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Abstract: Reducing a higher dimensional theory to a 4-dimensional effective theory results in a number of scalar fields describing, for instance,
fluctuations of higher dimensional scalar fields (dilaton) or the volume of the compact space (volume modulus). But the fields in the effective theory
must be constructed with care: artifacts from the higher dimensions, such as higher dimensiona diffeomorphisms and constraint equations, can
affect the identification of the degrees of freedom. The effective theory including these effects resembles in many ways cosmological perturbation
theory. | will show how constraints and diffeomorphisms generically lead the dilaton and volume modulus to combine into a single degree of

freedom in the effective theory, the & quot;breathing mode& quot;. This has important implications for models of moduli stabilization and inflation
with extra dimensions.
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Extra Dimensions: Why?

Hierarchy Problem

| arge (flat) Extra Dimensions Warped Exira Dimensions

Fundamental scale of gravity is lower

M2 = M2R"

Fundamental scale
of gravity depends

on location in exira
dimension

Forn=2. B < 0.lmm.

= M, ~ (few) x TeV




Extra Dimensions: Why?

Hierarchy Problem

Warped Exira Dimensions

ds* — e AW N dzidx” + dy

Large (flat) Extra Dimensions

Fundamental scale of gravity is lower

M;=M;R"

Fundamental scale

of gravity depends
Forn =2. R < 0.1lmm. on location in exira
| : dimension
— J[n ~ (few) x Te\
[Randall-Sundrum]

More generally. exira dimensions
typically show up in high energy
physics,

1020137 e.q. string theory ...
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Study dynamics here

Example: Two Universal moduli

Volume

dsh = g, dr*dr’ + p(x) §,.,dy"dy"
Modulus D~ Yu | Grrndy™dy




Describing Extra Dimensions

Example: Two Universaimoduli  Type lIA String Theory

Can be used to study existence of dS vacua, inflation. ..

[Herizberg et al; Silverstein; Underwood et al;
Caviezel et al; Flaugeret al; Haque et al;...]
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Describing Extra Dimensions

Example: Two Universal moduli Type llA String Theory

Can be used to study existence of dS vacua, inflation. ..

[Herizberg et al; Silverstein; Underwood et al;
Caviezel et al; Flaugeret al; Haque et al;...]

Zero Internal
Curvature:

Positive Internal
Curvature:
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Describing Extra Dimensions

Lo
Higher ~ FWxS° Ca"fzed Study dynamics here
Jimensions  _ "Cag

\ / Example: Two Universal moduli
Volume Al — — g, dTPdT” + p(T) Grndy™dY"

Cumpacﬁﬁuﬁom Modulus e

!,

Dilaton (bulk scalar field) © = op +do(z)o(y)

Dimensionally Reduced 4d EFT
_ 3(0up > (9,00)
p-j 9

Are there features missed by 4 T ¢ o
the 4d EFT? Ve =06 G — Trnn =0

O5oVerr = 0 < Dilaton EOM =0
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Describing Extra Dimensions

OC=;- :
Higher Study dynamics here
Oy o

Jimensions L )
Example: Two Universal moduli

Volume 2 B i el 2 .
Cumpacirﬁuﬁom Modulus 2510 = 9wdz"dz” + plT) mndy™dy

-

Dilaton (bulk scalar field) © = og +do(r)o(y)

Dimensionally Reduced 4d EFT
3(0, p - 9,00)°

Are there features missed by % VA, ¢ -

the 4d EFT? OpVesf =0 Gmn — Trmn =0
-Gum — Tym =07 d50Voss = 0 = Dilaton EOM =0
"= itfternal Diffeomorphisms? % A Q. —T. =™

| %



L

Describing Extra Dimensions

More generally, want to study
Higher

X dynamics here — beyond validity
Jimensions  _ f" of 4d Effective Theory

Compacﬁﬁﬁoni |

Dimensionally Reduced 4d EFT

Jap_ (8,00)° -

Are there features missed by

the 4d EFT? dl i“ =0<= GT’.-'??‘"_ o T*Tr" =

/ 5
_Glum _T'um :0.

Xi' =\ & GM — Tusz-* =0

O50Vers = 0 < Dilaton EOM = 0
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Dynamics in extra dimensions

Qutline

« Cosmological Perturbation Theory (Review)
» Warped Perturbation Theory

« Example:
- p-brane backgrounds

» Weakly warped limit # unwarped limit
* Other examples of Warped Perturbation Theory

= Cosmological applications




Dynamics in extra dimensions

QOutline

« Cosmological Perturbation Theory (Review)




Cosmological Perturbation Theory

4-dimensional FLRW spacetime with a homogeneous scalar field

ds” = —dt* +a(t)"dzT". oo(t)

Homogeneous Mode:
Constant cosmic time slices
are constant in space.




Cosmological Perturbation Theory

4-dimensional FLRW spacetime with a homogeneous scalar field

ds® = —dt* + a(t)"dz". oglt)

o(t,r) = op(t) + o0(t, r) Homogeneous Mode:
Constant cosmic time slices
are constant in space.

Fluctuation:
Constant cosmic time slices
not constant on space.

But.. distinction between fluctuation and background not a coordinate-
iIndependent statement: Under diffeo. ¢+ — ¢t - £ (t.x

11020137 ot, ) — o(t+E£.x) = &g(t) + ;‘;'Oo@ + 00 = Oglt]  resersss



Cosmological Perturbation Theory

More generally, scalar perturbations about FLRW

3 )

: . ' 3 - 5 : = s s s e ;
ds® = —(11+2p(t. x) )dt"+a~(1)|(1—20 (L, x))o; ;/ +20,0; E(t. x) | dz' dx’

+a(t) 0;B(t. xr)dtdx’ 5 scalar functions

olt.xr) = og(t) +o00lt.x 1P U. E. B.oo;




Cosmological Perturbation Theory

More generally, scalar perturbations about FLRW

ds* = —(1+2p(t. x '-dff—a:ff!:i'_1—23; . x é}j—f@g@;ﬂ'ti‘_’l:dfdtr;

+a(t) O B(t. r)dtdz 5 scalar functions
o(t.x) = og(t) ~dolt.x {o, 0. E, B, o}

Transform non-trivially under diffeomorphisms
Can construct gauge-invariant scalar variables:

g : w5 -
= — — |a“(E — B/a))|
a at 3 _
w—a*(E — B /a
a Diffeomorphisms removed 2
55— &k agé@{ E— Blq degrees of freedom
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Cosmological Perturbation Theory

More generally, scalar perturbations about FLRW

ds® = —(1+2p(t. x '-dff—afff!:iﬁl—iz; t.x 5;;—‘3355;51‘.J‘.":dl’fdi‘":

+a(t) 0;B(t. r)dtdx’ 5 scalar functions
o(t.x) = og(t) +d0o(t.x {¢, v, E, B. oo}

Transform non-trivially under diffeomorphisms
Can construct gauge-invariant scalar variables:

g = m A

=p——|a (& — D/a)|

a Eﬁ-_ _
v—a“(E — Bla

3 gauge-invariant variables

Diffeomorphisms removed 2
2 (F B/, degrees of freedom
L Eill = 1) (1

Mixture of scalar field and meiric fluctuations
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Cosmological Perturbation Theory

5 scalar functions { + - U, (- O”}

3 gauge-invariant variables {C["B Up. f-j‘l’}

Gauge-invariant scalar variables must satisfy constraint equations
arising from Einstein equations — non-dynamical equations.




Cosmological Perturbation Theory

5 scalar functions {“ vl B, ‘3‘3-‘}

3 gauge-invariant variables {(I')B- Vp. *—"-’q’}

Gauge-invariant scalar variables must satisfy constraint equations
arising from Einstein equations — non-dynamical equations.

fjc;[]{] — S7Go T[Iuj = 3 ( 11! BT Ho 5}) 1B T‘EIII P J:'IG:{_.’;,O == f}

x 7 1 O Yy © ) - [:I I k| ‘ L 8
oG 0 — O TGO E} § = 2{'_7}_;‘ |:1P B T —d 2 1rG Oq 0 o =0
a




Cosmological Perturbation Theory

5 scalar functions {¢-¥. E, B.do}

3 gauge-invariant variables 1®3.Vp.0®}

Gauge-invariant scalar variables must satisfy constraint equations
arising from Einstein equations — non-dynamical equations.

8Goo — 87G6Tyy = 3H (Vg + HOg) + V- Up + 4xGép = 0

_ . : a 5 ax i
0Go; — SmGoTy; = 20; {'\PB + P —1aGog 0P| =0
(1

5 — 2 — 2 =1 Single independent scalar degree of freedom

“Curvature Perturbation”
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Cosmological Perturbation Theory

5scalar functions {+-¥. E, B.0o}

3 gauge-invariant variables 1%5.Vg.0®}

Gauge-invariant scalar variables must satisfy constraint equations
arising from Einstein equations — non-dynamical equations.

0Goo — StGTyy = 3H (Vg + HOg) + Vg + 1nGop =0

i i : a s .= :
0Go; — StwGolp; =20, |V + —Dg —daGog 0P| =0
a

5 — 2 —2 =1 Singleindependent scalar degree of freedom

“Curvature Perturbation”
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Dynamics in extra dimensions

QOutline

» Warped Perturbation Theory




Warped Perturbation Theory

Now let’'s use the same reasoning for a theory with exira dimensions

A ap]) A 3 [l Ls —2 :._:I |
gl e)dadeT ¢

Dol Y ) \Spacetime(p.pl) Extra Dimensions (D-p-1)

(Some solution someone hands you)




Warped Perturbation Theory

Now let’'s use the same reasoning for a theory with exira dimensions

_.._}._ g

“WWg . (z)dztde” e W g dy™dy"

FF

oo\ Y) K Spacetime (p+1) ~ Extra Dimensions (D-p-1)

(Some solution someone hands you)

Generically, a solution will be “warped” — sources in extra dimensions
always introduce a gravitational potential (warping)




Warped Perturbation Theory

Now let’s use the same reasoning for a theory with exira dimensions

2A4(y) -

Gu(x)dzPdz” + e 2Pol)

ds% =3 Jmndydy”

o= oplYy) K Spacetime (p+1) ~ Extra Dimensions (D-p-1)

o(lx.y) = ogly) +oo(x.y) F!ucruaﬂ'on{s:
| | Constant slices along extra
dimensions depend on

spacetime .




Warped Perturbation Theory

Now let’'s use the same reasoning for a theory with exira dimensions

—:Bgi Yy

oW g . (x)datdxz” + e ' Grmndy™dy”

Spacetime (p+1) —~ Extra Dimensions (D-p-1)

Fluctuations:
Constant slices along extra
dimensions depend on

spacetime .

But again, thisisnot a
coordinate-independent
statement.

T

y" =y +&"(x,y
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Warped Perturbation Theory

More generally, scalar perturbations about background

e=0(y) { 1 —200(x, 9))Gu + 2V 10, B2

2A9(y) = < Ny o g.m,  —2Bgly)y~ vy 3 . m n
_*_LI . E:).u I'IL JrL! -.4?_1 . I:_JI f l‘__i..[' g ‘_Zg 1 t JJI-I ¥ | gnr': 17 | y : _2 ._I,_.-'- TTiT] '_ ._JF . __...' I I [_fy {Ey :

2+D+n(n+1)/2 scalar functions

—— L N . "_;'r . § J
Y ) 1. B, K.y




Warped Perturbation Theory

More generally, scalar perturbations about background

— =20(Y) L 1 —29(x,Y))9uw + jtgaa*E I.y dr"dx”

2 An(y) -~ U y..m —2B4(y) /= \ | \ A2 1 A"
_6—"_1'-' = allufl 7 | i‘. :':Jf 'dr’ dy —E BE = |gﬁ.,..-p- y|_2-.l._ﬁ ""-v- ._I‘. '__J | | dy dy :

2+D+n(n+1)/2 scalar functions

@ — Qg y:' + 00\ T. Y . {L' R s fi.o}

Transform non-trivially under D-dim diffeomorphisms
Can construct gauge-invariant scalar variables:

2% (P BN K.—O.E\é =~ [_240-2By/ 5 .
B = Prnt €28 Bo)(Ky—BpB) G+ V (s [ 4 (80 B — Ko ;

U=+ (PA) K, — O,E): | |
) - Diffeomaorphisms remove D

0® = 0o+ e (o) (K, — 9,E). degrees of freedom
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Warped Perturbation Theory

More generally, scalar perturbations about background

v { 1L =2z, Y) "g_uz’ S ETMazE L.y dr*dz’

+e22Wo K, (. y)dr* dy™+-e P (§n (9) 20 mn (z, y) ) dy™dy™:

2+D+n(n+1)/2 scalar functions

o= oply) +o0o(r.y). {, E, K.,y

Transform non-trivially under D-dim diffeomorphisms
Can construct gauge-invariant scalar variables:

B = P+ (P By)(Ky—8E) Grrn+-Vpm [ €27 2(0 E — Kyy)| :

U = + 29(PA) (K, — 0,E): | |
3 : Diffeomorphisms remove D
do + e2(9P oy W {— LK) - degrees of freedom

Mixture of dilaton and metric fluctuations



Warped Perturbation Theory

Gauge-invariant scalar variables must satisfy constraint equations
arising from Einstein equations — non-dynamical equations.

{j‘G L J _ e/ . - — Vj'_;_ f_‘:): Ii{_] g _l_: ]I,f R ":I:. ::: | — l':!

Vo 2 o a T 0] a9 Y F£&P | QA RO A 1
0 G.,u m—Kpo I.;'-*' m — -_-‘ﬂ'_i Um |P v+ *‘b}; +0y Tq kpwﬂ_(-) UL kp‘;;. {), :L.':‘ - Om B 0]

H . (P — 10y — [4) —P— 1 :‘:j_':—B{]__Fﬁj;; 0®0n00 = 0.

Constraint equations remove another D degrees of freedom.

Left with 7 + (D-p-1)(D-p+2)/2independent scalar + metricd.o.f.




Warped Perturbation Theory

More generally, scalar perturbations about background

P ‘ 1 — 24(x. Y))Guv T+ ZYMC)E .Y dr*dr”

2A5(y) - - m —2Bg(y) =~ L . m g
1 240l a_uh mlT.y)dxr"dy"+e 2Bz (Grmn(U)120mnlT, y))dy "dy

2+D+n(n+1)/2 scalar functions

0 = oo(y) + d0o(x.y) . (V. E. K. £yon. 00}

Transform non-trivially under D-dim diffeomorphisms
Can construct gauge-invariant scalar varables:

o .= ¥ -

q)nﬂ'r- — ,I_:-,u-_r_:':-__E__ J'C;#JB{:I I Elp_qulng‘_vw € {‘- B-' O-.--__-._E - ﬁw | g

U= +e(PA) K, — 0,E): | |
; : Diffeomorphisms remove D

0 = do + e (FP0y) (K, — I,E) . degrees of freedom
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Warped Perturbation Theory

Now let’'s use the same reasoning for a theory with exira dimensions

—:Bgi y)

9 (x)dxtdx” + € Grmndy™dy"

Extra Dimensions (D-p-1)

Spacetime (p+1)

Fluctuations:
Constant slices along extra
dimensions depend on

spacetime .

Ogl U=
But again, this is not a
L coordinate-independent
C0lY1)) statement.

¥ri

y' =y + 2.y

11020137 Page 37/549
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Warped Perturbation Theory

More generally, scalar perturbations about background

2U(Z, Y) ) 0uw + 2V 0, Bz, Y

:B[! L £

“(Gmn(Y)20mn(z. y))dy™dy":

. t 2+D+n(n+1)/2 scalar functions
Q= 0plY)T—O00\T.VY). g

{:‘__ 3 E : [ ‘Lr--.—-._- - Cmns 0 ":':]}




Warped Perturbation Theory

More generally, scalar perturbations about background

2¢0(x. Y))Guy + 2V 4,0, E(z, y) | dz*dz”

VO, K m(x. y)drtdy™+e 22 (G, (9) 20 mn(z. y) ) dy™dy™:

2+D+n(n+1)/2 scalar functions

© = @oly) + o0o(x.y) . (0, E, Ky, O, 06}

Transform non-trivially under D-dim diffeomorphisms
Can construct gauge-invariant scalar variables:

— = : - e

DA - "B SR 2_ -— 0 ) -
S = T‘m':_f__LJ’-.dHBU ..:'ﬁp_f{jg-’gmﬂ_v-m € to BUIO"'-_'_"E — B“ | -

.....

U =+ (P A) (K, — 8,E): | |
" : Diffeomorphisms remove D

0® = 0o+ e*(dP0p) (K, — 9,E). degrees of freedom
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Warped Perturbation Theory

More generally, scalar perturbations about background

dsD — = { 1 —2U(x.Y))guw + OV, 0,E(z.y)| de*dz”
WK e, y)de dy™ e 2B (g (y)+2¢ 1)) dy™dy”:
V1 2+D+nm+1)/2 scalar functions

o j | +— OO I . . = =
C} O{j,y J y {L*‘ E.[‘Lw-_. ?_F‘%____?___.r_‘.*,‘_“__’}}

Transform non-trivially under D-dim diffeomorphisms
Can construct gauge-invariant scalar variables:

= Omnt+€"(F Bo)(Kp—0oE) Grmn+V (m [€79 (0 E — Kp)] ;

U = + (P Ay) (B — Ol ) | |
= Diffeomorphisms remove D
0@ = do + > (FP0oy) (K, — I, E) . degrees of freedom

Pirsa: 1:&20137 - ’ g
Mixture of dilaton and metric fluctuations



Warped Perturbation Theory

Gauge-invariant scalar variables must satisfy constraint equations
arising from Einstein equations — non-dynamical equations.

{562__;_;; ' 0 uv |, s, = V:"-L' [ai :IJD — 1V — lIJ*ij — [):

= 2 =~ a0 - D] O Y7 FD N FP < & 1
0 G,u.r.-*? —Kpo Tu m — _':'fu Im |P W =t @:ﬁ +0 T_J LD‘*.-*?-._L}-J '\I}J a’ Ao+ 0Onb 0

—fj_.-_L. @‘1_ jL A — 1) fi_f_;-:_—11j:j| — D — == 1) fij_:;B{j_—;fi-A 0 '*-El.’i_}:ﬁ.-_ ong = U.

Constraint equations remove another D degrees of freedom.

Left with 7 + (D-p-1)(D-p+2)/2independent scalar + metricd.o.f.




Warped Perturbation Theory

Gauge-invariant scalar variables must satisfy constraint equations
arising from Einstein equations — non-dynamical equations.

-

-

0G, — K0T,y | : :!..p — 1T —

-
I |

e ==
pl

8C um—K 50T ym = —8,0p, [p¥ + BE] +8,V, &2, 48,82 [0, Ao + OBy

+8,8 [(p— 1)8,40 — (D — p — 1)8,B0]+=8,09,,00 = 0.

It is inconsistent to turn on only a dilaton fluctuation:

- 5 & | ,_
0G i — R0 e — ga,u00'1~1'~ Y)Oyn09 =0

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
in order to create a consistent, gauge-invarnant degree of freedom.

Which fluctuation could this be?
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Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?




Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.x) = og(t) — dol(t. ) mixes with the

curvature perturbation (spatial volume perturbation)

9 3 Pl O B

g_ = {]_:'L{—r:, S '{j‘T




Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.x) = og(t) + do(t. x) mixes with the
curvature perturbation (spatial volume perturbation)

Y+

3 X'
gi; — a_:..lL:E_a ¢O,

Tud

Similarly, expect dilaton fluctuation to combine with the volume modulus
fluctuation of the metric:

(Need to generalize “volume modulus™ to warped space)

Already seen in Randall-Sundrum context



Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t. x) = og(t) — do(t. x) mixes with the
curvature perturbation (spatial volume perturbation)

3V £ S,

G = a*(t)e*""1)s;;

S

Similarly, expect dilaton fluctuation to combine with the volume modulus
fluctuation of the metric:

.—«_-"«_-

" 9mn(Y)

(Need to generalize “volume modulus”™ to warped space)

Already seen in Randall-Sundrum context



Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.x) = og(t) + do(t. x) mixes with the
curvature perturbation (spatial volume perturbation)

5 Vgl [ R, W

>
gij = a”(t)e™>""0;;

o

Similarly, expect dilaton fluctuation to combine with the volume modulus
fluctuation of the metric:

(Need to generalize “volume modulus™ to warped space)

Already seen in Randall-Sundrum context



Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.x) = og(t) + do(t. x) mixes with the
curvature perturbation (spatial volume perturbation)

Erf. 2T Tl
gi; —a\tje- O_;J:

Tl

Similarly, expect di/aton fluctuation to combine with the volume modulus
fluctuation of the metric:

—2Bg{y) 23:z(x) ~

9mn — € € Grnl\Y)

(Need to generalize “volume modulus” to warped space)

Already seen in Randall-Sundrum context



Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.x) = og(t) + do(t. x) mixes with the
curvature perturbation (spatial volume perturbation)

I+ 7)

oy
gi; = a-(t)e>""'0;;

T

Similarly, expect dilaton fluctuation to combine with the volume modulus
fluctuation of the metric:

8 Y s )
—2Bgl{y) 23c(x) ~

9mn — € € Gmn\Y)

(Need to generalize “volume modulus” to warped space)

Already seen in Randall-Sundrum context



Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.z) = og(t) — dol(t. z) mixes with the

curvature perturbation (spatial volume perturbation)
3 Fapd | SRR, Yot

gi; = a- ff e™>"""0;;

Similarly, expect dilaton fluctuation to combine with the volume modulus
fluctuation of the metric:

o _Br y '_,_z'u
9mn — € VGl

(Need to generalize “volume modulus” to warped space)

Already seen in Randall-Sundrum context



Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.x) = og(t) + do(t. x) mixes with the
curvature perturbation (spatial volume perturbation)

'-"_."’.:-,l'- | -

3
gi; = a - (t)e™""0;;

S

Similarly, expect dilaton fluctuation to combine with the volume modulus
fluctuation of the metric:

_:‘lB {1 ) ~ ':I
9mn — € e

(Need to generalize “volume modulus™ to warped space)

Already seen in Randall-Sundrum context



Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.x) = og(t) + do(t. x) mixes with the
curvature perturbation (spatial volume perturbation)
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fluctuation of the metric:
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Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.z) = og(t) + dol(t. z) mixes with the
curvature perturbation ( spatiai volume perturbation)
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Similarly, expect dilaton fluctuation to combine with the volume modulus
fluctuation of the metric:
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(Need to generalize “volume modulus” to warped space)

Already seen in Randall-Sundrum context



Dynamics in extra dimensions
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= Example:
- p-brane backgrounds
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D-dimensional gravity, dilaton, (p+2)-form, localized source
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Warped Breathing Mode (p-brane)

D-dimensional gravity, dilaton, (p+2)-form, localized source
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Natural Shift-Invariance e~ 7
for dynamical “breathing” mode:
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Warped Breathing Mode (p-brane)

Almost.. Need Weyl Rescaling and Compensator

IS a single (p+1)-dimensional degree of freedom
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Effective Kinetic Term

Effective kinetic term for warped breathing mode comes from
gravity and dilaton sectors:

Gravity Kinetic term gives the usual volume modulus kinetic term.
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Dilaton kinetic term is not as nice;
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12057 Effective Theory is different than if had ignored these effects:



Dynamics in extra dimensions

Outline

* Weakly warped limit # unwarped limit

* Other examples of Warped Perturbation Theory
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combine into a single degree of freedom ul(x) = dol r)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

; .. i _ —— iy [p——— 1 ) .
Aply) =€fly), eoe(Vol) ™, > MFW) oy 1 gy +2ef(y)

-
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Can we freat dilaton u(x) and volume modulus 5¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Oyu(x))(0nAo(y)) + (Ou00(x))(0n00(Yy))
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Weakly warped limit. € ?é 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jdolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit
Take weakly warped (large volume) imit of background:

Ao(y) = €f(y). e€oc(Vol)™.

olx.y) = ogly) + oolx)oly).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum — Tym = 0 ~ (8,(2))(8nAo(y)) + (8,00(x)) (80 (y))

L

Weakly warped limit. € # O Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eox (Vol)™, 24=¥) 1——u(x)+2ef(y)

-

Oz, y) = ooly) ~do(z)o(y). ooly) ~ —Xef(y)

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (O,u(x))(0,A0(y)) + (0u00(x))(0ro0(y))

Weakly warped limit: € 75 O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = Jdolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of reedom ulxr) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

| | o e 1 | |
Ao(y) = ef(y), eoc (Vo)™ e*=¥) » 1——u(x)+2f(y)

-

o(x.y) = oo(y) ~do(x)o(y). oo(y) ~ —Nef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (O,u(x))(0,A0(y)) + (0u00(T))(Oro0(y))

Weakly warped limit: € 7 O Dilaton and volume modulus
combine into a single degree of freedom u(x) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

Ao(y) = ef(y), eox (Vol)™, =¥ 1 ——u(x)+2f(y)

o

O\L. Y) = ool gl L3 j“:" I |O| ). {:}Df yl ~ —/\Ef."y

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

—%

Gum— Tym =0~ (O,u(x))(0,A0(y)) + (Ou00(T))(Frno0(y))

Weakly warped limit: € 7 O Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

Ao(y) = €f(y), eoc (Vol)™, =¥ » 1——u(x)+2f(y)

o

O(z.y) = ogly) ~do(z)o(y). ooly) ~ —Xef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—TLym =0~ (Ouu(x))(OnAoly)) + (0,00(x))(0n0(y))

Weakly warped limit: € 7 O Dilaton and volume modulus
combine into a single degree of freedom u(z) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

Ao(y) = €ef(y). eox (Vol)™, 2% 1 ——u(x)+2€ef(y)

o

olx.y) = oply) +oolx)oly). ooly) =~ —Xefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0nAo(y)) + (8u00(x))(0no(y))
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Weakly warped limit: € 75 0 Dilaton and volume modulus
combine into a single degree of freedom ul(x) = dol r)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

Agly) = €f(y). €oc(Vol)™". 2 TY) 1 ——u(x)+2ef(y)

o

O\, y = OolY) — Yolx ol Y). {jr:.":.y.l :;:. —:\Ef.y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0 ~ (O,u(x))(0ndo(y)) + (Ou00(T))(0rmo0(Y))

Weakly warped limit. € 75 O Dilaton and volume modulus
combine into a single degree of freedom u(r) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # oolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Agly) = €f(y).

olx.y) = ogly) + dolx)oly).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

G_un“_ = Tu_ﬂﬂ_ —10) ~ C)H u(x))l C)T _—Lj. i_' Y | = cp)u 0o(x) ) ()m Opl Y ) |

Weakly warped limit: € 7 O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol r)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eoc(Vol)™", e***¥ ~ 1——u(z)+2¢f(y)

o

o(x.y) = oply) +do(x)o(y).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0 ~ (Ouu(x))(0nAe(y)) + (0u00(T))(0rno0(y))

_.H-

Weakly warped limit. € # 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = Jdolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple.

Fi

become separate degrees of freedom u(r) # dolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

Ao(y) = €f(y), eoc(Vol)™", ¥ ~ 1——u(z)+2¢f(y)

olx.y) = ogly) +dolzr)o(y). ogly) =~ —Aef(y

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

L

Gum—Tym =0 ~ (Oyu(x))(OnAe(y)) + (Op00(x))(0nde(y))

Weakly warped limit. € % O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

S \ e 1 r. - gl
Ao(y) = ef(y), eox (Vol)™, e*&¥) ~1—"u(z)+2ef(y)

olxr.y) = ooly) +oolx)oly). ogly) =~ —Xef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0~ (Ouu(x))(0,A0(y)) + (Ou00(T))(0rno0o(y))
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Weakly warped limit. € 75 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vo) ™, =¥ ~1—_u(x)+2ef(y)

- -

o(r.y) = ooly) +do(x)o(y). ooly) ~ —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

G — L ~ (Ouu(x))(OnAo(y)) + (0u00(x))(0no0(y))

Weakly warped limit: € ;t 0 Dilaton and volume modulus
combine into a single degree of freedom u(r) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # J0olx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

| | e B B | _
Ao(y) =€f(y), €oc(Vol)™", g2 2Y) o l——u(x +2€f(y)

o -

o(xr.y) = ooly) +do(x)o(y). ooly) = —Aefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Cisn— L ~ (Ouu(x))(0rAo(y)) + (0u00(x))(Omno0(Y))

Weakly warped limit. € 7% 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dol r)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

2A(r.u

Agly) = €fly). eox (Vol)™". e ~ 1——u(x)+2¢ef(y)

—

o(xr.y) = ooly) +oolx)o(y). ooly) = —Nefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0 ~ (Ouu(x))(0,Ae(y)) + (9u00(x))(0ndo(y))

Weakly warped limit. € 7& 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:
Aoly) = €f(y), eoc(Vol)™.

o(x.y) = oply) +do(r)oly). op(y)

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (O,u(x))(0,A0(y)) + (0u00(T))(Orm0(Y))

Weakly warped limit. € 35 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolr)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of reedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Dynamics in extra dimensions

QOutline

* Weakly warped limit # unwarped limit

* Other examples of Warped Perturbation Theory




Warped Breathing Mode (p-brane)

Almost.. Need Weyi Rescaling and Compensator

Is a single (p+1)-dimensional degree of freedom

Dilaton fluctuation -+ Volume modulus fluctuation




Warped Perturbation Theory

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
In order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?

Back to the cosmological case:

Scalar field fluctuation o(t.x) = og(t) + do(t. x) mixes with the
curvature perturbation (spatial volume perturbation)

3 1 8 i S

%
. — acl(+\e*5\ T ).
gi; = a(t)e 0;;

Sl

Similarly, expect difaton fluctuation to combine with the volume modulus
fluctuation of the metric:

—2Bg{y) 23:(x) ~

9mn — € € Gmn\Y)

(Need to generalize “volume modulus™ to warped space)

Already seen in Randall-Sundrum context



Warped Perturbation Theory

Gauge-invariant scalar variables must satisfy constraint equations
arising from Einstein equations — non-dynamical equations.

OG-~ H%@Tg;.‘ = V u&, p — 1)V — @:T — 0

0C k50T ym = — 8,0 [p¥ + BE] +0, V&2, 48,82 [0,n Ao + Om By

< o 1
+0,® [(p— 1)0,40— (D — p— l'lt)*_:Bg_—;auok’P@W_oQ =1

It is inconsistent to turn on only a dilaton fluctuation:
5 ]_ : - p -
0Gym — kp0Tym = -0,00(x. Y)0r09 =0

Gauge-invariant dilaton fluctuation must combine with some metric fluctuation
in order to create a consistent, gauge-invariant degree of freedom.

Which fluctuation could this be?



Warped Perturbation Theory

More generally, scalar perturbations about background

200 [(1 = 20z, y) g = 2V,0, (. )| dada*
a

1 g20ly aui-{f“:' = :dur'uat‘fy'w'—ff._"B'3 N Gran (Y)+20mn (7. y) ) dy™dy™:

: - 2+D+n(n+1)/2 scalar functions
O =0gly)+o00lxr.y

y) - (0. E. K. £rne 00}

Transform non-trivially under D-dim diffeomorphisms
Can construct gauge-invariant scalar variables:

A - = &

- 2daraprr Nrgs  a pys 240—2By( A .
mn = PmnT€ (0" Bo)(Kp—0oE ) gmn+V (m |€F (O B — K| :

s
]

U+ e2(P A K, — O,E): _ |
. ; Diffeomaorphisms remove D
00 +e*(Fay) (K, — GE). degrees of freedom
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Mixture of dilaton and metric fluctuations



Warped Breathing Mode (p-brane)

Almost.. Need Weyl Rescaling and Compensator

e

- Omn y'd;jﬁ d_u'

olx.y) =—MAly.u(x))).

_:" ___—L:_-_] | _J"

e e T
| ) ‘¥
i L ! —

— UL

Is a single (p+1)-dimensional degree of freedom




Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ag(y) = €f(y).

o\T,Y) = ooly) +00(T)of

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?




Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vo)™ e*A=¥) 1——u(x)+2¢f(y)

o e

olxr.y) = ooly) +dolx)o(y). ooly) =~ —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

—

Gum— Tym =0 ~ (Ouu(x))(0,A6(y)) + (0u00())(0ro0(y))

Weakly warped limit. € 35 0 Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

2A(z.y

Ao(y) = €f(y), eoc (Vo)™ e ~ 1——u(r)+2ef(y)

1-

olx.y) = oply) +do(xr)o(y). ooly) = —Aefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

~ (Oyu(x))(FnAoly)) + (8,00(x))(0n0(Y))

Weakly warped limit. € % 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smooihly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

| o AR 1 .
Ao(y) = ef(y), eox (Vol)™, =¥ 1 ——u(x)+2f(y)

-

O\ L. y — @y y' I {J " {5}': Y ). Qg yl i _/\Ef'- Y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0,A0(y)) + (0u00(T))(0rr0(Y))

LE

Weakly warped limit. € 35 O Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulx) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:
A_Lj':.y.j' = f:_f" y-_:'. € 86 {.\TGI:'_W
olx.y) = oply) + dolx

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

—

Gum— Lym =0~ (O,u(x))(0,Ae(y)) + (0u00(T))(0ro0(Y))

um

Weakly warped limit: € 7 O Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vo)™ ¥ ~1—Zu(z)+2ef(y)

i

o(x.y) = ooly) +do(x)o(y). oo(y) =~ —Aef(y

Can we freat dilaton u(x) and volume modulus 5¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Lym =0~ (O,u(x))(0,A0(y)) + (0u00(x))(0rn0(y))

Weakly warped limit: € 75 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ag(y) = €f(y), € (Vol)™". 24TY) 1 — —u(x +2ef(y)

C}' I- y == O{:I g : - -j"-'j' ._-.{1 Ol. y N OE' |'I.y..| D —;\Efl y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0,A0(y)) + (0u00(x))(0r00(Y))

Weakly warped limit. € 7: 0 Dilaton and volume modulus
combine into a single degree of freedom u(rxr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) limit of background:

Ao(y) = ef(y), eoc (Vo)™ ¥ ~1——u(zr)+2ef(y)

olx.y) = oply) +dol(x)oly). ogly) =~ —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

%

Guw —Tyw =0 ~ (O,u(x))( B, Ag(y)) + (0,00(x))(0,,00(1))
s Hm H m- U u .

Weakly warped limit: € 7& 0 Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) limit of background:

Agly) = €f(y), eoxc(Vol)™". e Y~ 1——u(x)+2ef(y)

olxr.y) =oply) +dol(x)oly). ogly) =~ —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (0,u(x))(0,A0(y)) + (0u00(x))(0mo0(y))

Weakly warped limit. € # O Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

:Lj':_.y.:' = Ef' y"]‘ e ox (Vol) ™. E;'JL!I‘Q ~ |l——ulx —ZEf{_y.ﬁ'

-

o(x.y) = ooly) +oo(x)o(y).

Can we freat dilaton u(x) and volume modulus 5¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Oyu(x))(0nAo(y)) + (8,00(x))(0no(y))

[

Weakly warped limit: € 7’: 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vol)™, =¥ » 1——u(x)+2¢f(y)

o

olx.y) = oply) +oolr)oly). ogly) =~ —Xefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0ndo(y)) + (Ou00(x))(0mo0(Y))

Weakly warped limit: € 35 0 Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit — not smooihly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

Ao(y) = €f(y), eox(Vol)™, e~

e

o(x.y) = oply) +do(x)o(y).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—TLym =0~ (Ouu(x))(0nAo(y)) + (0,00(x))(0rn00(Yy))

-

Weakly warped limit: € 7: 0 Dilaton and volume modulus
combine into a single degree of freedom u(z) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulx) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

A X B _ S ) P 1 ) E
Ao(y) = ef(y), eox (Vol)™, ¥ ~1—u(x)+2€ef(y)

o(r.y) = ooly) +do(x)o(y). ooly) = —Aef(y

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?
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Unwarped limit is singular limit — not smoothly connected to weakly warped limiil



Weakly Warped Limit

Take weakly warped (large volume) limit of background:

2A(x.y

- _ o 1 <
Aoly) = €f(y), eoc(Vol)™". e ~ 1——u(r)+2f(y)

1-

o(r.y) =ooly) +dolr)o(y). ooly) ~ —Aefl(y

LT

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0rAo(y)) + (9,00(x))(0ne(y))

Weakly warped limit. € 7 O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol )

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (O,u(x))(0rA0(y)) + (0u00(x))(Or0(Y))

~

Weakly warped limit: € 75 O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom u x| # 0olx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Agly) = €f(y). € ox (Vol)™". 2 M) oy 1 — —ula +2€ef(y)

—

o(z.y) = ooly) +do(z)o(y). ooly) =~ —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0nAo(y)) + (0,00(x))(0no(y))

Weakly warped limit. € ;é O Dilaton and volume modulus
combine into a single degree of freedom u(x) = Jdolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulrxr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eox (Vol)™, e\ a1 ——u(z)4+2¢f(y)

o(x.y) = ooly) +do(x)o(y). ooly) = —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0rA0(y)) + (0u00(x))(Omoo(y))

M

Weakly warped limit. € % 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:
Ao(y) = €f(y). e o (Vol)™

olx,y) = ooly) +o0o(x)oly).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—TLym =0~ (Oyu(x))(0,A0(y)) + (0u00(x))(0rr0(y))

Weakly warped limit: € 7 = 0 Dilaton and volume modulus
combine into a single dearee of freedom u(x) = do(x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) limit of background:

_ | L 1 |
Ao(y) = €ef(y), eox (Vol)™, %% 11— u(x)+2¢ef(y)

o

olr.y) = ooly) — dolx ol y). oOgl 9’ g _/\Ef"'y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (0,u(x))(0,A0(y)) + (0,00(x))(Oro0(Y))

[

Weakly warped limit. € }“ O Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of reedom ulxr) # 0ol x

Unwarped limit is singular limit — not smoothly connected to weakly warped limiti



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

Ao(y) = ef(y), eox (Vo)™ e*U%¥ ~ 1 —"u(x)+2¢ef(y)

olx.y) = ogly) +oolxr)oly). ogly) =~ —Xefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0~ (Ouu(x))(0,A0(y)) + (0u00(x))(Frno0(y))

L

Weakly warped limit. € 35 0 Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit
Take weakly warped (large volume) mit of background:
Ao(y) = ef(y), eoc(Vol)™, e

e

olx.y) = ogly) +dol(x)o(y).

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0,Ae(y)) + (0u00(T))(0rr0(Y))

L

Weakly warped limit: € % 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = Jdolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # 0ol x

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

L—Lj{'y'] s (-;f y":]‘ eox (Vol) ™. e;‘i:f‘:*" ~ |1l——ulx —QEf{.y.]

olx.y) = ooly) + dolx

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Lym =0~ (Ouu(x))(0,A0(y)) + (0u00(x))(0rro0(y))

L

Weakly warped limit. € # 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolr)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

Ao(y) = ef(y), eox (Vo)™ *&¥ ~1—"u(z)+2ef(y)

o

olr.y) = ogly) +dolxrioly). ooly) = —Nefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0nAo(y)) + (0u00(x))(0rmo0(Y))

L

Wesakly warped limit: € ;ﬁ 0 Dilaton and volume modulus
combine into a single degree of freedom u(z) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eox (Vol)™, =¥ 1——u(x)+2f(y)

e

olx.y) = ooly) +do(x)oly). y) =~ —Xef(y

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Lym =0~ (O,u(x))(0,As(y)) + (0u00(x))(Omo0o(y))

Weakly warped limit. € 7: 0 Dilaton and volume modulus
combine into a single degree of freedom ul(xr) = dol r)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

L_l_D Iy:l - Ef :' 'y:l - — JI\_{}I:I - ‘ 6;_—1_| . ~ 1 Ty ) zef Iyl

olx.y) = oply) +oolx)oly). ooly) =~ —Xefly

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0~ (O,u(x))(0,A0(y)) + (0,00(x))(Ormoo(y))

Weakly warped limit. € :é 0 Dilaton and volume modulus
combine into a single degree of freedom u(r) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulx) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:
Agly) = €f(y). eoc (Vol)™"

o(x.y) = oply) + dolx

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (0,u(x))(0,A0(y)) + (0u00(x))(0rr0(y))

Weakly warped limit. € + ;,_ 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eox (Vo)™ 2% ~1—"y(z)+2ef(y)

o

o(x.y) = ooly) +do(z)o(y). ooly) =~ —Aef(y

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0~ (0,u(x))(0,A0(y)) + (Ou00())(0rmo0(y))

M

Weakly warped limit. € :é 0 Dilaton and volume modulus
combine into a single degree of freedom u(z) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of reedom ulxr) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

Aoly) = ef(y), eox (Vol)™", e24lzd

o

o(x.y) = ogly) +dol(z)o(y). oply) =~ —

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0,A0(y)) + (0,00(x))(0n0(y))

Weakly warped limit. € 75 0 Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vo)™ =¥ » 1——u(x)+2f(y)

olx.y) = ogly) +do(z)o(y). ooly) =~ —Nef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (O,u(x))(0,As(y)) + (0u00(T))(Or0(y))

Weakly warped limit. € 35 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = Jdolx)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eox (Vo)™ %Y ~ 1—"u(x)+2ef(y)

olx.y) = ogly) +oolr)oly). ooly) =~ —Xefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0nAo(y)) + (0,00(x))(0ne(y))

L

Weakly warped limit: € 7& O Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # o0olrx

Unwarped limit is singular limit— not smooihly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vol)™, =¥ 1——u(x)+2ef(y)

-

olxr.y) = ooly) +o0olr)oly). ooly) = —Xef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (O,u(x))(0,A0(y)) + (0,00())(Frmo0(y))

Weakly warped limit. € 75 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:
Ao(y) = €f(y). € (Vol)™". e~
O(z.y) = ogly) ~do(z)o(y). ooly) ~

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0,A0(y)) + (0u00())(Oro0(y))

Weakly warped limit. € 7& 0 Dilaton and volume modulus
combine into a single degree of freedom u(z) = dol x)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eox (Vol)™, =¥ » 1——u(x)+2ef(y)

Oz, y) = ooly) ~do(z)o(y). ooly) ~ —\ef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (O,u(x))(0rAo(y)) + (0u00())(Omo0(Y))

Weakly warped limit. € # 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

; 5 A - N oy ) — 1 ) ) "
Ao(y) =€f(y), e (Vo) ™, 4% m 1——u(x)+2¢f(y)

olx.y) = oply) +o0olxr)oly). ogly) =~ —Xefly

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0rAoy)) + (8,00(x))(O0ndo(y))

~

Weakly warped limit: € :t 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

o _ T S 1 |
Ao(y) = €f(y), eoc(Vol)™". e &~ 1——u(r)+2f(y)

o

olxr,y) = ooly) +o0olx)oly). ooly) = —Xefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum — Tym =0 ~ (Ouu(x))(0rAo(y)) + (Ouo0(x))(0rn00(y))

Weakly warped limit: € TL 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = Jdol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # oolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:
Ao(y) = ef(y). €oc (Vo)™
o(z.y) = ogly) ~ dolz)o(y).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0 ~ (Ouu(x))(0nAe(y)) + (0u00(x))(Omo0o(Y))

Weakly warped limit. € # O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # oolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

_ _ Ca e 1
Agly) = €f(y), eoc(Vol)™". e~ ~ 1——u(r)+2¢ef(y)

o

o(x.y) = oply) + dol(x)oly). y) ~ —Xef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

e -
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Weakly warped limit. € 7: 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dol r)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limiil



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Aoly) = ef(y), eoc (Vo)™ e*%¥ =~ 1——u(x)+2¢ef(y)

-

olx.y) = ooly) +do(x)o(y). oply) =~ —A\

Can we freat dilaton u(x) and volume modulus 5¢(x) as separate
degrees of freedom in weakly warped limit?

G,.—1,, =0~ (0,ulx))(0,,A9(y)) + (0,00(x))(0,,00(1))
urm Lm i m J 9 ¥ 2 U g

-

Weakly warped limit: € % O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) limit of background:

Ao(y) = ef(y), eox (Vol)™. *&¥ ~ 1 —"u(z)+2¢ef(y)

o(x.y) = ogly) +do(xr)o(y). ooly) =~ —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gumn— Tym =0 ~ (0,u(x))(Ondo(y)) + (0,00())(Ome0o(y))

Weakly warped limit. € 74- 0 Dilaton and volume modulus
combine into a single degree of freedom ul(xr) = dol r)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # oolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vo)™ =¥ 1——u(x)+2ef(y)

o(z.y) = oo(y) +do(z)o(y). ooly) =~ —Aef(y

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0rAo(y)) + (0,00(x))(0no(y))

Weakly warped limit. € 3& 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eox (Vol)™, =¥ 1——ul(z)+2€f(y)

olx.y) = ogly) +oolxr)oly). ooly) =~ —Aefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(OnAdoy)) + (Ou00(x))(0rn0(y))

-

Weakly warped limit: € 7 O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vol)™. *&¥) ~1—"yu(z)+2¢ef(y)

1-

olx.y) = oply) +oolxr)oly). ogly) =~ —Xefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Lym =0~ (O,u(x))(0,A0(y)) + (0u00())(0ro0(y))

~

Weakly warped limit: € gé O Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit
Take weakly warped (large volume) mit of background:

Aoly) =€f(y), €ox(Vol)™

o(x.y) = oply) +dolx)o(y).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

0,u(x))(0,Ao(y)) + (0,00(x))(

Weakly warped limit: € 75 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dol r)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

Ao(y) = €f(y), eox (Vo)™ *&¥ ~ 1 —"u(z)+2¢ef(y)

olx.y) = oply) +oolxr)oly). ooly) = —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(OnAo(y)) + (0,00(x))(On0e(y))

Weakly warped limit. € 7& 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dol r)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulx) # o0olrx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vo)™ e>4=¥) 1 ——u(x)+2f(y)

o(x.y) = oply) +do(z)o(y). ooly) = —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0nAo(y)) + (0,00(x))(0no(y))

-

Weakly warped limit. € 7& 0 Dilaton and volume modulus
combine into a single degree of freedom u(z) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:
Aoly) = €efly), eox (Vol)™"
olx.y) = oply) + dolx ol y).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0 ~ (O4u(x))(OnAo(y)) + (0,00(x))(Orndo(y))

Weakly warped limit: € ;,_ 0 Dilaton and volume modulus
combine into a single degree of freedom ul(x) = dol r)
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Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ag(y) = €f(y), eox (Vol)™

o

o(x.y) = ogly) +do(z)o(y). oo(y)

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0~ (Oyu(x))(Ondoe(y)) + (0y00(x))(Onde(y))

Weakly warped limit: € 7«: O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = Jdolx)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of reedom ulxr) # o0olr

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

*_L:F':.y..:' = Ef{ y' c oK {..\'OI:'_??. E;__Lir‘y ~ |l——ulx —szfi y|

olx.y) = ogly) + dolx)o(y).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

LE

Gum— TLym =0~ (Ouu(x))(0nAo(y)) + (0,00(x))(0n0(y))

Weakly warped limit: € # O Dilaton and volume modulus
combine into a single degree of freedom u(x) = Jdol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit
Take weakly warped (large volume) imit of background:

Aoly) = €fl(y). € o (Vo)™

o

olxr.y) = oply) +do(x)o(y). ogly)

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

G;u?‘?‘? _ Tﬂ“ =0 ~ C)u u(x))! {—93‘?" _‘L’j (y)) -+ | au 00(x) ) ('),T Qg yl I

M

Weakly warped limit. € % 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limiil



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

ij y' — Ef " y-,:' :

o(x.y) = oply) +do(x)o(y).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0nAo(y)) + (O,00(x))(0no(y))

Weakly warped limit. € 3: 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = Jdolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of reedom ulr # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

Ao(y) = €f(y). €oc(Vol)™.

1-

o(xr.y) = ooly) +dol(x)o(y).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0nAo(y)) + (0,00(x))(0n0e(y))

Weakly warped limit: € % O Dilaton and volume modulus
combine into a single degree of freedom u(x) = Jol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y). eox (Vo)™ e*=¥) » 1——u(x)+2f(y)

olx.y) = ogly) +oo(x ol y). ooly) =~ —j\Eff_y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?
~ (Oyu(x))(OnAo(y)) + (8, 00(x))(0no0(Yy))

Weakly warped limit. € 75 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr| # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eoc (Vo) ™, ¥ ~ 1—Zu(z)+2¢f(y)

o(z.y) = oo(y) +do(z)o(y). ooly) = —Xefly

Can we ftreat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0 ~ (0,u(x))(OnAo(y)) + (0, 00(T))(Omoo(y))

Weakly warped limit. € 75 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

2A(z.y

Aoly) = €f(y). eoc(Vol)™". e ~ 1——u(x)+2¢f(y)

1)} 4 7 y — Qg y';e —oolr o Y. c:f;.i'y'} = —,iefiy

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0nAo(y)) + (8,00(x))(0n00(y))

-

Weakly warped limit: € 7£ 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) limit of background:

Ao(y) = ef(y). eox (Vo)™ *&¥) ~ 1 —Zu(z)+2ef(y)

-

o(xr.y) = ooly) +dol(x)o(y). ooly) = —Aefly

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0~ (Ouu(x))(0,A0(y)) + (0u00(x))(Omoo(y))

Ll

Weakly warped limit. € 72 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

Ao(y) = ef(y), eoc (Vo)™ *®¥ ~1—"yu(z)+2ef(y)

e --

olxr.y) = ooly) +oolr)oly). ooly) = —Xefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0nAoly)) + (9,00(x))(0n0(y))

M

Weakly warped limit. € :t 0 Dilaton and volume modulus
combine into a single degree of freedom u(zx) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

Ao(y) = ef(y)., eoc (Vol)™, *&¥) ~1—"u(z)+2¢ef(y)

o

olx.y) = oply) +oolx)oly). ooly) =~ —Xefly

Can we ftreat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

M

Gum— Lym =0~ (O,u(x))(0,A0(y)) + (0u00(x))(Ormo0(y))

Weakly warped limit. € 7& 0 Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # dolx

Unwarped limit is singuiar limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

1 _
~ 1——u(x)+2f(y)

/\{:f Yy

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0 ~ (O,u(x))(0,A0(y)) + (Ou00(T))(0rr0(Y))

o8

Weakly warped limit: € 7: O Dilaton and volume modulus
combine into a single degree of freedom u(xr) = Jdolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eoc (Vo) ™, ¥ ~ 1—Zu(z)+2¢f(y)

olx.y) = ooly) +dolx)oly).

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0,A0(y)) + (0u00(x))(0r0(y))

Weakly warped limit. € % 0 Dilaton and volume modulus
combine into a single degree of freedom u(z) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eox (Vo) ™. e24%¥) ~1—Zy(z)+2¢ef(y)

-

olx.y) = oply) +d0ol(x)oly). ooly) =~ —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

e T ~ (Oyulx))(0,A5(y)) + (O00(x))(8,00(Yy))

Weakly warped limit: € 7 O Dilaton and volume modulus
combine into a single degree of freedom u(x) = Jdolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eoc (Vo)™ *&¥ ~1—"u(z)+2ef(y)

-

olr.y) = ooly) +oolr)oly). ooly) = —Xefly

Can we ftreat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0~ (O,u(x))(0,A0(y)) + (0u00(x))(Fr0(y))

Weakly warped limit. € 7: 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Agly) = €f(y), €oc(Vol)™". 247 1 — “u(a +2€ef(y)

o

o(x.y) = oply) + do(x)o(y). &~ —Xef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0nAo(y)) + (0,00(x))(0ro0(Y))

M7

Weakly warped limit. € + ~ 0 Dilaton and volume modulus
combine into a single dearee of freedom u(x) = dol(x)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # oolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Al:,.;j_y”;l = €f| yj‘ e oc (Vo) ™. AT 1l——ulx —E(—:f[_y'_:

o -

olx.y) =oply) +oolr)oly). ooly) =~ —Xefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0~ (O,u(x))(0,Ae(y)) + (0u00(x))(Frm0(y))

~

Weakly warped limit. € 7& 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eoc (Vo)™ ¥ ~ 1——u(z)+2¢f(y)

e

Can we freat dilaton u(x) and volume modulus 5¢(x) as separate
degrees of freedom in weakly warped limit?

—%

Gum—Lym =0~ (O,u(x))(0,A0(y)) + (Ou00(x))(Or0(y))

M

Weakly warped limit: € 7 O Dilaton and volume modulus
combine into a single degree of freedom u(x) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eoc (Vo)™ e24=¥) 1——u(x)+2¢f(y)

olxr.y) =ooly) +o0olr)oly). ooly) = —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

— Ly = 0 ~ (Oyu(x))(0,A0(y)) + (Ou00(x))(0,00(Y))

Weakly warped limit. € 3: 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) hmit of background:

Agly) = €f(y), eoc(Vol)™. 2 MEY) oy 1 — iz +2ef(y)

o -

olxr.y) = oply) +0o(x)oly). ogly) =~ —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0~ (Ouu(x))(0nAo(y)) + (0u00(T))(0no0o(Y))

Weakly warped limit. € # 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = do(r)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

2A(x.y

Ao(y) = €f(y). eox (Vol)™. e ~ 1——u(x)+2¢f(y)

e

o(z,y) = ooly) +do(z)o(y). ooly) = —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Tym =0 ~ (Ouu(x))(0,A0(y)) + (0,00())(0r00(y))

Weakly warped limit. € 7& O Dilaton and volume modulus
combine into a single degree of freedom u(x) = ool x)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of reedom ulxr) # Jolr

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) limit of background:

Ao(y) = ef(y), eoc (Vo)™ e*A=¥) 1——u(x)+2ef(y)

o

olx.y) = ooly) +do(x)o(y). ooly) = —Aefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

G,. —1,, =0~ (Q,u(x))0,,Ae(y)) + (0,00(x))(O,.00(1)))
um m (7 m <10 7. 1 0

Ll

Weakly warped limit. € % 0 Dilaton and volume modulus
combine into a single degree of freedom u(r) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eox (Vol)™, e*4&¥ ~1—"u(z)+2¢ef(y)

olx.y) = ooly) +oolx)oly). ooly) = —Nefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0nAo(y)) + (0u00(T))(0rmoo(y))

Weakly warped limit: € % 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = Jdol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

Ao(y) = €f(y), eox (Vo) ™, e*4&¥) ~1—"u(z)+2¢ef(y)

olx.y) = ogly) +oolxr)o(y). ooly) = —Nefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

G — L ~ (Ouu(x))(0nAo(y)) + (0u00())(Omo0o(Y))

LLTTE

Weakly warped limit. € 75 0 Dilaton and volume modulus
combine into a single degree of freedom u(x) = Jolx)

Unwarped limit: € = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # 0ol r

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

- : _om TN 1 .
L—Lj{_y] - Efy| coc {Vol) ™. 2alz.y o ]l ——la —zt’:’f{_y]

olxr.y) = ooly) +0olx)oly). ooly) = —Xefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (O,u(x))(0,A0(y)) + (0u00(x))(Ormo(Y))

Weakly warped limit: € 7 O Dilaton and volume modulus
combine into a single dearee of freedom u(x) = do(x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eox (Vo)™ e2A=¥) 1 ——u(x)+2f(y)

o

o\ I, y' — Qo y' - .jCJ' Ir)o\y). ODI': y| S —/iEf."y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (Ouu(x))(0nAo(y)) + (0u00())(0ro0(y))

Weakly warped limit. € 35 0 Dilaton and volume modulus
combine into a single degree of freedom u(r) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = €f(y), eoc(Vol)™". e ~ 1——u(r)+2f(y)

-

olxr.y) = ogly) +oo(x)o(y). )~ —Xef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—TLym =0~ (Ouu(x))(0rAo(y)) + (8,00(x))(0n0(y))

Weakly warped limit. € 7& O Dilaton and volume modulus
combine into a single degree of freedom u(x) = dol x)

Unwarped limit: € = 0 Dilaton and volume moduius decouple,
become separate degrees of freedom u(r) # dolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Anly) =€f(y); eoc Vo)™, 2 TY) o 1 ——u(x)+2f(y)

o(x.y) = ooly) + dolx ely. ooly) ~ —\Ef Yy

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (O,u(x))(0,A0(y)) + (0u00(x))(0r0(Y))

Weakly warped limit. € i O Dilaton and volume modulus
combine into a single degree of freedom u(x) = do(x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulx) # Jdolx

Unwarped limit is singular limit— not smooihly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

! % ; _ - Y [ E——— 1 : )
Ao(y) = €f(y), eox (Vo)™ e ¥ ~ 1—_u(x)+2¢f(y)

o

o(x.y) = ooly) +dolxr)o(y). ooly) =~ —Aef(y

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

G,.—1,.,=0~ (0,ulx))(,Ag(y))+ (0,00(x))(O,,00(¥))
LETT LLTTE ,.’J v y Li I 9 y

Weakly warped limit: € 75 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) mit of background:

Ao(y) =€f(y). eox (Vo). ¥ ~1——u(x)+2¢f(y)

o

o(x.y) = ooly) +dolx)oly). ooly) = —Aefly

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (O,u(x))(0,A0(y)) + (0u00(x))(0rmo0(y))

M

Weakly warped limit. € 74— 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dol )

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolr

Unwarped limit is singular limit— not smoothly connected to weakly warped limitl



Weakly Warped Limit

Take weakly warped (large volume) imit of background:

Ao(y) = ef(y), eox (Vo)™ *&¥ ~1—"u(z)+2ef(y)

O\ I, y — Og y'} 1L dolr)ol y). C’D"‘.y.'! = —?\Efy

Can we treat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum— Lym =0~ (O,u(x))(0,A0(y)) + (0u00(x))(Fr0(Y))

s

Weakly warped limit. € 7: 0 Dilaton and volume modulus
combine into a single degree of freedom u(zr) = dol x)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jdolx

Unwarped limit is singular limit— not smoothly connected to weakly warped limit!



Weakly Warped Limit

Take weakly warped (large volume) limit of background:
ij{_.y.:' — Efi' y| Pl & ['\'OIJ—-*?- E. Alr.y

o(x.y) = ooly) +do(x)oly).

Can we freat dilaton u(x) and volume modulus 3¢(x) as separate
degrees of freedom in weakly warped limit?

Gum—Tym =0~ (Ouu(x))(0nAoy)) + (9,00(x))(0no(y))

L

Weakly warped limit: € 35 0 Dilaton and volume modulus
combine into a single degree of freedom u(xr) = dolx)

Unwarped limit: ¢ = 0 Dilaton and volume modulus decouple,
become separate degrees of freedom ulxr) # Jolx

Unwarped limit is singular limit — not smoothly connected to weakly warped limit!
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e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) - ~
Fy =F;7 4+ dblz) N\ we(y)

=)

F} = Fg +d (if . FBD) i 1_—-30

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi:;r ) — Z;;D—J‘Zi &}, Z_ —4 Zi‘o_dzi"r-j_“ff[‘r' -

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.

. 11020137




Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

F3=F," +db(z) A wsly)

b3 — F3+d (5 ' Fao) B Fao

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(g) = ' 67 (z), B =2 87 (2)LE(z) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

Py = F.;D:' +db(x) N\ woly)

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

L (x)=4" y+0Z (). Z' — 2| o+04" (x)+E& (x

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomaorphisms

Fs=F)" +db(z) /A ws(y)

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

B (z) =2, AL (z); B — 2 07, (5) 1) =2 ;

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) \ \
Iy =F;7 4+ dblz) N\ wo(y)

=J

b3 —P3+d (§ : Ff) — éUf‘

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z (@) = T, A7, (2), Z° = Z% A0 Z, (2)1E () =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

Iy = F +db(x) N Wﬁly.']
Fg—fﬂa-—d(ﬁ-& ) — F°

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(a) = Z\ g +0Z.(2), Zi — Z\y+0Z}(2)+Ei(z) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.o f.

. 11020137




Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

I{]} 3 ; ] &
, .+ db(x) N\ wa(y)

F3 =F.

5

F3 — ]—_;3 == d (é- ) F}ij) 5 ]__,30

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z\ (x) = Z| y+0Z' (x), Z% — Z| y+0Z] (x)+E (x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

O 1 db(x) A wely)

F3 =F.

%

FB i Fg +d (é’ . FEO) i F3O

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

72 (0) = 2 g +82" (z), Z° — Z'\ y+-62 (2)+E ()

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) : ;-
Iy =F,7 4+ db(z) N\ wo(y)

=

F3 — F34+d (5 ' F}o) — % Fao

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z'(x) = Z* g+-0Z" (x), Z° — Z° 07 (2)+E(x) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) % .
Fs =F,7 4+ db(x) N\ wsaly)

=)

Z_—é - }—;3 ——d (E - FBO) i Z_—-;]

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7\ (2) = Z, 467 (z), Z' =2 62 (2)+E(x) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomarphisms

Iy = F + db(x) N\ woly)
F3 —-*F:y—d(fﬂfgo) _"'F:JO

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

L) =2 8% (5), T =2 187, (2L

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) - ;
Fs=F," +dblx)/ Woly)

=

F,—F+d(¢-F") = F”

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi:ﬁ T) = ZL‘D_C}Z:I'}. Z_ — Zi‘o_dzi'*r :'1_5;[-‘?' -

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

O 1 db x) N\ wa(y)

F3 =F.

23

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (z) = Z* 467 (z), Z° — Z' y+67 (2)+E(z) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomaorphisms

Py = l‘— "+ db(x) N w’rlykl
Fa**ﬂa;d(g';go) _"'F

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(x) =72 467 (z), 7' — 7' \+6 7 (z)+E () =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) 5 .
Eg — 57 = dbla) / Woly)

=)

F3 — F3+d (E : F_rao) — Fao

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (x) = 7% 107" (2), ' — 7' 107 (2)+-E(z) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) \ ~
Fy = Fy7 4+ db(z) N\ woly)

=)

Fy3 — F3+d (E, ' Fgo) —7 Féo}

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

e = T A8% (7)., & =5 187 (2)1E(e) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metricd.o.f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

;D? + db(z) /

F3 =F.

3

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(z) =7, g +62Z (z), Z) — Z' o+67 (z)+E ()

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) - \
F} — F, 7 + db| x)/\ wWoly)

=}

F} =% FB L. o (6 . ]_—:?;0'3) 5 I_—-ED

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z:_{I' = Z_D_JZ}_ g Z?_ — Z_O_dZ_I"—EII

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o.f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

(0) N
,  + db ) /\ Wy

F3 =F.

3

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (2) = Z 102, (5), 22 — T 467, (2)1-E6(x) = 2,

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

b3 = FY + db(z) A wa(y)

3

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(z) = 7. (+6Z (z), 7 — Zi g+ 7 (z)+E ()

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

Fz=F" + db(z) A wa(y)

5!

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7\ (2) = Z' g +6Z(2), Z1 — Z g+0Z} (z)+E (a)

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

0) - :
-+ db(x) A wa(y)

F3 =F.

5

Fg g = & FBO) 5 ]_—-3501-

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z'(x)=2" y+0Z | (x), Z| = Z' y+0Z' (x)+E (x) =

Thus, brane coordinates are not good gauge-invariant d.of.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume moduius into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

Fy = F:;D} + db(z) N\ wa(y) _
B—Frd(sF) =R

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z(E) = 2 187 (2), &' =2 A8Z, (2)1-E ) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume moduius into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

O 1 db(x) A wol Y)

F3 = F.

5

By — B (5 _ F?;O:) . F_._'%D':'

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):
7' (z) = 2% 02" (1), 2 — Z° 07, (2)4-E(x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

(0) \ :
» .+ db(z) N\ waly)

F3 =F.

5

F3 — F3+d (5 ' Fgu) —# Fag

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(x) = Z\ g+6Z1(2), ZL — Z\ +0Z\(x)+E(x) = Z1

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

O 1 db(z) A waly)

F3 =F.

3

F—F+d(¢-F)—F’

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z\(z) = Z g+0Z} (z), Z — Z] g+0 7, (z)+E(z) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

{9 4 dby x) N\ wa(y)

F3 =F.

5!

F3 — F3+d (E F_.;J;') i FEO

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (x) = Z* 462" (z), 2% — 2 +67 (2)+E(z) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

) 1 dby x) N\ wo(y)

F3 =F.

5!

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(z) = Z' y+6Zi(z), Z2 — Zi g+67 (2)+E(a)

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.

. 11020137




Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

db(x) N wa(y)

F} _ F_J,D m

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(0) =T (02 (z), 28 — Z' +o0Z (2)+E(x) =2

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

9D L db(z) A wWo(y)

F3 =F.

5!

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z' (z) = Z} o022} (z), Z| — Z} o623 (2)+E(x) = 27 4

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) - \
Fs=F, +db(z) A ws(y)

=)

F3 — F3+d (E, ' F30> — FJO

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7 (z) = Z g+6Z (z), Zt — Z' +6Z (2)+E(a)

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o.f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

Fy = FO + db(z) Aunly)
F,—F+d(¢-F") = F’

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zie) =0 8% (5), B =2 870/ ) =2 4

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) ; \
Fs = F,7 4+ dblz) N\ wely)

=)

FB S Fg 4 o (E . FEO) g Fﬂ{]

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (z) = Z y+0Z' (3), Z' — Z' y+0Z' (z)+E (x

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

;D} + db(x) N wo(y)

F3 =F.

3

Py — Fs+4d (5 : E}-O:-) . F_._:%Of'

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z(2) =2 g+ 62" (2), ' =72 67 (2)1+E(x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

F3 = F '+ db(x) N wa(y) |
F3 — F5+d (5 : Fgo) — F:g:aoj'

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

L (@) =21 +04 (x), 4 — 4 o+0Z (z)+E (x) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions traﬂsform under diffeomarphisms

gy = F '+ db(z) A wa(y)
F3 —-"Fzy—d(g'}}a) — £

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z(z) = 2, g L8675 (2), B — 2 07 (2)+

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

:::D;I — db I.__:' /\ Wo yl

F3 =F.

5!

F3 = F3 +d (5 . Fg,o) Bk Fao

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zh(x) = 2 o402 (2), Z' — Z° 67, (2)+E(x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) N Pt
F3=F," +db(x) N\ wa(y)

=)

F3 — F3+d (E ' Fgo) — Fao

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z\(x) =72 g+0Z (x), 4 — Z| yH0Z (2)+E (z) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

Y L db(z) A wol n

F3 =F.

3

FB == F‘S o d (g . I_—:?-)i_]}) s }__30

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (x) = Z* g+0Z'(z), Z' — Z' y+0Z (z)+E(x) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

O 1+ db(z) A waly)

F3 =F.

=5

F3 — F3+d (E : Fgo) — F:zao.}

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7 () = Z' 462" (z), Z° — Z° A67 (2)+-E(z) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

(0) 3 |
. +db(x) N\ wely)

F3 =F.

5

F3 — F3+d (5 ' an) — % Fao

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z (2) = 2 88 (z), £ =2 87 (5) (e

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) : \
Fs = F,7 4+ db(z) N\ wse(y)

=

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7} (0) = Z° g4+-0Z% (x), Z° — Z' y+07 (z)+E(z) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.of.

. 11020137




Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) \ \
Fs=F,7 +db(x) N\ wa(y)

=)

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7 (2) = Z g+0Z (1), Z — Z} +0Z) (2)+E(z) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.o.f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomarphisms

Fy = FY - dble) Aanly)

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi:;r ) — ZL‘O_JZi-I‘;_ Z_ _ Z;o—szi'I_ﬁ?—-..f‘f:j__tr- _ Zi‘o

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume moduius into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) N \
F3 = F37 +db(x) N\ wa(y)

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z\(x)=2" g+0Z(z), £ = Z| +H0Z5 (2)+E(x) = 27

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) | \
_F_g — Fy '+ db(zx) N Wally)

=)

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z\ (¢) = Z g +0Z1 (%), Z1 — Z\ g+0Z) (2)+E () =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

Fy = -F_};D} + db(x) N woly)

IjB =% Fg +d (g : FBO) 5 FaO

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(x) = Z8 g+0Zi (2), Z — Z% g +07. (2)+E (@

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

F3=Fy" +db(z) A waly)

by =2y 8 (g FBU) 5 F;j

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (0) = 2 g +0Z (x), Z' = Z' 407 (x)+E(x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

0 1 db(z) A wa(y)

F3 =F.

25

F,—F+d(¢-F") = F’

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7% (z) = 2% y+-02 (z), £ — 2" 02 (0)+-E(x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions traﬂsform under diffeomorphisms

F_?} _F _db' I’I "lly.:l
F3 —-*Fzy—d(g'}}o') _"'F

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zie) =2 182 {5), B =2 88 (2 LE(e) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) : \
Fs = Fy 7 4+ db(x) N\ wol y)

-}

B Bt d (g | Fg-o;-) L FO

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(x) =2 g+04 (x), 4| = £ ¢+0Z4 (2)+E (x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) \ -
Fys =F,"7 4+ db(z) N\ wo(y)

=

F3 — F3+d (5 : Fgo) =2 F}.O

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) : 1
F3=F," +db(x) N wa(y)

=}

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7 (2) = &L, 102 (&), & = L, o162 (5)1-E ) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) % 5 \
Fys =F;7 4+ db(z) N\ wely)

=}

Fs — F3+d (E - F}o) — F;

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (z) = Z y+0Z (z), Z' — Z' ¢+0Z (2)+E(z) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) | \
F3=F;" +db(x) N\ wa(y)

=

F3 — F3+d (5 ' Fgo) —3 F30

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):
2t (2) = 2%, 162" (z), 2% — L 87 () LE(a) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

;O} +—db(x) N\ wa(y)

F3 =F.

=

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane paositions):

7' (x) = Z y+07Z (x), Z° — Z' y+0 7 (z)+E () =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) : \
F3 = Fy; 7 4+ db(x) N\ Woly)

=3

FB S Fg 1+ d (é: . FBO) A F30

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

i (a) = B BT (5, B B A5 ()i

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) " .
Py =F;7 4+ db(z) N\ wely)

)

F—F+d(s-FY)—F’

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z' (x) = 7| g +0Z\ (2), Z\| = Z| o+0Z  (2)+E(a) =

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomaorphisms

F3 = F '+ db(z) A wa(y)
53—-*1;3'—63(5'530) —*F

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z' (z) = 2} 02 (z), Z| — Z} 4+6 2% (x)+E (z) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) \ \
F3=F; +db(x) N\ wa(y)

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (x) = 2% 107" (x), Z° — Z' 407, (2)+E(z) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) \ \
Fs = F;7 + dbl x)/\ Woly)

=)

Py —+ by 4-d (5 : F3O> — 4 F?}D

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z\ (x) = Z\ g +0Z (2), Z| — Z| o+0Z) (2)+E (x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) : \
Fs = F,7 4+ db{x) N\ wo(y)

=)

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(x) =2 y+04  (x), £ — £ g+04" (x)+E (x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomarphisms

by = F + db! Z) . -w’rlyx"
Fi—F+d(eFY) —F

Thus, axions are not gauge-invariant d.of.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z'(x) = 2 g +62% (), £ — 2 +-02 (2)+E(x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

F3 = F‘-;U} + db(x) N woly)

< )

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z(2) =2 y+0Z" (), Z' — 2 y+6 7, (2)+E(x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

O L db(z) A wa(y)

F3 =F.

3

F3 — F3+d (E ' Fgo) = Fao

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(x)=2" y+0Z\(x), £ = Z| y+0 7 (x)+E (x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

9 1 db(z) A wo(y)

F3 =F.

5!

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

L (x)=2 y+0Z (x), £\ = Z| o +024 (z)+E(x

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) N :
F3=F," +db(x) N wa(y)

=)

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(x) =2 0% (z), £ = £ 074 (2)+E (x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

O L db(z) A wWa(y)

F3 =F.

3

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z:_i_tr;' = Z:_‘D_L;’-Z:_ I ). Zi " Z:_‘O_‘jzi'f j-f[; -

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) : \
Iy =F,7 4+ db(z) N\ wo(y)

=

F— Fyvd (g FO) — F

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):
7' () = Z g +-0Z" (), Z° — 2 467, (2)+E(x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

Fz = F\” + db(z) A wa(y)

=

P — B d (E , Fg-u:-) . F_éoﬁ'

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with apen string degrees of freedom (D-brane positions):

2 () = T 85 g), B =25 87 (2)LE )

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

ts = FY + db(z) A wWoly)

5

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zii_I ) — Z;‘D_{jZi r). Z_ — Z;O—fj?Zi'I +E(z) = 25

Thus, brane coordinates are not good gauge-invariant d.of.
Must combine with metric d.of.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

by = F\Y & db x) N\ wa(y)

5!

Fg & F3 +d (5 : Fgo) K Fz,o

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi:j_tr j = Z;D—GTZ:I'J- Zf_ — Zi‘o—dZi-Ij—{;'f:fI

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

(0) : \
»  +dblx) N\ wo(y)

F3 =F.

%

R-Frd(eBY) =R

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7 (0) = Z% o +0Z: (2), 2% — Z} 407 (2)1-E(x)

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

9 4 db(z) A ws y)

F3 = F.

3

FB — 1‘_;3 +d (g - FBD) i Fg,D

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi;j ) = ZL‘D_‘jZi'It" Zi —> ZL‘O—JZi'I }—5;_3.[}1' = Zi_@

Thus, brane coordinates are not good gauge-invariant d.of.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

9 o dby x) N\ wa(y)

F3 =F.

5

F;—F+d(¢-F") = F’

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

L (x) =24 g+0Z (x), £ — Z] g+0 4 (x)+E (x) =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

F3=F," +db(z) A wsly)

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(x) = Z' g+0Z} (x), Z% — Z| o+0Z) (x)+E(x) = Z1

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms
(0) : %
F3 = F; 7 +db(x) N\ wol y)

=

F3 — F3+d (E : F30> 5 FBD

Thus, axions are not gauge-invariant d.o f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

7' (z) = 2% y+-02" (z), Z', = Z* +02 (0)+E () =

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

9+ db(z) / wa(y)

F3 =F.

5

Fs — F5+d (E _ F30) i F;J

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Z2lE) = £, o 07" (3), & —= 25 o074 (5)L-E(5) =
iy 1.0 i i i 1.0 b i -

Thus, brane coordinates are not good gauge-invariant d.o f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
axions transform under diffeomorphisms

(0) | ~
,  +db(x) N\ we(y)

F3 =F.

5!

Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):

Zi(0) = Z. g+6Z (z), Z) — Z} +62 (z)+E(a

Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Other Examples

The combination of the dilaton and the volume modulus into the warped
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Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metricd.o f.

. 11020137




Other Examples
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Thus, brane coordinates are not good gauge-invariant d.o.f.
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Other Examples

The combination of the dilaton and the volume moduius into the warped
breathing mode is just one example of a larger class of such combinations:

e.g. when background fluxes are turned on:
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(0) 5 \
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Thus, axions are not gauge-invariant d.o.f.
True gauge-invariant d.o.f. include metric fluctuations

Similarly with open string degrees of freedom (D-brane positions):
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Thus, brane coordinates are not good gauge-invariant d.o.f.
Must combine with metric d.o f.
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Dynamics in extra dimensions

Outline

« Cosmological applications




Cosmology with Extra Dimensions

Flat (unwarped) compacitification, negatively curved internal space
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Cosmology with Extra Dimensions

Flat (unwarped) compacitification, negatively curved internal space
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Cosmology with Extra Dimensions

“Nice” cosmology with extra dimensions:
2 2A(y) 7 Oy % o8 = —2Ay)~  f.\.7.7 . T
ds —e¢c (—dt” + a(t) dx ) +e Imnly)dy “dy

But ansatz required by warped perturbation theory is more intricate:




Cosmology with

“Nice” cosmology with extra dimensions:
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But ansatz required by warped perturbation theory is more intricate:
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Cosmology with Extra Dimensions

“Nice” cosmology with extra dimensions:
dsZ — 24\9) 4 at"ﬂjdfl) 1 e 240G (y)dy™dy”
But ansatz required by warped perturbation theory is more intricate:
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L ocalized worldvolumes (branes) at different points in exira
dimensional manifold can experience different cosmologies?
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Describing Extra Dimensions
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Are there features missed by
the 4d EFT?
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- Internal Diffeomorphisms?
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Describing Extra Dimensions
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Higher  FWX° Soy dynamics here — beyond validity
Jimensions  _ _Cag of 4d Effective Theory

Intrinsically higher dimensional

Are there features missed by
the 4d EFT?

- Internal Diffeomorphisms?




Describing Extra Dimensions

/ More generally, want to study
Higher : dynamics here — beyond validity
Jimensions  _ "Cag of 4d Effective Theory

Intrinsically higher dimensional

Are there features missed by
the 4d EFT?

€ T B

- Internal Diffeomaorphisms?

» Studying perturbations in warped spaces very similar to cosmological
perturbation theary

« 2 “Universal” fluctuations: dilaton & volume modulus
Combine into single fluctuation — Breathing Mode

e COSMology Is inhomogeneous In extra dims:
Different cosmologies at different points



Cosmology with Extra Dimensions

“Nice” cosmology with extra dimensions:

9

ds® = Y (—dt* + a(t)’dz”) + €Y Gn(y)dy ™ dy"

But ansatz required by warped perturbation theory is more intricate:

9

ds- — EH c.yY (_{ == E t.y)ol f:]dtj - a-{;f}idfz)

+8,K(t.y)dtdy™ + e

| ocalized worldvolumes (branes) at different points in exira
dimensional manifold can experience different cosmologies?

Teamn &
De Sitter? _




