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Abstract: The availability of high precision observational data in cosmology means that it is possible to go beyond simple descriptions of cosmic
inflation in which the expansion is driven by a single scalar field. One set of models of particular interest involve the Dirac-Born-Infeld (DBI)
action, arising in string cosmology, in which the dynamics of the field are affected by a speed limit in a manner akin to special relativity. In thistalk,
| will introduce a scalar-tensor theory in which the matter component is a field with a DBI action. Transforming to the Einstein frame, | will explore
the effect of the resulting coupling on the background dynamics of the fields and the first-order perturbations. The coupling forces the scalar field
into the minimum of its effective potential, so the dynamics are determined by the DBI field, which has the interesting effect of increasing the
number of efolds of inflation and decreasing the boost factor of the DBI field. Focusing on this case, | will show that the power spectrum of the
primordia perturbations is determined by the behaviour of the perturbations of the modified DBI field and calculate the effect of varying the model
parameters on the inflationary observables.
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Basic Equations

@ The starting point of most cosmological models is the assumption that the
universe is flat, isotropic and homogeneous on large scales.

ds? = —dt® + a(t)?6;;dx" dx’.
@ The matter content of the universe is assumed to be a perfect fluid

T# = diag(—p. p, p, p)

with energy density p, pressure p and equation of state p = wp

The Einstein equations for this system are (where Mp; = 1/v/87G and H is the
Hubble parameter)

. 2 —
a P a 1
Hr=f—) = -—=— 1
(a) IV, = AUt
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The condition for an accelerating universe is w < —3.
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Single-Field Inflation

o

. —
o e
i it

@ Simple models of inflation use a scalar field (the inflaton) and a
power-law potential.

@ The field slowly rolls down the potential and afterwards oscillates
around the minimum, whereupon the inflaton decays.

@ Fluctuations in the scalar field freeze-in as they cross the horizon,
giving rise to an almost scale invariant spectrum of curvature

Pirsa: 11020138

perturbations.
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Single-Field Inflation

So=— [ d*xv=g (16" (3,6)(2.6) + U()

For a scalar field in an expanding background we have

12
. . 0" — U
-Z*ﬂ.)z + U
where U 4 = %{fl. If the field is slowly rolling (¢? < U), the first term can be
neglected. _
JHp = —U 4
Slow-roll Parameters
€ ~ _]:. _.‘Ji?, ¥ — ___U*w
TEC W) el

These conditions can be written in terms of the slow roll parameters: € and 7.
"T'hese satisfy €, < 1 during inflation. B




Observational Handles

Inflationary models can be constrained with observational data [1]

@ Power spectrum amplitude: Py, = 2.44170-08% x 10~°

@ Spectral index: ng = 0.963 + 0.012
@ Running of spectral index: dng/dInk ~ —0.03 +0.02
@ Tensor-to-scalar ratio: r < 0.35
& Non-gaussianity: |fy.| < O(100) 3 i




Single-Field Inflation

So=— [ d*xv=g (16" (3,6)(2.6) + U()

For a scalar field in an expanding background we have
1,42
5P — U

C.i;+3HC:'!+U‘¢:0_. = ;
E(IDZ-I-U

where U 4 = %{fl. If the field is slowly rolling (¢? < U), the first term can be
neglected.

3Ho ~ —U
Slow-roll Parameters
o 1(Us) _ Use
TECW Y =T

These conditions can be written in terms of the slow roll parameters: € and 7.
"T'hése satisfy €, 7 < 1 during inflation. &




Observational Handles

Inflationary models can be constrained with observational data [1]

@ Power spectrum amplitude: P,y,, = 2.44170.05% x 10~°

@ Spectral index: ng = 0.963 = 0.012
@ Running of spectral index: dng/dInk ~ —0.03 +0.02
@ Tensor-to-scalar ratio: r < 0.35
& Non-gaussianity: |fy| < O(100) b




Multiple Scalar Fields

@ Many authors have studied inflation driven by multiple scalar fields.

@ The perturbations of the fields are particularly interesting in multiple
scalar field models as there are entropy (isocurvature) perturbations
as well as adiabatic curvature perturbations to consider.

@ The entropy modes act as an extra source for the curvature
perturbation.

@ The interaction between the fields can lead to deviations from the
almost scale invariant spectrum.
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Multiple Scalar Fields

x A

In the two-field case one can define a rotation to decompose the field
perturbations into an adiabatic mode do tangential to the background trajectory
"atitf"dh entropy mode ds orthogonal to this. Page 10163
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i e —
Adiabatic and Entropy Fields

Marco & Finelli, 2005 [3]

These ideas can be applied to coupled scalar field systems .

S= [ dxv=g [1R— H(V6) - %(Vx)? - V(6.x)]
The fields have the following equations of motion.
¢+ 3Ho+ V 4 = Be®PPy2, X + (3H +2B¢)x + e_zd‘blﬁx =@,
Along the background trajectory, s =0 and d = \/E
Define the field rotation,
do = cosBd¢ + sinfe’?dy, ds = e”? cos 86y — sin 8d,

where cosf = ¢/& and sinf = e’?y /6.
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Multiple Scalar Fields

x A

In the two-field case one can define a rotation to decompose the field
perturbations into an adiabatic mode do tangential to the background trajectory
"ahtf°dh entropy mode ds orthogonal to this. -
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i e —
Adiabatic and Entropy Fields

Marco & Finelli, 2005 [3]

These ideas can be applied to coupled scalar field systems .

S= [ dxv=g [1R— H(V6) - (Vx)? ~ V(6.x)]
The fields have the following equations of motion.
¢+ 3Ho + V 4 = BeP?x2, X + (3H +2B0)x + e P°V, =0,
Along the background trajectory, s =0 and g = \/E
Define the field rotation,
do = cos@d¢ + sinfe’?dy, ds = e”? cos 86y — sin 8d,

where cos@ = ¢/& and sinf = e’?x /6.
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Adiabatic and Entropy Fields

@ The evolution of the adiabatic and entropy field perturbations can
now be calculated explicitly.

G+3H6+V,=0, Vo=Vscos8+e ??V sinb.

@ The (comoving) curvature perturbation R is related to the adiabatic
perturbation by

H ) :
o H

where W is the metric perturbation.

@ At large scales, R is not constant, as in the single field case, but has
a dependence on the entropy mode

R = —2H—!-os
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where Vs = —V 4sin8 + e P??V, cosé.
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Inflation from fundamental theory

@ The general predictions are quite robust, however, for the details of inflation
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we need to understand the mechanism from the perspective of particle
physics and/or fundamental theory.

Since inflation takes place at high energies, there has been much interest in
model building in the context of string theory, a framework in which there is
no shortage of scalar fields.

However, the abundance of light scalars (e.g. light moduli) not only
complicates the dynamics of inflation, but also means that models must be
tuned to prevent unwanted light moduli affecting the post-inflationary
universe.

As well as this, although heavy fields do not generally evolve during inflation
they contribute to the potential that determines the evolution of the
dynamical fields, further complicating the ‘eta problem’ in inflationary model
building, in which one encounters large corrections to the flat potential
required in slow-roll inflation.
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DBI inflation

(Silverstein & Tong, 2003 [5], Alishahiha et al., 2004 [6])

r 6D Calabi-Yau

P, M

warped throat

uv

@ Dirac-Born-Infeld (DBI) inflation is a specific example of ‘stringy’ inflation in
which a D3 brane moves in a simplified compactified space, falling into a

throat similar to a potential well.
@ A speed limit is imposed upon the motion of the brane, which is dependent
e oo blpON the throat geometry, which allows inflationary solutions with steep

potentials.



DBI inflation
The action for the DBI field y is

5= [ #/TE [F 000 77 - Vi)

Warp factor ()
@ This is determined by the background

geometry of the space, often taken to ,._E
be a Klebanov-Strassler throat. g
@ This can be approximated
phenomenologically by the mass-gap
solution,
- T
A
)=z , | , .
(X - 7 ) Throat geometries as 3 function of a radial coordinate

along the throat. Short dashed line is the full KS
solution, red line is the mass gap solution and the long

o nohich in the limit g — 0, becomes the  dashed line is the AdS solution. (Black is 2 log-corrected
Pirsa: 11020 _ A KS throat) (Picture credit: Kecskemeti et”3° %806 [7])
AdS solution. f(x) = Ax~".



DBI inflation
The action for the DBI field y is

s [ E 00— v

Warp factor f(y)

@ This is determined by the background
geometry of the space, often taken to
be a Klebanov-Strassler throat.

@ This can be approximated
phenomenologically by the mass-gap
solution,

A
(2 + w?)*

f(x) =

wohich in the limit © — 0, becomes the
AdS solution. f(x) = Ax~*.

Throat geometries as a function of a radial coordinate =
along the throat. Short dashed line is the full KS
solution, red line is the mass gap solution and the long
dashed line is the AdS solution. (Black is a log-c

KS throat) (Picture credit: Kecskemeti et &N %ﬂﬁ 71



DBI inflation

The action for the DBI field x is

- [ d*xv=g [F 001 —71) - V()]

Boost factor ~

@ ~ is the boost factor, which takes a z ~
form similar to the Lorentz factor in N |
special relativity, _ 2000t '
1500+ x\,\
1 10004 N
ﬂ:r. . = mi \
\/ 1— f'\{z % . 2

10 20 0 40 50 60
v

@ If v ~ 1 we recover the standard scalar
ﬁ I d I_ . Boost factor -y against efold number. Parameter Values:
- dgrangian. A=10"2 m=5x10"3% p =01
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I T recorwerzppizen
DBI inflation

The action for the DBI field y is

o f d*xv/=g [F 101 —v7Y) - V()]

Potential V()

@ The DBI potential can be much steeper
than than that in slow-roll inflation, as
x Is affected by the speed limit due to

-~

{-

@ The class of potentials that can drive
DBI inflation is wide, but the quadratic
potential

V(x) = 3m°x
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Is often used.



I T ecor wierz ootz
DBI Inflation

We can study a flat FRW metric ds? = —dt? + a%(t)d;;dx'dx with scale factor
a(t), and get the Friedmann equations

2 =fy—1)+V, —2H=FYy—y)=72
The slow-roll parameter € is given by,

_ B ey

€= ——

H2 ~ 2f1(y—1)+V

o
v+ V'

=
2

The large value of f required to satisfy observational constraints means that the
potential term is dominant and € < 1. Thus, the equation of state w is

p_{1l—y")—W id

o

p  Flly—1)+V = A+’

W —

which is close to —1.
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DBI Inflation

The DBI equation of motion is

) . N g ks
X + 3H~ 2x+%ﬁx(1—37 2+ 2y ) +93V, =0

@ As the DBI field starts to roll down its potential, the boost factor
becomes large.

@ Using f = Ax*, the late-time solution is

2
X—IXBEU = x — VA/t

@ This gives power law inflation a = a;t1/¢ with

31 4 1
~ 4 ——, =yl —— 2, H——
‘ Am L 3/\m et
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DBI inflation
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K-inflation

Armendariz-Picon et al., 1999 [8]; Garriga & Mukhanov, 1999 [9]

DBI inflation is an example of a k-inflation model, for which the action can be
written

5=fd4X\/—_gP(X_-X)‘ with X = —3g"0uxdvx,

which gives the background equation

B . aP
fdp (\/__

—g"d,x) + = =0.
50 (VEgxs o) +

dx

cf. canonical scalar field
P=X-V(@¢) = Px=L1

1 oV
——— — g —_—— =
ﬁap (v/—28"*8,9) 96 0.

pim



K-inflation

To simplify the perturbations we can define an auxiliary variable v = zZR where R
Is the comoving curvature perturbation and

1/2 P P
Z= a(p+p) with c§= —* T :
CSH P.X P?x - 2XP‘XX

so the perturbation equation (in terms of conformal time 7) is

2 2
i,:; . (c-’*kz e EE) v =0.

so the perturbations do not travel at the speed of light.

On small scales (kc; > aH) On large scales (ke < aH)

1 -
e—rin:,r' Vi ~ Z.

Vi —

2kc,
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Perturbations in DBI inflation

In the DBI case, we have P x =+, so

i 3/2.;
2 _ / =2 __ ST X
=Ty 2Xx Tk EE LA
and the perturbations satisfy
d?v; i k* 1d%z 0
—_ — —— | v =0.
dr? v zdr2) "
—
3
-
- | -
‘ g
0 s 2 25 ” s w P o
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K-inflation

To simplify the perturbations we can define an auxiliary variable v = zZR where R
Is the comoving curvature perturbation and

1/2 P =
z= a(p + p) with r:52= —X = _ 1% ;
CSH P.X P,x = = 2XP‘xx

so the perturbation equation (in terms of conformal time 7) is

2 2
£, (c;kz_zz) e

d72 zdr2

so the perturbations do not travel at the speed of light.

On small scales (kc; > aH) On large scales (kc; < aH)

1 2
e—rin:,f. Vi ~ Z.

Vi —

2kc,
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Perturbations in DBI inflation

In the DBI case, we have P x = v, so

A 3/2.;
2 / -2 ay' X
A — = — £ =
== 2y | H
and the perturbations satisfy
d?v; s k> 1d%z 0
— — ———= | v =0.
dr? v zdr2) "
-
Y
| o
y €
=r | -
g
0 s 2 25 2 » P P 0

pisa 11020138 The sound speed of the perturbations is 2 =772  rweum




Perturbations in DBI inflation

Using the approximate solution for the AdS throat we have

1 H? 1 a
— ~ A
PR = g2 (cse) e — o

@ One can use the power spectrum ”":L sl A
amplitude to fix the parameters, but L - ° Mam-gep
this can lead to a relatively small = - o/ Mz = 1000 |
number of efolds of inflation. | . ) ga = 0.1

@ Modes freeze-in at smaller scales as ke P | i e
inflation progresses, cancelling the 0.97 !.' Rt urveny
red-tilt due to the evolution of H. voul o

@ The spectral index is dependent on |
the warped geometry and the - ,

0.001 0.m 0.1 | 10 100

background dynamics. .

_ Spectral index as a function of 3, which parameterizes the
Pirsa: 11020138 : : . Page 29/83
contribution of the quadratic term to the energy density

m> = AH?. (Picture Credit: Bean et al., 2007 [10])



Perturbations in DBI inflation

@ In standard single field inflation, the perturbations are Gaussian in the sense
that all higher order correlation functions are given in terms of the two-point
function.

@ In DBI inflation, there can be non-Gaussian corrections to the power
spectrum Fluctuations can be correlated as the modes freeze-in at different
length scales. The non-linearity parameter is a typical measure of the level
of non-Gaussianity in the perturbation.

<=g—§mﬁ

@ Perturbations in DBI inflation are characterised by high levels of
non-Gaussianities

35 1
far — o ;<
NL 108 (Csz ) = v S 30,

which could be used to distinguish these types of models from single field
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inflation.



DBI inflation in scalar-tensor theory

@ Non-minimally coupled scalar fields arise in a number of scenarios in
high-energy physics, such as low-energy effective actions from higher
dimensional theories, quantum field theory in curved space and f(R)
models of gravity.

@ We can consider the DBI inflationary scenario is embedded into a
scalar-tensor theory, with DBI field ¥ and canonical field .

@ The additional field could describe the degrees of freedom associated
with additional moduli fields in the higher-dimensional theory
(although this scenario is treated as a phenomenological model).

cf. Embedding DBI inflation in scalar-tensor theory, van de Bruck, Mota and

Weller, 2010 (arXiv:1012.1567 [11])
-_—,— —— —
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The model in the Jordan Frame

Jordan Frame Action

S = / d*xv/—g [F(so)g -~ %(V‘P)z —U(p)+F 0 [1—77] - V(X)]

The function F(y) complicates the ¢ equation of motion
2wy = F,T — w,(Vy)* —4UF, +2U,F,

where @ = F + 3F_, but the DBI equation is unchanged

Y f, "
Vilre"'Vux] = ﬁt(l t %'T - %7 N+ W
However, the Einstein equations are difficult to work with in this frame

FGuw = T, + [0u00up — 38u(V¢)?] — U + V.V F — g, OF.
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A conformal transformation

Jordan Frame Action

5= [ d*x/E [Fl)g - 5(V6) - Ue) + 700 [1-77] - V()|

We can perform a conformal transformation

Euv = F(¥)guw with  A(@) = FY2(yp)

into the Einstein frame, and redefine the field so its action takes the canonical

form
d 3 /(F,\° 1 ; "
: — _-f-"- — r.—:\' = I | F_

Einstein Frame Action

: e 33/83

= T S T, ™.
B Doras == / d*x\/—& {5 = 58’“ PuP.p— U({P)] + Spar [Az(so)&’uup]g




The model in the Einstein Frame

Einstein Frame Action

——8E 2 =
5 / e [5 5 53""%54:%5,;: — U(3)| + Spar [A*($)&u]

In the Einstein Frame, the DBI action is modified:

SpBr1 [Azé,uu] = f 1144‘*‘~’\/—7§"‘""4 {f_l()() (1— 771 - V(x)}-

Not only is there is an overall factor of the coupling A(J) but the boost factor is
also modified

= 1 1

\/1 A—2f (X)X uX i N V1—A-2fy2

using a flat FRW metric in the Einstein frame.
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The model in the Einstein Frame

The equations of motion are

- 2. f _ " - 03
X+3H I+ 3R A -3+ )+ ATV = Bxe(3rI - ),
¢e+3Hp+ U, = p[Tpal

where 3 = dInA/dy. Letting 3 = constant means the coupling takes the form
A(p) = exp(By).
Tpgr is the trace of the DBI stress-energy tensor, which is
Tppr = A’ [f_1(4 — 3yt —9) - 4V] ~ —4A%V
and the Friedmann equations are

32 =12 + U+ A [y —1)+ V],  —2H=¢ +7A%~
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Minimal coupling

If there is no coupling between the fields, they evolve separately, each
affected by its own potential.
@ The DBI field needs a relatively large mass to drive inflation cf.

e =~ \/3/Am? for the single field case.
@ However, the canonical field needs to be light.

Without fine-tuning the masses, this means that one field is generally
dominant.
@ If the DBI field is initially dominant, ¢ is almost frozen and there is a
period of DBI inflation followed by slow-roll inflation.

@ If ¢ is initially dominant, it drives slow-roll inflation with no DBI
effects until it reaches its minimum, whereupon the DBI field drives

inflation.
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Minimal coupling

1500 T r r
1000= _ 4
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Minimal coupling with a quadratic potential U(p) = Ugw? with Uy = 10— 1# (black, dotted), 10— 12 (blue, dot-dashed),
2 x 10~12 (red, dashed) and 5 x 10— 2 (cyan, solid). Other parameter values: A =2 x 102, m =5 x 10~> and g = 0.2.
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Minimal coupling

@ These trajectories exhibit a
sharp turn in field space.

@ If one fine-tunes the mass
scales so that both fields
contribute roughly equally
to the total energy density
for a considerable number
of efolds, the dynamics of
the DBI field can be
significantly affected by the
additional contribution to
the Hubble damping.

@ However, this is sensitive
to the masses of both fields
and initial conditions.

Pirsa: 11020138

1.6F
|
|
1.4+ i
2 :
‘ &
1 3
| li:
I-:
‘ a.al )
> | .
r!
u.s* 7
i ;I
Kol
U.l‘[’ o ’."
uz[. _...-"'"'.-':, __,.-"'"f
U E‘ ht:jj—- —-ﬁ'l"\-"—.: ..-.: - - - L
0 2 4 B 8 10

As both fields are evolving in this case,
isocurvature fluctuations could play an
important role. .



Minimal coupling

1500 ' ’ L r
1000}= ]
- P e
0l .- :'::-*;_:-_—-...____ |
ok 3 e se——
- L = % 20 50 60 70 80 90
N
1.5 ' ' |
E 1 B e - _______ -__ ——— e e )
- ﬁ.s:‘“ p P —— 11-‘.-—-—'_----&14":!—.".;'.':'—-;: ________ 1
N ' : |
- - = % a0 ' 50 60 70 80 20
N
10 ' ' r
1
w \\_‘ , ?::
--——:-f—--- e o e L W B I M A SN 45 5 5 5
0.01 . I . : I
L 5 - » 20 50 80 70 80 90
N

Minimal coupling with a quadratic potential U(p) = Ugw? with Uy = 10— # (black, dotted), 10— 12 (blue, dot-dashed),
2 x 10~12 (red, dashed) and 5 x 10— 2 (cyan, solid). Other parameter values: A =2 x 102, m =5 x 10~ 5 and g = 0.2.
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Minimal coupling

@ These trajectories exhibit a
sharp turn in field space.

@ If one fine-tunes the mass
scales so that both fields
contribute roughly equally
to the total energy density
for a considerable number
of efolds, the dynamics of
the DBI field can be
significantly affected by the
additional contribution to
the Hubble damping.

@ However, this is sensitive
to the masses of both fields
and initial conditions.
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Non-minimal coupling

X +3Hy*x + 1A X(l 2+ 2973 + A2y 3y,

@ When 3 # 0 the scalar field

moves in an effective potential
Ug = U — %TDBI. that can have
a minimum at

duU
dy

— Be*emin TEo =0,
=¥ min

where T8, ~ —4V.

@ [ is positive by deﬁnition SO we

iiiii

¢+3Hp+ U,

Effective Potential

—Bxp(37~

B Tpger

—
-
e

AY(e)V(x)

2_1),
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Potentials

| will consider two types of potential, one with a minimum and one without.

| -4

Offset quadratic potential
U(p) = Uu(c.a —n)?

W 832 Ve*tn
Pirsa: 111)261%"“" = 1? = @ ( Uﬂ )

Exponential potential

U(p) = Up exp(—n¢)

et L 1 log nlo
R 4ﬁ+n 46V42/




Non-minimal coupling

- o f, L 5 _ s |
X+3HYy X +3AZ(A -3+ 27) + ATV, = —Bxe(3rv - 1),
tp+3H99-l—U¢ — ﬁTDBI

@ When /3 # 0 the scalar field

moves in an effective potential :

mE

Uhag=U-— %TDBI, that can have =\
a minimum at E
dU 2
— - ._13843";"'"" TII;BI = 0. E
[?" =L min =

where T2, ~—4v. | =

v

@ [ is positive by definition, so we
e nomci€€d @ potential with dU/dy < 0.
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Potentials

| will consider two types of potential,

Offset quadratic potential
U(p) = Uo(p —n)°

rea: 101k min == 1] 4 13 Uu

Exponential potential

one with 2 minimum and one without.




Background dynamics

The scalar field quickly finds its minimum so we can write ¢ = Vmin-
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Potentials

| will consider two types of potential,

Offset quadratic potential
U(p) = Uo(p —n)°

reac 101k min == 1] 4 ﬁ Uu

one with 2 minimum and one without.

Exponential potential
U(p) = Up exp(—nyp)

1
.. Pmin = log (M

4 ‘@aV%/



Non-minimal coupling

> o f, _ . i -l
X+3HYy X+ A Z(A -+ 207) + ATV = B3 - 1),

Pirsa:

¢+3Hp+U, = [Tpgr

@ When 3 # 0 the scalar field

moves in an effective potential l

SE

Ug = U — %TDBI, that can have el
. -
a minimum at S
dU 2
= . f8e4ﬂ-,ﬂmm TSBI =0, E
{?" =¥ min =

——
—
e

where T8, ~ —4V.

v

@ [ is positive by definition, so we
won€ed a potential with dU/dy¢ < 0.
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Background dynamics

The scalar field quickly finds its minimum so we can write ¢ =
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Potentials

| will consider two types of potential,

Offset quadratic potential
U(p) = Uo(p — 1)’

rea: 101k min =2 1] a ﬁ U{]

one with 2 minimum and one without.

Exponential potential
U(p) = Up exp(—n)

1
.. Pmin = log (ﬂ

4 6aV49/



Non-minimal coupling

- i f, B = . e
X+3HYy X+ A Z(A -3+ 27) + ATV, = B3y - 1),

¢+3Hp+U, = [Tpar

Pirsa:

@ When /3 # 0 the scalar field

moves in an effective potential t

13

Usg = U — %TDBI, that can have =\
a minimum at E
g
dU e L =
— . je*quvﬁmm TII;BI = 0. E
{?" = min =

————
—
———

where T8, ~ —4V.

 J

@ [ is positive by definition, so we
woas€ed a potential with dU/dy < 0.
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Potentials

| will consider two types of potential,

Offset quadratic potential
U(p) = Uo(p — 1)

reac 101k min =2 1] 4 5 Us

one with 2 minimum and one without.

Exponential potential
U(p) = Up exp(—n)
L a2

4 ﬁaVSl/



Background dynamics

SO we can write ¢ = @min.

The scalar field quickly finds its minimum
. 1.5
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Background dynamics: exponential potential
For the exponential potential U(y) = Upexp(—ny) the condition for the

minimum IS

Penin = —— log (TN 5 e
so the condition ¢* < A%yx? implies that
1+473 A’m?
> [ ‘M)( )zom,
6n(1 + 43n) H?

must be satisfied, which is true when y is affected by the DBI terms in the
action. We can rewrite the Friedmann equation as

3H? ~ (1 +43/n)A*V,

so the slow-roll parameter is smaller than the standard DBl case when A = 1.

- P +AE  3AE 1 ) .
2HZ  ~ 2(1+4B8/n)A*V ~ A2(1+4B/n) \ 2V .




Background dynamics: exponential potential

&= - 37X < €
= A(1+4p/m) \2v ) = PH

@ Since € is inversely related to the number of efolds of inflation
Nmax = In(a;/a;) by

Xini
Nmzf Hdt_/ »,/—Hdr»—u/ 1/2 dhic
1 =

the duration of inflation is increased by the coupling when A > 1
(HS’mjn > 0)
@ Also, the boost factor,

1
V1—A2fy2
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contains a factor of A~2 so will reach smaller values.
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Background dynamics: exponential potential
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What is the condition for A > 17

Offset quadratic potential
5

4

3

B
U(p) = Uo(p —n)?

@ ©min > 0= W(x) <40y
@ Qppr > 2, = W(x) <2

Pirsa: 11020138

where x ~ 832Ve*?"/ ;.

Exponential potential

2
B

U(p) = Up exp(—nyp)
@ Pmin > 0=17>45(V/Up)
® Qppr > 2, = n > 40
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What is the condition for A > 17

“$ The DBI energy density is subdominant for a wide range of

Offset quadratic potential Exponential potential
5

4

3

2

B B

@ regions above the solid lines satisfy the condition for ¢,y > 0 for ratio
V/Us = 0.01,0.1,1, 10 (starting from the bottom).

@ Shaded regions indicate where the DBI energy is dominant (with the lightest
region corresponding to V /Uy = 0.01).
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Background dynamics: offset quadratic potential
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Perturbed equations

We decompose the fields ¢ and y into a homogeneous and perturbed part

o(t,x) = p(t) +0p(t,x),  x(t,x) = x(t) + ox(t,x).

In the longitudinal gauge and in the absence of anisotropic stress, the
scalar perturbations of the FRW metric can be expressed as

ds® = —(1 +2W)dt* + a°(1 — 2W)4;;dx'dx’ .

The perturbed Einstein equations and the equations of motion for d¢ and
dx can be used to form a closed system of equations in terms of the
gauge-invariant Mukhanov-Sasaki variables.

o P _ X
Q(,:,- = ((’3(.,’3) + ﬁw, QX = (CSX) — ﬁllf
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Perturbed equations
Using ¢2 = vy ~2, this gives

= i : k2

Qe + 3HWQp+ B0+ (3_2 i3 Cmc) @ + Cox @ =0,

= ) &1 : ! k2 2

Qx + 3H—1—2,Bf,a—3c— Qx + B, Q, + §5+Cm, Q.+ CQ, =10

The coefficients are made up of terms:
@ proportional to the non-minimal coupling parameter 3
@ with factors of c; due to the non-canonical kinetic term of the DBI field.

@ involving the potentials of both fields.

For example consider the cross-kinetic terms

B, = [8(3¢2—1) — 2";1(1 — c§)] X B, = —A%c3B,.

~Lhese are not present with two uncoupled canonical fields and B, , — 0.a8:
A —0 c —1



Perturbed equations

In terms of the total potential V(. x) = U(g) + A"[p]\f{x}. the other coefficients are

Cons = j(i) A B+ 1)1 - —AAF a6 — 8 — 9% + T ) +
| . 4 :
D e o O i P 20VT o
+3¢" —c; (1+c)A o 2P + - + VT o (1)
At fy U - o —4 2 4‘!;*‘-'5’-3
C-PX — m-{_—zcgtl-fs } [Cs 4.-2:5 — 1}+3C5 A" x i {1+c5]A m —
fr A'X G X VT ¥
LAt 3 + )2 — Y [% = —“‘Hxl —‘s-l’qzj—:”: g T;# e
Cs
Sty St
c. X
+—= VT.e + VT ox: )
H
Aty o > fr Ax| & .
€ = ——=Xg_ —|E - —| =x—-iat A% v+
XX H fz{ <) £ He, c,w{ 3 GCsiy X ¥YT.x
2 X -1 [ % - 0 R 2
+%A (1—C5}2 |:c5 (E) + (1 + cs)f (-—) } + %A X G (1+ 5) =
X f 7/ x
- -2 -2 -
4 —2 X ¥} 2, X" P XV . 2 .3
—A'cT T — — A'c {I+CEJ4H2 - e )+ AV, (3)
2 4 2. .3
e > x 2 s X .3 2 —1A%ox
] 2“

-
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Initial conditions

To get the initial conditions, we can define auxiliary variables similar to the single
field case

Vo = FoWp; Uy = @y
where r, = a and r, = aAy3/2. Differentiating wrt conformal time (' = d/d7)
gives
" ; x, 2 o] VEAW A
v, — By, 1 k-l—aC‘m—-r— Vy + = 3C¢X+Br— v = 0,
e L\ #x X
| ((r A
v, + By, + [kzc;? +3°Cyy — ri vy + (r—x) > Cyp — B;"’— s, = B
X L\TP ¥ J

with B = r, B,. We can neglect correlations between the perturbations for modes
well within the horizon, so the short wavelength solutions for the v, and v, are

—ikT 1

Up—ﬁe . U?,(:ﬁ&

-andothe relative normalisation of the perturbations is dependent on the sausmd
cpneed of the DRI field

—ikCsT



Perturbed equations
In terms of the total potential V(. x) = U(g) + A“[,a]b’{x). the other coefficients are

G = (i) A F B+ 1)1 - —FPAYF a6 — 8 — 9% + ¢ ) +

- N "'if - ;:2 2 MT"” P — (1)
Casp: = -’T{ :lzcgll — YT 27 — 1)+ 3T WA e — T + cfm‘*fm—iz =

—laa* e+ 1)1 — ) [% - fcj - ;‘Az“":;_f VTH‘“’: -

:_c;;%( T T (2)
e A;x 1:;{1 il [f}‘s, R _AH%] E-:;f[ — teh AN +

+34°(01 - ) [ci(%)_xﬂl-rcs)r‘l (%)J + 3481+ ) -

.4 :
X = X ¢ P i v =
—A* S — A% M1+ <) e X(1+c2)+clA EVT.xx‘ (3)
2 Cs At 4 2 1A%
Cxeg = (25+ —) %A —cs(1 — ¢s5) —+—;1{} — 28 f (1—c¢c5) —c, +
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Perturbed equations
Using ¢ = vy~ 2, this gives

i k - k2

Qe + 3HQe+B,Q, + (a—2=—Cw) &t Coe 8 =0,

= ) =1 : ; k2 2

Qx -+ 3H—1—2,5f,:>—3c— Qx + By Q, + =6 +Cix ) @+ €CuC, =0

The coefficients are made up of terms:
@ proportional to the non-minimal coupling parameter 3
@ with factors of c; due to the non-canonical kinetic term of the DBI field.

@ involving the potentials of both fields.

For example consider the cross-kinetic terms

B, = [8(3¢2—1) — 2";1(1 — cg)] X B, = —A’c3B,.

~LAgse are not present with two uncoupled canonical fields and B, , — 0.5
A -0 c —1



Perturbed equations
In terms of the total potential V1(w, x) = U(y) + Aﬁ,a]\f[x}. the other coefficients are

G 5 J(%) Ao+ )1—-CYY - A as -8 — 9 + TN +
-F D . 4 =
a2 _3 2. 2¥P°X P 2oVT &5 |
+3¢° —c; (1+c)A DE 2P + ~ + V71 e (1)
Ate fx — 12y —2 -3 T _a 2. 4 PXC
Cox = mf_z" —c YT 2 — ) 3T A e — T+ At — -
. 1afi A% _1.28°X%  Vrad
—30AF T Ba + 1)1 — ) [%— H:]—cf X,
5
Xl .
c. A'x
:_S—VT,.;J F VT,-;.'W(T (2)
H
Atx K e Ax] & .2
C = 1— = — — | = x = A ATV L+
XX H fl{ s] [f He. c,k 3 Csiy X YT, x

£ i N
+3A%(1 — )’ [c_,,. (E") +(1+c)f ! (T") } + 34T 1+ ) -
- X » X

.4
2. S

P 2 -1 x> p° }iVT.x = i -2
—Ac_ = Ac_(1+c¢ ) e (L+c)+cA Wy e (3)
2N\ [+ 2 Fx Cs A*x 4 2 1 AZoy3
" — 2{3'+:) LatXe(1—c *—'}——23 £ El— — +
X ( H -2 2 s ) fs‘{ ( s) s 212

+28c.A TV +rc 4
242 ; . H H (4)
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Initial conditions

To get the initial conditions, we can define auxiliary variables similar to the single
field case

Vo = FpWyp, Uy = Q@

where r, = a and r, = aAy3/2. Differentiating wrt conformal time (' = d/d7)
gives

11 - !
r r &
1" / 2 2 & pd 2 X =

V,— By, + |k +3Cop — | v+ || = )3 Cox + B> = 0,
- !'x rx
?- - -l
o (r 2

"o r 2.2 2 X X 2 . ¥ .
x. L\ e fp |

with B = r, B,. We can neglect correlations between the perturbations for modes
well within the horizon, so the short wavelength solutions for the v, and v, are

—ikT 1

Up—ﬁe E y.‘(:ﬁe

-and-the relative normalisation of the perturbations is dependent on the saumd
cpeed of the DRI field

—ikCsT



Initial conditions

The modes should be uncorrelated deep within the horizon. As in the
standard two-field case, to implement this numerically one should perform
two runs (cf. Tsujikawa et al., 2003 [12])

@ One with v, in the Bunch-Davies vacuum and v, = 0.

@ One with v, = 0 and v, in the (quasi) Bunch-Davies vacuum.

One can then calculate the (comoving) curvature perturbation

H : :

for each run and combine the results to get the power spectrum

k3
Pr = 53 (IR1]* + |R2[%)
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Adiabatic and entropic fields

The rate of change of the curvature perturbation can be written,

H

e ¥
(—2H)

' P
(655rsa) + 2 (60|
p
where non-adiabatic pressure is defined by,
- p
(6Pnaa) = (dp) — E(éﬂ)-

The quantity dp,, = dp — 3Hdq is the gauge invariant comoving density
perturbation. This appears on the RHS of the Poisson equation,

and thus decays in the long-wavelength /late-time limit.
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Adiabatic and entropic fields

If we introduce adiabatic and entropic fields in a similar manner to the coupled
two-field system, so that R = (H/V —2H)Q, i.e.

1 . . . Ay1/Z :
Qo = \@ [‘PQ'@ +A2'?"X'Qx] , 0s = \/»};27 [0Q — xQ¢],

the non-adiabatic pressure can be written

= [ _2HPE+JA3A,J3”d (as)+[ 2 Q.,-—Qw} A’

o p
dpna — [1 = _] ) mT - -
; ) eV ary” J—2H

where Ps is the partial derivative of the pressure wrt the entropy field and
@, = 47 + %V is a gauge invariant quantity dependent on the sound speed.

Unlike the coupled two-field case, the non-adiabatic pressure cannot be
written only in terms of the entropy field.
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Perturbations: exponential potential (large )
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Perturbation quantities for pivot scale wvath 3 = 1. The lower panels show the vanation in the resuiting value of the spectral
Pimai@302p138( bottom-left) and power spectrum amplitude Py, (bottom-right) with the coupling 3. The shaded regron®/éhows

observational values of these quantities (WMAP+ BAO+HO0) at 68% c.| [1].



Observational quantities
There are six parameters in the model that can affect the behaviour of the
perturbations:

@ The coupling 3

@ DBI warp factor parameters A and p

@ Parameters in the field potentials Uy, m, n

We can constrain the parameter space by considering the effect on:
@ background quantities e.g. no. of efolds, boost factor

@ perturbation quantities e.g. the power spectrum amplitude, spectral
index

Integrate the perturbations 5 x 10° times with random permutations
of parameters. Calculate n; for those with P, in the observational
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Numerical results: spectral index n

MIEzp-Better-na: lagpel’s v= g

Looking at the runs with P, = 2.441'_"3:%2 x 1072, we can identify two
overlapping regions in the parameter space based on the value of the
spectral index. Page 72123



Numerical results: spectral index ns

Tmax ™ 1

@ Yellow/red points with ns 2 1 exhibit significant DBI characteristics

s

at horizon crossing and afterwards.
@ Points with ns < 0.96 have DBI characteristics suppressed
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Background dynamics: exponential potential (small 7)

In some cases with relatively large coupling, the effective warp factor A~>f is small
enough that y does not exhibit DBI behaviour until it has rolled to sufficiently small
values.

0.f =—=—===== ] =———= 1.5
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Perturbations: exponential potential (small )
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"Batiihation quantities for pivot scale with 3 = 3.5.
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Background quantities: potential terms m vs. U

The region of the parameter space with both n; = 0.963 +0.012 and
Pamp = 2.441759%8 % 10~? is more tightly constrained.

‘.It'r~?‘l‘h‘-l-l‘-”h limgypm vo. logels Al By Boet-Nilan: lopas ve. lomalls
L L - L L

-—

g 8 ¥ &8 8 § #§

Left plot colour-coded by A(y)|k=an; right plot colour-coded by Npax.

As we saw before, large coupling is correlated with a long period of
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Background quantities: warp factor terms A\ vs. u

The region of the parameter space with both n; = 0.963 +0.012 and
Pamp = 2.44175-9%8 % 102 is more tightly constrained.
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Left plot colour-coded by A(y)|«=an; right plot colour-coded by Nmax.

As we saw before, large coupling is correlated with a long period of
inflation.



Solutions with Q, = Qpg;

Earlier | showed these plots, in which the shaded regions mark out regions
with{2pgr > 2, (for different values of V /Uj). N -



Solutions with €2, 2 Qpp;

A E e e - Nhlan = vs ¥

Al pumd-Besa-Nilan: ¥ vs 5

Comparing to the numerical results, we see that DBl dominant solutions

are excluded.
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Solutions with ©, = Qpg;

Earlier | showed these plots, in which the shaded regions mark out regions
with.{2pgr > 2, (for different values of V /Uj). s



Solutions with €2, 2 Qpp;

R e lew - Nhllan = v ¥

lﬂlﬁiﬂ e tIl..._—:_.r-.i:.l._-._.L__.I.,r-l.ﬂ__w[. ..‘..
Y e L] ﬁv- . A : .

-
v e
5

Al Pumed- Besa-Nian: #vs 5

Comparing to the numerical results, we see that DBl dominant solutions

are excluded.
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Extensions and future work

® So far, only the spectral index and power spectrum amplitude have
been considered. To go further, one can other quantities such the
tensor-to-scalar ratio r and and the running of the spectral index «a to
constrain the parameter space.

@ Another important extension is to investigate the minimally coupled
case, in which both fields are dynamically important.

@ Finally, it would be of interest to investigate the properties of the
non-Gaussian signature produced in this scenario.
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Summary

@ DBI provides an interesting example of k-inflation with ‘stringy’ motivations.

However, a large boost factor and short duration of inflation can be a
problem.

Realistic inflationary models are likely to involve multiple scalar fields and
couplings. Coupled DBI inflation combines these elements in a two-field
model.

The coupling forces the scalar field into the minimum of its effective
potential, extending the number of efolds of DBI inflation and decreasing
the boost factor. The ¢ perturbations are negligible when the field is in the
minimum so the level of non-Gaussianity (normally o 7?) would be much
smaller than the standard DBI case.

A range of parameters affect the prediction for the spectral index (for both
the exponential and the quadratic potential) including a considerable set
compatible with current observational limits.
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