental streams

Consequences of Df/ Dt =0 ‘

» The 3-D phase sheet can be stretched and folded but not torn
» At least one sheet must pass through everv pont x
» [n nonlinear objects there are typically many sheets at each x

» Stretching which reduces a sheet's density must also reduce
its velocity dispersions to mamtain f=const. — = G ~ p -

» At a caustic. at least one velocity dispersion must —— «©

» All these processes can be followed 1n fully general simulations
bv tracking the phase-sheet local to each simulation particle
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The geodesic deviation equation

Particle equation of motion: X = [f,] = [-%’(b ]

Offset to a neighbor: §X = [Tégx] = [OT é ]-SX: T=-V (Vo)

Write oX(1) = D(X. 1) SXU, then differentiating w.r.t. time grves.

I =
0 |-D withD =1

- O

b

» Integrating this equation together with each particle's trajectorv gives
the evolution of 1ts local phase-space distribution

» No symmetry or stationarity assumptions are required

» det(D) = 1 at all times by Liouville's theorem

e Eor CDM. l/|det(D_)| gives the decrease m local 3D space dgngsity of

IIIII : 11030079
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Similarity solution for spherical collapse in CD

Bertschinger 1985
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Simulation from self-similar spherical initial conditior

Geodesic deviation equation — phase-space structure local to each partic
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Similarity solution for spherical collapse in CD

Bertschinger 1985
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Simulation from seli-similar spherical initial conditior

Geodesic deviation equation — phase-space structure local to each partic
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Simulation from self-similar spherical initial conditio

y/rla
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Vogelsberser et al 2009

The radial orbit
mnstability leads to .
system which 1s
strongly prolate n
the inner nonlinear
regions
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Simulation from self-similar spherical initial conditior

Geodesic deviation equation — phase-space structure local to each partic
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Caustic crossing counts in a ACDM Milky Way halo

Vogelsberger & Whate 2011
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Caustic crossing counts in a ACDM Milky Way halo

Vogelsberger & Whate 2011

ese are tidal streams not fundamental streams

Self-bound subhalos excluded
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Stream density variations along orbits in a ACDM ha
box A
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Caustic count profiles for Aquarius halos

Vogelsberger & Whate 2011
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Stream density distribution in Aquarius hales

107°

10 %

Pirsa: 11030079

Vogelsberger & Whate 2011
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Stream density distribution at the Sun
Vogelsberger & Whate 2011 ol sl
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Local density in the inner halo compared
to a smooth ellipsoidal model

e » Estimate a density p at each
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= 104
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Conclusions for direct detection experiments

» With more than 99 9% confidence the Sun lies in a region where
the DM density differs from the smooth mean value bv < 20%

» The local velocity distribution of DM particles 1s similar to a

trivanate Gaussian with no measurable “lumpiness™ due to
individual DM streams

* The strongest stream at the Sun should contain about 10~ of the
local DM density. Its energy width is AE/E < 107" so it would
be detectable as a “spectral line” mn an axion experiment.

» The energy distribution of DM particles should contain broad
features with ~20% amplitude which are the fossils of the detailed
assembly history of the Milky Way's dark halo
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Springel et al 200¢

20Log(intensity)

Mayvbe the annihilation of Dark
Matter will be seen by Fermi?
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Conclusions: fundamental streams and caustics

® [ntegration of the GDE can augment the ability of ACDM

simulations to resolve fine-grained structure by over 10
orders of magnitude

» Fundamental streams and their associated caustics will
have no significant effect on direct and indirect Dark
Matter detection experiments

* The most massive stream at the Sun should contain
roughly 0.001 of the local DM density and would have
an energy spread AE/E < 107"°. It might be detectable in
an axion experiment
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