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Abstract: The 4D rotating black hole described by the Kerr geometry possesses many of what was caled by Chandrasekhar
& quot;miraculous& quot; properties. Most of them are related to the existence of a fundamental hidden symmetry of a principal conformal
Killing-Yano (PCKY) tensor. In my talk | shal demonstrate that hidden symmetry of the PCKY tensor plays exceptional role aso in higher
dimensions. Namely, | shall present the most general spacetime admitting the PCKY tensor and show that is possesses the following properties: 1) It
is of the algebraic type D and admits the Kerr-Schild form 2) It allows a separation of variables for the Hamilton-Jacobi, Klein-Gordon, Dirac, and
stationary string equations. 3) When the Einstein equations with the cosmologica constant are imposed the metric describes the most general known
(spherical) Kerr-NUT-AdS black hole spacetime. | will also discuss the generaization of Killing-Yano symmetries for spacetimes with natural
& quot;torsion 3-formé& quot;, such as the black hole of D=5 minimal supergravity, or the Kerr-Sen solution of heterotic string theory, and comment
on connection to special Riemannian manifolds admiting Killing spinors.
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General Relativistic description:

Kerr solution (1963)




Physical Processes near Black HoJes

: -5 "'"ﬂ:.‘,
» plasma accretion -

e jets -
= radiation (EM, grawtalonal :ﬁBH merges)
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Need to study: -~

* motion of test particles
» evolution of test fields (scalar, Dirac, EM, gravitational)

. “Hidden symmetries” of rotating black holes




Plan of the talk

|. Miraculous properties of 4D black holes

Il. Hidden symmetries in all dimensions

Killing-Yano tensors and PCKY 2-form
Canonical metric and Kerr-NUT-AdS spacetimes
Parallel transport
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Algebraic type and Kerr-Schild form
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11l. Future directions

Collaborators:

M. Cariglia, V.P. Frolov, T. Houri, P. Krtous, H.K. Kunduri,
D.N. Page, M. Vasudevan, C.M. Warnick, Y. Yasui
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Symmmetries in GR

» Killing vectors - isometries of spacetime

Noether theorem: conserved quantities

YT O salaldaar=y, -
il e Y ra =3
- — - — —

» Stackel-Killing tensors

M . Phys. 18 . 265 (1970
varticle: integrals of motion of higher order in momenta
- Killing-Yano tensors:
R. Penrose Ann. N.Y. Acad. Sci. . 125 (1973).

R. Floyd, The dynamics of Kerr fields, PhD Thesis, London (1973).
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Symmmefries in GR

» Killing vectors - isometries of spacetime

Noether theorem: conserved quantities

particle: integrals of maotion linear in momenta
» Stackel-Killing tensors

M. Walker and R. Penrose, Comm. Math. Phys. 18 , 265 (1970).

particle: integrals of motion of higher order in momenta

- Killing-Yano tensors:
R. Penrose, Ann. N.Y. Acad. Sci. , 125 (1973)

R. Floyd, The dynamics of Kerr fields, PhD Thesis, London (1973).
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Einstein equations
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History of Remarkable properties of Kerr geometry
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Symmetry Operators

» Scalar field (1977 Carter) 1 ="V.:9" '\_

= (£"Va + Va&" K = NK™ Ve

Isometries
(stat., axisym.)

LK | =l=—1L].
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History of Remarkable properties of Kerr geometry
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AdS/CET Braneworlds

Do the remarkable properties
of black holes
extend to higher dimensions?
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1) Killing-Yano tensors

for a general differential form

» Killing-Yano (KY) tensor:

» closed CKY tensor

Under Hodge duality divergence part transforms into

exterior part and vice versa.
N '1'. S 1 ( I‘;‘L- } I‘;‘l— Page §




2) Principal conformal Killing-Yano (PCKY) tensor

= (non-degenerate) closed CKY 2-form

et us postulate the existence of this 2-farm and find the consequences
(less restrictive than Kahler 2-formy)




2) Principal conformal Killing-Yano (PCKY) tensor

= (non-degenerate) closed CKY 2-form

Canonical metric element:

» T. Houri, T. Oota, Y. Yasui, Phys. Lett. B666 (2008) 391, [arXiv:0805.0838].
» T. Houri, T. Qota, Y. Yasui, Class. Quantum Grav. 26 (2009) 045015, [arXiv;
tiopotas - o




3) Canonical metric element

a) Darboux basis:

(PCKY is non-degenerate)




3) Canonical metric element

a) Darboux basis:

(PCKY is non-degenerate)

b) Towers of symmetries:

construction based an the following Lemma:

Lemma [hltnm et al., H:‘I b]). L.- and k' be |

their exterior prods ot k= k0 B9 32 aleo closed CKY. o

139 Kﬂuus DK, D. N Page VP Frolov,_Killing-Yano Tensors. Rank-2 Killing Tenzo:izs,
and Conserved Quantities in Higher Dimensions., JHEP 0702 (2007) 004, ;




Towers of hidden symmetries:




Towers of hidden symmetries:

closed CKY tensors:




Towers of hidden symmetries:

closed CKY tensors:

Killing-Yano tensaors:




Towers of hidden symmetries:

closed CKY tensors:

Killing-Yano tensaors:

Killing tensors:

Page 59/125




Tower of explicit symmetries:

Primary Killing vector:

Secondary Killing vectors:

=YV (r=1,....n=1)

Last Killing vector (odd dimensions):




Tower of explicit symmetries:

Primary Killing vector:

Secondary Killing vectors:

=V (G =1.....n—1)

Last Killing vector (odd dimensions):

c ...y =0.




c) Canonical coordinates:

*  the ‘eigenvalues’ r, are ‘natural’ coordinates.

these n coordinates can be ‘upgraded’ by adding n + -

new coordinates &'




4) Kerr-NUT-{A)dS spacetime




4) Kerr-NUT-{A)dS spacetime

W. Chen, H. Li and C. N. Pope, Class. Quant. Grav. 23 , 5323 (2006).

Constants are related to mass, NUT parameters, rotations, and
cosmological constant

. T. Houri, T. Oota, Y. Yasui, Closed conformal Killing-Yano tensor and Kerr-NUT-de Sitter
spacetime uniqueness, Phys.Lett. B656 (2007) 214.
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5) Parallel fransport

* Let v(1) be a timelike geodesic
* T be its affine parameter
* U2 be its normalized tangent vector

* We denote covariant derivative of tensor T
along v by




a) Parallel-transported frame

Projector along geodesic:
P:T -V
given by

b L NG b
R.r - (}u T U ””




b) 2-form F

(projection of the PCKY tensor along geodesic)
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where we have used




b) 2-form F

(projection of the PCKY tensor along geodesic)

It is parallel-transported !

Ep =V, Fup = P°Plh.y

where we have used

Hence, any object constructed from F and metric g is parallel
transported. In particular, this is true for the invariants
constructed from F, such as its eigenvalues.




c) Compilete integrability of geodesic motion

Definition. A motion in M" is completely integrable it there exist D functionally

independent integrals of motion which are in involution, that is, they mutually
Poisson commute of one another [Arnol’d, 1989], [Kozlov, V. V., 1983].
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c) Compilete integrability of geodesic motion

Definition. A motion in MY is completely | ¢ if there exist D functionally
mdependmt integrals of motion w lmh are in tneolution. that is, the& 111ut1.mll '
Poisson commute of one another [Armol’d, 1989], [Kozlov, V. V., 1983].

D Constants of motion:

» Killing vectors:

* convenient choice of invariants of F and
g is generated by:
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Geodesic velocity:

. D.N. Page, DK, M. Vasudevan, P. Krtous, Complete Integrability of Geodesic Motion in
General Higher-Dimensional Rotating Black-Hole Spacetimes, Phys. Rev. Left. 98
(2007) 061102.

. P. Krious, DK, D.N. Page, M. Vasudevan, Constanis of Geodesic Motion in Higher-
Dimensional Black-Hole Spacetimes, Phys. Rev. D 76 (2007) 084034.

. . Houri, T. Oota, Y.Yasui, Closed conformal Killing-Yano tensor and geodesic
integrability, J.Phys.A41 (2008) 025204.




d) Darboux spaces of F

Eigenvalue problem:

then we have

Darboux spaces of F (eigenspaces of F2) are independently
parallel-transported !!!

P. Connell, V.P. Frolov, DK, Solving parallel transport eguations in the higher-
dimensional Kerr-NUT-(A)dS spacetimes, Phys. Rev. D 78 (2008) 024042.




e) Generic picture of parallel transport

Darboux spaces Darboux spaces
(D odd) (D even)
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6) Separability of test field equations

a) Hamilton-Jacobi equation

additive separation

b) Klein-Gordon equation

Vi“ Froluv P. Krtous, DK, Separability of Hamlltun—Jac:uhl and Klein-Gordon
Equations in General Kerr-NUT-AdS Spacetimes, JHEP 0702 (2007) 005.
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c) Intrinsic characterization: Separability Structures

classes of separable charts for the Hamilton-Jacobi equation

\ manifold (Vp. g) admits a o y-separability structure iff it admits m commuting Killing

vectors . (k ....m}Yand D — m Killing tensors K'® (a=0.....D —m —1). all of them
independent. which satisfv:

[n the Lie algebra of Killing tensors with Schouten—Nijenhuis brackets the commutation relations

KEIYeRT — K YRS =i

i.l;'.~;¢1-\ = 1),
(ii} The Killing tensors K'®' have in common D — m eigenvectors X , such that

{Xa. X} = {Xa. vn}

i1 _1_., e )

.S. Benenti and M. Francaviglia. Gen. Rel. Grav.10, 79 (1979).
-M. Demianski and M. Francawviglia, J. Theor. Phys.

ey

19. 675 (1980).

( X 4. ¢ ) form natural basis (d,) associated with n
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c) Intrinsic characterization: Separabilit

= classes of separable charts for the Hamilton-Jacobi equation

i COIMIMLLT i]l; I\IllJ‘ll_.

-separability structure iff it admits
all of them

\ manifold { Vp. g) admits a oy,
) — m Rilling tensors K'®' = Dvunll==Tn

(& sovvrnivand: 1

--l'l.rl-i-"\. f‘_ ik
mdependent. which satisty:
i) In the Lie algebra of Killing tensors with Schouten—Nijenhuis brackets the commutation relations
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.S. Benenti and M. Francaviglia. Gen. Rel. Grav.10, 79 (1979)
-M. Demianski and M. Francawviglia, J. Theor. Phys. 19, 675 (1380).

D vectors { X . v ) form natural basis {0,) assod




c) Intrinsic characterization: Separability Structures

= classes of separable charts for the Hamilton-Jacobi equation

-separabilitv structure iff it admits m commuting killing
1). all of them

=0.....0D —m—1

I .ulmlrn a
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A manifold (1 D.q
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[n the Lie algebra of Killing tensors with Schouten—Nijenhuis brackets the commutation relations

K@ et _ pld) gepelad

i-.. |_-'1;_¢ I\

(ii} The Killine tensors K'®' have in common [ — m eig

{Xa. X} = {Xa. vy
.'I_‘J.__.,.f.': |

.S. Benenti and M. Francaviglia. Gen. Rel. Grav.10, 79 (1979).
-M. Demianski and M. Francaviglia, J. Theor. Phys. 19, 675 (13980).
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Infrinsic characterization: Separability Structures

= classes of separable charts for the Hamilton-Jacobi equation

[heorem. A manifold (Vp. g) admits a o m-separability structure iff it admits m commuting Killing

vectors g (k.= Yiovoam) and .-'F.-' s § |‘:i]|il'|'_ tensors I‘!LFI" oy = . f[j — g — 1. t]] ol them
independent. which satisty:

i) In the Lie algebra of Killing tensors with Schouten—Nijenhuis brackets the commutation relations

.I..- VER,” — K' ..,I oK =0,
Lw K™ =0.
(ii} The Killing tensors K'®' have in common [ — m eig ' o such that

{Xa. X3} ={Xa.

I _1_., . U

.S. Benenti and M. Francaviglia, Gen. Rel. Grav.10, 79 (1979).
.M. Demianski and M. Francaviglia, J. Theor. Phys. 19, 675 (1980).

s (X 4. 7 ) form natural basis (9,




Separability structure and Klein-Gordon equation

[he (Gordon equation allows a multiplicative separation of variables iff the

manifold (Vp.g) possesses a separability structure in which rthe vecrors X, are eigenvectors of the

Ricel tensor




Separability structure and Klein-Gordon equation

[heorem. [he Klein—Gordon equation allows a multiplicative separation of 1
manifold (Vp.g) possesses a separability structure in which the vectors X, are eis

Ricci tensor

“Quantum anomaly” disappears:

H, V. K®V,| = 2V, (K

1) In Einstein space

itff the same holds for the

2) In Killing-Yano case




d) Dirac equation

Explicit separation: T. Oota, Y. Yasui, Phys. Lett. B659, 688-693, 2008.

Theory of separability is not well established!
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d) Dirac equation

Explicit separation: T. Oota, Y. Yasui, Phys. Lett. B659, 688-693, 2008.

(Benn & Charlton, CQG 14 (1997) 1037; Tress, CQG 21 (2004) 427)

For separability we need a of operators.




+ By appropriate choice of o we can prove the following:

ITLVILTES
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Corollary (Commuting operator). The

MULES "--"--'F "LJ'I-.'r' _"I_j."..-"-'.-‘.r' operaator J'r.J_ -Jlr_. _'"_-J'-

Their commutator

(This led people to study h ig 1
Dirac equation.)




» By appropriate choice of o we c:

o

» Such symmetry operators do =0 nselves

with D;

(This led people to study ‘|i+_;1t*|9|—~._~|+.:1=| Sy rnr‘na.:tr'y' operatars of the
Dirac equation.)

* The requirement




- Algebra of symmetry operators
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Lemma 1. Let b and n




» By appropriate choice of a we can prove the following:

Corollary (Commuting operator).
fT.I' '_J'I € i'j.,':--,-_;,- operator _"r.J ; -1'[__ ; _"I" -

» Such symmetry ¢ 0 necessary close on themselves

A ODS

Their commutator 1. L2 1 L2 S commutes with D:

However, in general, it is not of the first order
(This led peaple to study higher-order symmetry operators of the
Dirac equation.)

» The requirement




- Algebra of symmetry operators

Lemxma 1. Let i and n




- Algebra of symmetry operators

L

Lemma 1. Let i and n

Similarly one can show that under certain (strong)
we have:

where new tensors are given in terms of Killing-Yano brackets. Some
of them related to Schouten-Nijenhuis brackets:




Complete set of commuting operators

T

Proposition 3.2 (Complete set of commuting operators). The most general spacetime
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Complete set of commuting operators

Proposition 3.2 (Complete set of commuting operators). The most general spacetime

admitting the PCR'Y tensor admits the following complete set of commuting operators:

tD. KNpwyeow o Rpw—1gey. Myy o oo Mypv=n } (3.23
| ] .

.

S Mg e g s
L'TI-' odd dimenstons another COTRIINETE SE

{D.Keo....K

all operators mutually commute & independent -

M. Cariglia, P. Krtous, DK, Commutin operators of the Dirac eguation,
Killing-Yano and Schouten-Niienhuis brackets, today




7) Algebraic type and Kerr-Schild form

Special algebraic type:
Integrability condition for PCKY

Many components of the
using the canonical form ) Wey?tensaﬁj’ vanish.

(L. Mason & A. Taghavi-Chabert, J.Geom. Phys. 60, 907-923, 2010.)
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Special algebraic type:
Integrability condition for PCKY

Many components of the
using the canonical form I Wey?tenscﬁ’ vanish.

(L. Mason & A. Taghavi-Chabert, J.Geom. Phys. 60, 907-923, 2010.)

Multi Kerr-Schild form:

(WL Chen and H. Lu, Phys. Lett. B658, 158, 2008.)




8) Generalized hidden symmeiries

a) Motivation

« All the “miraculous” results connected with CKY tensors limited to
canonical spacetimes (vacuum, type D)

- One would like to extend to wider class of non-vacuum spacetimes,
for example to BHs of various supergravities

» [t was known that some of these solutions possess Killing tensor and
allow separability of HJ and KG equations (D.D.K. Chow, 0811.1264)
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a) Motivation

= All the “miraculous” resulis connected with CKY tensors limiied to
canonical spacetimes (vacuum, type D)

- One would like to extend to wider class of non-vacuum spacetimes,
for example to BHs of various supergravities

« [t was known that some of these solutions possess Killing tensor and
allow separability of HJ and KG equations (D.D.K. Chow, 0811.1264)

What about KY tensors?

(inthe presence of matter fields)



b) Systematic derivation:

By studying symmetry operators of “flux-maodified” Dirac operator

This includes the case of a operator, the Dirac operator
minimally coupled to a , the Dirac operator in the presence of

, as well as more general operators. (In the backgrounds considered
for superstring or supergravity theories, the meitric is often supplemented by
other fields or fluxes which couple to the spinor field and modify the Dirac
equation.)




b) Systematic derivation:

By studying symmetry operators of “flux-maodified” Dirac operator

This includes the case of a operator, the Dirac operator
minimally coupled to a , the Dirac operator in the presence of

, as well as more general operators. (In the backgrounds considered
for superstring or supergravity theories, the metric is often supplemented by
other fields or fluxes which couple to the spinor field and modify the Dirac
equation.)

Generalized conformal Killing-Yano system

(In general, a coupled system of linear first order partial differential
equations for homogeneous parts of inhamageneous form . This
system decouples if B is a combination of a function, 1-form and 3-
DN, )
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c) CKY tensors In the presence of torsion

« DK, H.K. Kunduri, Y. Yasui, Phys. Lett. B678 (2009) 240.
» Yano & Bochner, Curvature and Betii numbers, 1952.

Similar properties as standard CKY tensors:

» 1-form is a conformal Killing 1-form

» Hodge duality

» Conformal rescaling, Lie derivative

« GCCKY tensors form a graded algebra w.rt. wedge product
» GCCKY 2-form produces the tower of GCCKY tensors

* These give rise to standard Killing tensors

« Relation to symmetry operators (anomalies)




PCKY tensor in the presence of torsion

- S-Q. Wu, Phys. Rev. D80 (2009) 069902; Phys. Rev. D80 (2009) 084009.
- DK, H.K. Kunduri, Y. Yasui, Phys. Lett. B678 (2009) 240.
- H. Ahmedov, A A. Aliev, Phys. Lett. B679 (2009) 396.

Can one construct a canonical metric?
What are its properties?
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Minimal gauged D=5 superqgravity
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(Torsion is “harmonic”)




PCKY tensor in the presence of torsion

- S-Q. Wu, Phys. Rev. D80 (2009) 069902; Phys. Rev. D80 (2009) 0840089.
- DK, H.K. Kunduri, Y. Yasui, Phys. Lett. B678 (2009) 240.
- H. Ahmedov, A.A._Aliev, Phys. Lett. B679 (2009) 396.

Can one construct a canonical metric?
What are its properties?

Minimal gauged D=5 superqgravity

|dentify

(Torsion is “harmonic”)

Chong-Cvetic-Lu-Pope black hole
(Phys. Rev. Lett 95 (2005) 161301)




Another example: Kerr-Sen black hole
[A. Sen, Phys. Rev. Lett 69 (1992) 1006]

(T. Houri, DK, C. Wamick, Y. Yasui, JHEP 1007:055,2010 )

Possesses GPCKY tensor with all the nice properties !!!




Another example: Kerr-Sen black hole
[A. Sen, Phys. Rev. Lett 69 (1992) 1006]

(T. Houri, DK, C. Warnick, Y. Yasui, JHEP 1007:055,2010 )

Possesses GPCKY tensor with all the nice properties !!!

The same remains true for HD generalizations:

« M. Cvetic and D. Youm, Nucl. Phys. B477 (1996) 449.
* D.D.K. Chow, Class. Quant. Grav. 27 (2010) 205009.




9) Relation to Killing spinors and special

Riemannian manifolds
» Conformal (twistor) spinor

CKY farms (with torsion)




9) Relation to Killing spinors and special

Riemannian manifolds
» Conformal (twistor) spinor

CKY forms (with torsion)

« Special Riemannian manifolds:

Wick rotate the Lorentzian manifold admitting (non-degenerate)
hidden symmetry. Perform the “degenerating” (BPS) limit. Impose
regularity.

example: Start with even-dimensional canonical metric admitting
PCKY tensar

(In this way one can recover the most general explicitly known
Einstein-Kahler manifold in all dimensions)
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IV) Future directions

1) Is there a connection between KY tensors and
separability of higher spin equations?

2) Can we find other examples of BH spacetimes
where this symmetry exists? Is it possible to
exploit generalized Killing-Yano tensors for the
construction of new exact solutions?

3) Killing-Yano tensors: Are there further unknown
connections? Is there hidden an “additional

purpose”?
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