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Motivation : why study c_:;eneral relativity in higher
dimensional spacetimes:

Black strings in 5D

— the Gregory-Laflamme instability

— conjectures on the end-state

A new numerical exploration of unstable black
strings (work with Luis Lehner)

— formulation

— results

Conclusions



Motivation: why study higher dimensional gravity?

If string theory is providing the correct path to a consistent theory of
nature valid at Planck scales, the universe is fundamentally higher
dimensional

Even if strin%theory is not correct, there has recently been a lot of
work using the holographic dual correspondences of string theory
(AdS/CFT in particular) to describe many aspects of conventional
non-gravitational 4D physical processes in terms of higher
dimensional gravity

— superconductors, superfluidity, quark-gluon plasmas, etc.

— interestingly, the gravitational dual to all the processes studied to
date involves black holes

Much interesting geometry in higher dimensional Ricci-flat Lorentzian
manifolds, in particular the zoo of "black objects” — black spheres,
rings, strings, saturns, drops, ...



Higher dimensional black holes

e Higher dimensional black holes have many properties in common
with their 4D counterparts, e.q.

can be defined using global (event horizons) or local (isolated horizons)
properties of the spacetime

contain geometric singularities

quasi-stationary processes are governed by the usual laws of black hole
mechanics (constant surface gravity, area can only increase, changein
mass can be related to change in area/angular momenta/charges)

a couple of studies have shown the usual link between gravitational
12[1*.1::IIr:1;:ahs\‘aI dand black hole formation, together with critical phenomena at
thresho

Hawking radiate at the semi-classical level

e However, a few properties are in general drastically different,
including

rno uniguenessof stationary solutions

many black objects are unstableto perturbations



Black Strings

e Black strings are a particularly simple class of higher
dimensional black hole solutions

— in N spacetime dimensions, the metric is 4D Schwarzschild X
(N-4)D Euclidean flatspace; e.g. for N=5, in Schwarzschild
coordinates

1

1—2m )drl +7°dQ” +dw’
1-2m/r

=—(1-2m/r \dt™ +

— here m is interpreted as mass per unit length; a segment of
length Aw=L of the spacetime has asymptotic mass M=mL




Gregory-Laflamme instability

e Gregory and Laflamme /PRL 70 (1993)]first showed that
blac strlnﬂs (and p-branes) are linearly unstable to long-
wavelength perturbations
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— Image from

R. Gregory and R. Laflamme,
Nucl.Phys.B428 (1994)

— the D=4 curve corresponds to
the 5D black string, and the
critical wavelength above which
modes are unstable is




End-state of the instability?

e Based on the way the linear mode
perturbed the horizon, and an
entropic argument:

— above a similar critical wavelength
L. the total area/lengthof a
sequence of 5D hyper-spherical
black holes, each a distance L.
apart, is greaterthan a 5D black
string with the sametotal mass/length (A/=mL): Image from:

R. Gregory and R. Laflamme,

Nucl . Phys.B428 (1994)

= m = 10.6m

3

they arqgued the black string would “pinch-off” into a sequence of
spherical black holes

— this cannot happen without the appearance of a naked singularity (the "no-
bifurcation” theorems still hold in 5D) — a genericexample of cosmic
censorship violation in higher dimensional gravity




End-state of the instability?

e However, Horowitz and Maeda /PRL 8/, 151301
(2001)] proved that black string horizons cannot
shrink to zero cross-sectional radius in finite affine
time of the generators of the horizon

— based on this, they conjectured the end-state
would be a new, static, non-uniform solution with
the same topology as the black string

— this spurred a search for such solutions; a couple
were found /S. S. Gubser, COG. 19, 4825 (2002),
7. Wiseman, CQG. 20, 1137 (2005), E. Sorkir,
PRD/74:104027 (2006) ] however, these solutions
have less entropy (area) than the uniform black
string, so could not be the end-state of the GL
instability




End-state of the instability?

e The first (numerical) non-linear

study was carried out by
Choptuik et al. /PRD 68, 044001
(2003)]

— simulation "crashed” before a
conclusive statement about the
end-state could be made

— results more consistent with the
GL pinch-off conjecture

— affine time grows exponentially
fast relative to asymptotic time
[Garfinkle et al., PRD 71 (2005),
Marolf PRD 71 (2005)]
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so not necessarily inconsistent
with Horowitz & Maeda’s theorem




End-state of the instability?

Further (anecdotal) evidence in favor of the pinch-off scenario has
gathered in the form of various correspondences between equations
governing viscous hydrodynamics and horizon dynamics

— the membrane paradigm g?ﬁomg, Price, Macdonald, Eds. (1986)]shows that the
dynamics of a "stretched horizon” is governed by the Navier-Stokes equations for

a relativistic fluid with very low shear-viscosity n=1/16mn.

— more recently developed frameworks {Bf?ah‘acf?af}ya et al., JHEP 02 (2008), R.
Emparan et al. JHEP 03 (2010)]established similar relationships; [J. Camps et
al., axav:1003.3636 (2010)] (left figures) used the “black folds” approach to re-
derive the Gregory-Laflamme spectrum of modes to leading order

— Cardoso and Dias [PRL 96 (2001?)] (right }?ureé showed that the spectrum of
unstable modes of a C\é{irjdrical ow of fiuid with surface tension, subject to the
Rayieigh-Plateau instability, was quantitatively similar to that of black strings

unstable sound waves in effective black string flmid (1eft)
comnared to (G, modes (rioht)

Rayleigh-Plateau analogue



End-state of the instability?

e The reason why this could be considered
evidence for pinch-off is that unstable fluid
streams generically break up

— Forthe Rayleigh-Plateau instability surface area is
also the key exFiainin why one would expect a
long-wavelength instability leading to pinch-off :
above a critical length a sequence of spherical
droplets has lower energy (due to surface tension)
than a cylinder with the same volume/length

» otheranalogues [Cardoso and Gualtieri, COG 23
(2006); Unruf and Wald, unpublished] do not include
surface tension, but the conclusion is the same

e The caveat with the fluid analogues is just
that —they're analogues— and existent
Einstein/horizon-hydrodynamic relationships
is they're perturbative

— thus, both end-state possibilities remain, and one
needsto solve the full field equations to discover
the answer




Numerical formalism

* We numerically solve the vacuum Einstein field equations




Constraint damping

Free evolution of the "plain” harmonic equations typically suffers from exponential
growth of the constraint conditions

The (apparent) cure, as suggested by C. Gundlach et al (/C. Gundlach, J. M. Martin-
Garcia, G. Calabrese, I. Hinder, gr-qc/0504114] based on earlier work by Brodbeck et al /7.
%fﬁrh. Phys. 40, 909 (1999)]) is to maodify the Einstein equations in harmonic form as
ollows:

T
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n,—-ad,tis a unit timelike vector normal to r=const. h\lfjpersurfaces, with proper time
measured by an observer moving along =, given by the /apse function a, and x,p are a
constant parameters («>=0; —1<p<=0)

— any solution to the field equations must have C*=0, so we are adding "nothing” to them;
however with a proper choice of parameters growth of truncation-error sourced violations of the
constraints can be suppressed

-~ all previous codes had o= we found we needed a non-zero p to suppress a zero-wavelzngth
mode in the (periodic) exira dimension



Numerical formalism

To make the simulations computationally feasible we restrict to
spherically symmetry within the w =consitant sub-manifold

Earlier attempts using coordinates adapted to this symmetry in
conjunction with the harmonic scheme were not successful (Sorkin &
Choptuik /GRG 42 (2010)] also found achieving long-term stable
numerical evolution is more complicated in such coordinates), therefore
we adopt Cartesian like coordinates; i.e. asymptotically the metricis

ds™ = —dt" +dx" +r:-‘h--’2 +dz" +dw’ —I—O[iJ

F

and demand that fAesecoordinates are harmonic



Numerical formalism

e For efficient evolution we employ a variant of the “cartoon” method /M.
Alcubierre et al. Int.J.Mod D10 (2001); FP, CQG 22 (2005)], whereby we only
discretize a 2+1 dimensional slice (y=z=0) of the spacetime

— off-slice (¢ & z) derivatives of the metric in the field equations are replaced with in-
slice (x) derivatives by using the Killing vectors of the chosen SO(3) symmetry




1-Slide overview of the code & setup

4t grder finite difference discretization, Runge-Kuttza time integration

Berger and Oliger style adaptive mesh refinement (AMR) & parallel evolution as
implemented with the PAME/AMRD software libraries

Using initial data as constructed in Choptuik et al. [PRD 68, 044001 (2003)],
describing a black string perturbed by a small gravitational wave

Periodicin the string (s) direction

Focusing on a single unstable case, with L=20m, i.e. L~1 4L_. ?so with periodicity, the
Gregory Laflamme analysis says this will have a sing/e unstable mode, and close to
the maximum growth rate)

Choose spatial domain r=/0..320m]

&’c_thJltgrtl:goundary impose Dirichlet conditions, with the metric fixed to that of the
initial da

— not physically correct, hence we placed the outer boundary sufﬁt:ien’dy far away from the
horizon to be out of causal contact with it over the length of the simulation (t~230m)

Excision (i.e. no boundary conditions) used at the inner boundary, which is
dynamically adjusted to be some fractional distance within the apparent horizon
(found via a flow-method) of the black string



Results : Apparent Horizon Embedding Diagram

-

map the geometric 1D shape of each t=0.3
t=x=v—=constant Slice of the apparent

horizon to a flat (R, Z) Euclidean

space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09
physical geometry .

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




Results : Apparent Horizon Embedding Diagram

,‘l

map the geometric 1D shape of each t=165.938 AN
t=x=vy—constant Slice of the apparent
horizon to a flat (R Z) Euclidean

space; i.e. in parametric form B -
(R,Z)=(R(£), Z(5))

R(¢& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the flat space is identical to that of

the corresponding curve in the 4.09

physical geometry . 7
£ A

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down” |
0.0035



Results : Apparent Horizon Embedding Diagram

« map the geometric 1D shape of each t=194.043
t=x=v=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form s

-

(R,Z)=(R(&), Z(®))

* R¢§ is the areal radius of that point
on the harizon, and Z& is defined so
that the proper length of the curve in
the fiat space is identical to that of
the corresponding curve in the 4.09

physical geometry 7
 the movie shows this curve spun b 1

around R=0 to form a surface for :

visual aid |
e coloris mapped to R ——

o notethattime is "slowing down” | I
0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each
t=x=vy—constant slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that paoint
on the horizon, and Z¢& is defined so
that the proper length of the curve in
thefiat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

t=203.

4.09

0.0035

613

.



Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=214.50

r=x=y—=constant slice of the apparent
horizon to a fiat (R. Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

thefiat space is identical to that of

the corresponding curve in the 4.09
physical geometry ‘

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down” |
0.0035



map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
harizon to a fiat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
the fiat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

Results : Apparent Horizon Embedding Diagram



Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each =22

=x=y=constant slice of the apparent
horizon to a fiat (R Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(¢& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

thefiat space is identical to that of

the corresponding curve in the 4.09
physical geometry ‘

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down” |
0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each
t=x=y=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that paoint
on the harizon, and Z¢& is defined so
that the proper length of the curve in
the flat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

i

=226.445

4.09

0.0035

N



Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=227.666
t=x=v=constant Slice of the apparent

horizon to a flat (R Z) Euclidean

space; i.e. in parametric form .

(R,Z)=(R(&), Z(®)) o

R¢& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the flat space is identical to that of -
the caorresponding curve in the 4.09

physical geometry -

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down” | -
0.0035

[N




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=228.177
t=x=vy=constant Slice of the apparent

horizon to a flat (R, Z) Euclidean

space; i.e. in parametric form s

(R,Z)=(R(&), Z(&)) -

R¢& is the areal radius of that paoint
on the harizon, and Z¢& is defined so
that the proper length of the curve in
thefiat space is identical to that of
the corresponding curve in the 4.09 g
physical geometry -

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down” 2 R ——
0.0035 '



Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=228.431

=x=y=constant slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09
physical geometry -

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down”
0.0035

N



Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each
t=x=vy=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
the fiat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down”

i

=228.644

4.09

0.0035



Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=228.829
t=x=y—constant Slice of the apparent

horizon to a flat (R, Z) Euclidean

space; i.e. in parametric form B

(R,Z)=(R(&), Z(®)) -

R¢& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

the flat space is identical to that of

the corresponding curve in the 4.09 -
physical geometry -

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down” |
0.0035



Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=228.964
t=x=vy=constant Slice of the apparent

horizon to a fiat (R.Z) Euclidean

space; i.e. in parametric form s

(R,Z)=(R(£), Z(£)) -

R¢& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

the flat space is identical to that of

the corresponding curve in the 4.09 -
physical geometry ;

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down” |
IXIRE -




AH Embedding diagram: same data, zooming in

t=0.312

map the geometric 1D shape of each
t=x=vy=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the flat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each
t=x=vy=constant Slice of the apparent
horizon to a flat (R, Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035

t=165.1

S

6




AH Embedding diagram: same data, zooming in

t=195.028

map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a flat (R Z) Euclidean

space; i.e. in parametric form v

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point
on the harizon, and Z¢& is defined so
that the proper length of the curve in
thefiat space is identical to that of "
the corresponding curve in the 4.09

physical geometry

the movie shows this curve spun
around R=¢0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down”
0.0035




AH Embedding diagram: same data, zooming in

=3
« map the geometric 1D shape of each t‘ﬁlﬂ-;’v
t=x=v=constant Slice of the apparent

horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

 R¢§ is the areal radius of that point
on the harizon, and Z¢& is defined so
that the proper length of the curve in
theflat space is identical to that of ¥
the corresponding curve in the 4.09
physical geometry

« the movie shows this curve spun
around R=0 to form a surface for
visual aid

e coloris mapped to R

iy,

e« notethat time is "slowing down”

- -

0.0035




AH Embedding diagram: same data, zooming in

P
« map the geometric 1D shape of each t-*‘l&v
t=x=vy—constant Slice of the apparent

horizon to a flat (R Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

 R¢§ is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
the flat space is identical to that of »
the corresponding curve in the 4.09 =
physical geometry |

« the movie shows this curve spun
around R=0 to form a surface for
visual aid

e coloris mapped to R

o notethattime is "slowing down”
0.0035




AH Embedding diagram: same data, zooming in

« map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

 R(§ is the areal radius of that point
on the harizon, and Z¢& is defined so
that the proper length of the curve in
the fiat space is identical to that of ™
the corresponding curve in the 4.09

physical geometry .

 the movie shows this curve spun
around R=0 to form a surface for
visual aid

e coloris mapped to R

o notethat time is "slowing down”
0.0035




AH Embedding diagram: same data, zooming in

« map the geometric 1D shape of each
t=x=vy—=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

 R/§ is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
the flat space is identical to that of "
the corresponding curve in the 4.09
physical geometry

« the movie shows this curve spun
around R=0 to form a surface for
visual aid

e coloris mapped to R

e notethat time is "slowing down”
0.0035




AH Embedding diagram: same data, zooming in

» map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a flat (R Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

 R¢§ is the areal radius of that point
on the harizon, and Z¢& is defined so
that the proper length of the curve in
the fiat space is identical to that of ™
the corresponding curve in the 4.09
physical geometry

 the movie shows this curve spun
around R=0 to form a surface for
visual aid

e coloris mapped to R

e notethat time is "slowing down”

0.0035




AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each t
t=x=v=constant Slice of the apparent
horizon to a flat (R Z) Euclidean :

space; i.e. in parametric form
(R, Z)=(R(£), Z(5))

R(& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the flat space is identical to that of ™
the corresponding curve in the 4.09

physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

0.0035 .



AH Embedding diagram: same data, zooming in

« map the geometric 1D shape of each
t=x=vy—constant Slice of the apparent
horizon to a flat (R. Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

 R(§ is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
the fiat space is identical to that of ¥
the corresponding curve in the 4.09
physical geometry

 the movie shows this curve spun
around R=0 to form a surface for
visual aid

e coloris mapped to R

e notethat time is "slowing down”
0.0035




AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each t L
t=x=vy=constant Slice of the apparent
horizon to a flat (R Z) Euclidean |

space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Z& is defined so

that the proper length of the curve in

theflat space is identical to that of ™
the corresponding curve in the 4.09

physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

the fiat space is identical to that of "
the corresponding curve in the 4.09

physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035
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Metric BEvolution

t=40.00
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Metric BEvolution

t=58.75
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Metric BEvolution
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Metric BEvolution

t=130.00
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Metric BEvolution

t=178.75
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Metric Evolution

t=227.50

g ww




Apparent Horizon Area

| —— Jow res. |
: |
| ==+ med res |
| = high res. |

150

e Resolutions chosen via specification of the maximum estimated truncation error ¢
from ¢, r,/8to r,/64 (Clow” to “high”)

e For this configuration, ignoring the (small amount of) energy from the initial
perturbation, a sequence of spherical black holes (one per period) with the same
energy as the initial string has an area

The lowest resolution simulation, which has run the longest in physical time, has

reached a value ..
A4 (t=1t_,)=1.369+0.005

&

e lhisis consistent with the araument that the dvnamics of the instabilitv is such as



Apparent Horizon Dynamics

=220-226 M

e Atlate times the horizon certainly /ookslike it can be described as a sequence of
spherical black holes connected by string segments; to quantify this a bit, we
evaluate the following curvature invariants on the horizon:

and construct the following dimensionless scalars

ik —m: s 1P’

which evaluate to the following for the exact black sphere/black string solutions

K. =6 27(S., K. =L 2%(S..—D+1=1



Apparent Horizon Dynamics

Invariants above
evaluated on the
apparent horizon at
the last time step of
the (medium
resolution) simulation
dzpicted to right

@9
i

| — K
28(S-1)+1
Rmﬁl




Properties of satellites and string-segments

Therefore, the spheres-connected-by-string-segments interpretation seems
reasonable. With that interpretation, and that evolution proceeds through a
sequence of unstable epochs, we extract the following properties from the horizon:

10.0

0.63 = 2% | 105 += 1% |

0.1 —-02 | 102
102

Gerr: generation number

£- time of initial satellite formation (defined to be time when the areal radius has
grown to 1.5 times that of the surrounding string-segment)

. number of satellites that form
R, 7 radius of local string segment
R - radius of satellites by the time the simulation was stopped

L _/R_= Ratio of length to radius of local string-segment (recall GL critical ratio ~ 7.2)



Numerical formalism

» For efficient evolution we employ a variant of the “cartoon” method /M.
Alcubierre et al. Int.J.Mod D10 (2001); FP, CQG 22 (2005)], whereby we only
discretize a 2+1 dimensional slice (y=z=0) of the spacetime

— off-slice ¢ & z) derivatives of the metric in the field equations are replaced with in-
slice (x) derivatives by using the Killing vectors of the chosen SO(3) symmetry




End-state of the instability?

e The first (numerical) non-linear

study was carried out by
Choptuik et al. /PRD 68, 044001
(2003)]

— simulation "crashed” before a
conclusive statement about the
end-state could be made

— results more consistent with the
GL pinch-off conjecture

— affine time grows exponentially
fast relative to asymptotic time
[Garfinkle et al., PRD 71 (2005),
Marolf PRD 71 (2005)]

InAct/ met/s

so not necessarily inconsistent
with Horowitz & Maeda’s theorem




End-state of the instability?

Further (anecdotal) evidence in favor of the pinch-off scenario has
gathered in the form of various correspondences between equations
governing viscous hydrodynamics and horizon dynamics

— the membrane paradigm g???ome, Price, Macdonald, Eds. (1986)]shows that the
dynamics of a "stretched horizon” is governed by the Navier-Stokes equations for
a relativistic fluid with very low shear-viscosity n=1/16m.

— more recently developed frameworks {Bhan‘acf?af}ya et al., JHEP 02 (2008), R.
Emparan et al. JHEP 03 (2010)]established similar relationships; [J. Camps et
al., amxav:1003.3636 (2010)] (left figures) used the “black folds” approach to re-
derive the Gregory-Laflamme spectrum of modes to leading order

— Cardoso and Dias [PRL 96 (200?] (right }‘igureﬁ showed that the spectrum of
unstable modes of a cﬁ_indﬁcal ow of fluid with surface tension, subject to the
Rayleigh-Plateau instability, was quantitatively similar to that of black strings

unstable sound waves m effective black string flmd (left)
commnared to (. modes (r1oht)

Rayleigh-Plateau analogne



End-state of the instability?

e The reason why this could be considered
evidence for pinch-off is that unstable fluid
streams generically break up

— Forthe Rayleigh-Plateau instability surface area is
also the key exFIainin why one would expect a
long-wavelength instability leading to pinch-off :
above a critical length a sequence of spherical
droplets has lower energy (due to surface tension)
than a cylinder with the same volume/length

» otheranalogues [Cardoso and Gualtieri, COQG 23
(2006); Unruh and Wald, unpublished] do not include
surface tension, but the conclusion is the same

e The caveat with the fluid analogues is just
that —they're analogues— and existent
Einstein/horizon-hydrodynamic relationships
is they're perturbative

— thus, both end-state possibilities remain, and one
needs to solve the full field equations to discover
the answer




End-state of the instability?

Further (anecdotal) evidence in favor of the pinch-off scenario has
gathered in the form of various correspondences between equations
governing viscous hydrodynamics and horizon dynamics

— the membrane paradigm gﬁ?ome, Price, Macdonald, Eds. (1986)]shows that the

dynamics of a "stretched horizon” is governed by the Navier-Stokes equations for
a relativistic fluid with very low shear-viscosity n=1/16m.

— more recently developed frameworks { Bhattacharyya et al., JHEP 02 (2008), R.
Emparan et al. JHEP 03 (2010)]established similar relationships; [J. Camps et
al., amav:1003.3636 (2010)] (left figures) used the "black folds™ approach to re-
derive the Gregory-Laflamme spectrum of modes to leading order

— Cardoso and Dias [PRL 96 (2006)] (right ;‘i'gured showed that the spectrum of
unstable modes of a cylindrical flow of fluid with surface tension, subject to the
Rayleigh-Plateau instability, was quantitatively similar to that of biack strings

unstable sound waves i effective black string fluid (1eft)
commnaraed to (1. modes (richt)

Rayleigh-Plateau analogne



Apparent Horizon Area

- low res.
= med res

= f1gh res. ‘

150

e Resolutions chosen via specification of the maximum estimated truncation error
from ¢, r,/8to r,/64 (Clow” to “high”)

e For this configuration, ignoring the (small amount of) energy from the initial
perturbation, a sequence of spherical black holes (one per period) with the same
energy as the initial string has an area

The lowest resolution simulation, which has run the longest in physical time, has

reached a value ..
A/4. (t=1t_,)=1.369+0.005

&

e | hisis consistent with the araument that the dvnamics of the instabilitv is such as



Properties of satellites and string-segments

Therefore, the spheres-connected-by-string-segments interpretation seems
reasonable. With that interpretation, and that evolution proceeds through a
sequence of unstable epochs, we extract the following properties from the horizon:

107
102

Gerr: generation number

£z time of initial satellite formation (defined to be time when the areal radius has
grown to 1.5 times that of the surrounding string-segment)

1. number of satellites that form
R, - radius of local string segment
R - radius of satellites by the time the simulation was stopped

L _/R_= Ratio of length to radius of local string-segment (recall GL critical ratio ~ 7.2)



Properties of satellites and string-segments

The dynamics of the apparent horizon also suggests that the instability unfoldsin a

self-similar manner; if so, transforming to loganthmic coordinates in space and time
should reveal this more clearly

The following shows R .t w=const.) at points (roughly coinciding) with the eventual
maxima of satellites, and one representative point that is still string-like near the
end of the simulation

Guess at "pinch-off time”

by assuming the time

scale for each later generation

is a constant fraction X of

the preceding one, with the
exception of the first generation,
whose time scale is controlied
by the initial data:

from the data in the table, we
get AT~231M

4 3 =
-In(231-t/M) Page 61/106




Apparent Horizon Dynamics

Invariants above
evaluated on the
apparent horizon at
the last time step of
the (medium
resolution) simulation
dzpicted to right

| — K
28(S-1)+1

R, /M




Metric BEvolution

t=0.00

W

1.00 2.00
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AH Embedding diagram: same data, zooming in

-0 212
« map the geometric 1D shape of each t=0.312

=x=y=constant slice of the apparent
horizon to a fiat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

 R(§ is the areal radius of that point
on the harizon, and Z¢& is defined so
that the proper length of the curve in
the fiat space is identical to that of
the corresponding curve in the 4.09
physical geometry

« the movie shows this curve spun
around R=¢ to form a surface for
visual aid

e« coloris mapped to R

o notethattime is "slowing down”
0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=0.312
t=x=vy=constant Slice of the apparent

horizon to a flat (R.Z) Euclidean

space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the flat space is identical to that of

the corresponding curve in the 4.09
physical geometry .

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=57.812

=x=y=constant slice of the apparent
horizonto a fiat (R. Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

thefiat space is identical to that of

the corresponding curve in the 4.09
physical geometry '

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

tn

0.003




Results : Apparent Horizon Embedding Diagram

A,

map the geometric 1D shape of each t=176.934
t=x=v=constant Slice of the apparent

horizon to a fiat (R.Z) Euclidean

space; i.e. in parametric form

(R,Z)=(R(&), Z(®)) ,

R¢& is the areal radius of that point |
on the harizon, and Z¢& is defined so '
that the proper length of the curve in |

the flat space is identical to that of ¥
the corresponding curve in the 4.09 |
physical geometry ; | 7

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down” |
0.0035




Results : Apparent Horizon Embedding Diagram

« map the geometric 1D shape of each t=198.535
t=x=y=constant Slice of the apparent
horizon to a fiat (R.Z) Euclidean
space; i.e. in parametric form

-

(R,Z)=(R(&), Z(®))

» R(§ is the areal radius of that point
on the harizon, and Z¢& is defined so
that the proper length of the curve in
the fiat space is identical to that of ¥
the corresponding curve in the 4.09
physical geometry - 7

 the movie shows this curve spun
around R=0 to form a surface for
visual aid

e coloris mapped to R —

e notethat time is "slowing down”
0.0035




Results : Apparent Horizon Embedding Diagram

o

« map the geometric 1D shape of each t=204.39
t=x=v=constant Slice of the apparent
horizon to a flat (R Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

 R¢§ is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in

the flat space is identical to that of ™

the corresponding curve in the 4.09

physical geometry ; 7.
» the movie shows this curve spun _ A

around R=0 to form a surface for

visual aid |
e coloris mappedto R ~—— |
e« notethattime is "slowing down”

0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=215.479

=x=y=constant slice of the apparent
horizon to a flat (R Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

the flat space is identical to that of

the corresponding curve in the 4.09
physical geometry ‘

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down” |
0.0035

N




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a fiat (R Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
thefiat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

t=220.166

4.09

0.0035

CE—




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=225.880
t=x=vy=constant Slice of the apparent

horizon to a flat (R.Z) Euclidean

space; i.e. in parametric form

(R.Z)=(R(&), Z(®))

R¢& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the flat space is identical to that of

the corresponding curve in the 4.09
physical geometry -

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down” |
0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each
t=x=y—constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
thefiat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

t=226.543

4.09

0.0035

(N




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=227.642

=x=y=constant slice of the apparent
horizon to a fiat (R Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09
physical geometry ‘

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a flat (R, Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point
on the horizon, and Z¢& is defined so
that the proper length of the curve in
thefiat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down”

t=228.109

4.09

0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=228.231
t=x=v=constant Slice of the apparent

horizon to a flat (R.Z) Euclidean

space; i.e. in parametric form

(R,Z)=(R(&), Z(®)) -

R(& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

the flat space is identical to that of "
the corresponding curve in the 4.09 v

physical geometry .

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down” e —
0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each
t=x=vy=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
the fiat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

t=228.419

4.09

0.0035




Results : Apparent Horizon Embedding Diagram

» map the geometric 1D shape of each t=228.664
t=x=v=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®)) N

 R¢§ is the areal radius of that point
on the harizon, and Z¢& is defined so
that the proper length of the curve in
thefiat space is identical to that of ¥
the corresponding curve in the 4.09 B
physical geometry :

« the movie shows this curve spun A
around R=0 to form a surface for
visual aid

e« coloris mapped to R

 notethat time is "slowing down” | I
0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each
t=x=y—constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
the fiat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

t=228.844

4.09

0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=228.964
t=x=v=constant Slice of the apparent

horizon to a flat (R.Z) Euclidean

space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09
physical geometry ’

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down” |
0.0035

N




AH Embedding diagram: same data, zooming in

-0 212
e map the geometric 1D shape of each t=0.312

=x=y=constant slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

*» R(§ is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
thefiat space is identical to that of
the corresponding curve in the 4.09
physical geometry

 the movie shows this curve spun
around R=0 to form a surface for
visual aid

e coloris mappedto R

e« notethattime is "slowing down”
0.0035




Results : Apparent Horizon Embedding Diagram

map the geometric 1D shape of each t=0.312
t=x=vy=constant Slice of the apparent

horizon to a flat (R, Z) Euclidean

space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(¢& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

theflat space is identical to that of

the corresponding curve in the 4.09
physical geometry .

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down”
0.0035




AH Embedding diagram: same data, zooming in

-0 21”
map the geometric 1D shape of each t=0.312

=x=y—=constant slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

thefiat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




AH Embedding diagram: same data, zooming in

t=159.688

map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the horizon, and Zr& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a fiat (R, Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035

t=194.824

<




AH Embedding diagram: same data, zooming in

tzllﬂ.ﬂv'

map the geometric 1D shape of each
t=x=vy=constant Slice of the apparent
horizon to a fiat (R, Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
the flat space is identical to that of
the corresponding curve in the
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

4.09

0.0035

LY



AH Embedding diagram: same data, zooming in

Wy & o .
map the geometric 1D shape of each t=21 v
t=x=v=constant Slice of the apparent

horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point

on the horizon, and Z¢& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09 =
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down” |
0.0035



AH Embedding diagram: same data, zooming in

. t=220 -
« map the geometric 1D shape of each s v

=x=y=constant slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

* R(§ is the areal radius of that point
on the harizon, and Zr& is defined so
that the proper length of the curve in
the flat space is identical to that of
the corresponding curve in the 4.09 =
physical geometry |

 the movie shows this curve spun
around R=0 to form a surface for
visual aid

e coloris mapped to R

o notethattime is "slowing down”
0.0035




AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each
t=x=vy=constant Slice of the apparent
horizon to a flat (R, Z) Euclidean
space; i.e. in parametric form

(R,.Z)=(R(&), Z(®))

R(& is the areal radius of that paoint

on the harizon, and Zr& is defined so

that the proper length of the curve in

thefiat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is "slowing down” |
0.0035




AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each tzv
—x=vy—constant slice of the apparent .

horizon to a flat (R,Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

thefiat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for

visual aid
color is mapped to R

note that time is " slowing down”
0.0035



AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(¢& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”

0.0035



AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a flat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Zr& is defined so

that the proper length of the curve in

the fiat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each
t=x=v=constant Slice of the apparent
horizon to a fiat (R.Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R(& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

the flat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




AH Embedding diagram: same data, zooming in

map the geometric 1D shape of each
t=x=vy=constant Slice of the apparent
horizon to a flat (R, Z) Euclidean
space; i.e. in parametric form

(R,Z)=(R(&), Z(®))

R¢& is the areal radius of that point

on the harizon, and Z¢& is defined so

that the proper length of the curve in

thefiat space is identical to that of

the corresponding curve in the 4.09
physical geometry

the movie shows this curve spun
around R=0 to form a surface for
visual aid

color is mapped to R

note that time is " slowing down”
0.0035




Apparent Horizon Dynamics

Invariants above
evaluated on the
apparent horizon at
the last time step of
the (medium
resolution) simulation
dzpicted to right

| — K

28(S-1)+1
R“_[/'M




Properties of satellites and string-segments

e Therefore, the spheres-connected-by-string-segments interpretation seems
reasonable. With that interpretation, and that evolution proceeds through a
sequence of unstable epochs, we extract the following properties from the horizon:

Gerr: generation number

£z time of initial satellite formation (defined to be time when the areal radius has
grown to 1.5 times that of the surrounding string-segment)

1. number of satellites that form

R, 7 radius of local string segment

R - radius of satellites by the time the simulation was stopped

L_/R_= Ratio of length to radius of local string-segment (recall GL critical ratio ~ 7.2)



Properties of satellites and string-segments

The dynamics of the apparent horizon also suggests that the instability unfoldsin a
self-similar manner; if so, transforming to logarnthmic coordinates in space and time
should reveal this more clearly

The following shows R .t w=const.) at points (roughly coinciding) with the eventual
maxima of satellites, and one representative point that is still string-like near the
end of the simulation

Guess at "pinch-off time”

by assuming the time

scale for each later generation

is a constant fraction X of

the preceding one, with the
exception of the first generation,
whose time scale is controlled
by the initial data:

|

from the data in the table, we

get AT~231M y-
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Properties of satellites and string-segments

e Therefore, the spheres-connected-by-string-segments interpretation seems
reasonable. With that interpretation, and that evolution proceeds through a
sequence of unstable epochs, we extract the following properties from the horizon:

R AH, j M L-‘-z H‘s,a

1 \ulb— %| 0.63 + 2% \[n,—l"

01-02 | =10

Gerr: generation number

£z time of initial satellite formation (defined to be time when the areal radius has
grown to 1.5 times that of the surrounding string-segment)

1. number of satellites that form
R, - radius of local string segment

R - radius of satellites by the time the simulation was stopped

L _/R_: Ratio of length to radius of local string-segment (recall GL critical ratio ~ 7.2)



Properties of satellites and string-segments

The dynamics of the apparent horizon also suggests that the instability unfoldsin a
self-similar manner; if so, transforming to loganthmic coordinates in space and time
should reveal this more clearly

The following shows R .z, w=const.) at points (roughly coinciding) with the eventual
maxima of satellites, and one representative point that is still string-like near the
end of the simulation

Guess at "pinch-off time”

by assuming the time

scale for each later generation

is a constant fraction X of

the preceding one, with the
exception of the first generation,
whose time scale is controlied
by the initial data:

—= 7= ()6

from the data in the table, we

get AT~231M =.

— =
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Properties of satellites and string-segments

In a fluid with tension, the shrinking neck r
form /Eggers, PRL 71 (1993); Miyvamoto, J

or in logarithmic cooridantes

where 1, is the pinch-off time

The dashed line overiayed on the
figure has slope ~-1

— on average seems behavior of
thinning string segment seems
consistent wf’a'l a self-similar
pinch-off

4
-In(2

31-UM)

jon exhibits a scaling solution of the
P1010(2010)]
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Conclusions 1

 New numerical solutions of the Gregory-
L aflamme instability of 5 Dimensional
black strings are revealing a rich dynamics

the original conjecture that the end state
will be a sequence of spherical black holes
seems correct, though this end-stateis
seemingly reached through a self-similar
cascade, resulting (dassically) in an infinite
number of black holes per unit length, with
arbitrarily small sizes

In the Rayleigh-Plateau hydrodynamic
analogue, a self-similar cascade can occur

» thelower the viscosity of the fluid, the
more generations of self-similar
behavior are observed before break-
up; it is unknown at present whether
below some critical viscosity the
behavior continues indefinitely

J Interestin:_:{iy, the membrane paradigm
suggests black holes have much lower
viscosity that any "real-world” fiuid

1age fr riew article by Eggers
Image from Review articleby Egg
[Rev.Mod Phys 59 (1997)], from work of

'I_11T-"|1'1“* oy PESETE Siir ﬂf‘!"iﬂr'. -'_;'—.'ru?/'."
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Conclusions 11

extrapolating from the first few generations, pinch-off will be reached in finite asymptotic
time, at which time (dassically) infinite geometric curvature will be revezled to the exterior
universe

this is then an example in 5D Einstein gravity (and [prasumabiy other dimensions where black
holes exhibit similar instabilities) where generic violation of cosmic censorship occurs

the "true” end-state will thus require some theory of guantum gravity to extend spacetime
beyond the pinch-off

e Future work

Ere_suma_bg_, as suggested in earlier simulations, the affine time along the generators of the
Gﬂézon % iverging for consistency with the Horowitz-Maeda theorem; this should be
confirme

explorg parameter space in the 5D case, in particular the initial spectrum of unstable modes
excite

explore beyond 5D, in particular to investigate the work by Sorkin /PRL.93 g‘{?{?‘#) | /suggesting
thatiﬁar dimensions higher than 13, new non-uniform strings rather than bifurcation may
resuit

investigate other classes of black hole instabilities

e Shibata & Yoshino /PRD 81 (2010)] have begun such an investigation for rapidly
spinning Myers-Perry black holes

see how far the hydrodynamic analogy can be extended:; in particular see if the large body of
work on break-up scenarios in the Navier-Stokes equations can be applied to the Einstain field
eguations (or vice-versa)



Apparent Horizon Dynamics

; !
=220-226 M

e At late times the horizon certainly /ookslike it can be described as a sequence of
spherical black holes connected by string segments; to quantify this a bit, we
evaluate the following curvature invariants on the horizon:




Apparent Horizon Dynamics

=220-226 M

At late times the horizon certainly /ookslike it can be described as a sequence of
spherical black holes connected by string segments; to quantify this a bit, we
evaluate the following curvature invariants on the horizon:

which evaluate to the following for the exact black sphere/black string solutions

_D+1=6c MK =1 27(S..—)+1=1

K. =6; 27(S

nIT



Apparent Horizon Dynamics

Invariants above
evaluated on the
apparent horizon at
the last time step of
the (medium
resolution) simulation
dzpicted to right

| — K
28(S-1)+1 |

R, /M




Properties of satellites and string-segments

The dynamics of the apparent horizon also suggests that the instability unfoldsin a
self-similar manner; if so, transforming to logarnthmic coordinates in space and time
should reveal this more clearly

The following shows R .t w=const.) at points (roughly coinciding) with the eventual
maxima of satellites, and one representative point that is still string-like near the
end of the simulation

Guess at "pinch-off time”

by assuming the time

scale for each later generation

is a constant fraction X of

the preceding one, with the
exception of the first generation,
whose time scale is controlled
by the initial data:

from the data in the table, we

get AT~231M -
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