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Abstract: We present a new formulation of guantum mechanics for closed systems like the universe using an extension of familiar probability theory
that incorporates negative probabilities. Probabilities must be positive for aternative histories that are the basis of settleable bets. However, quantum
mechanics describes alternative histories are not the basis for settleable bets as in the two-dlit experiment. These alternatives can be assigned
extended probabilities that are sometimes negative. We will compare this with the decoherent (consistent) histories formulation of quantum theory.
The prospects for using this formulation as a starting point for testable alternatives to quantum theory or further generalizations of it will be briefly
discussed.
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Generalizations of and
Alternatives to Laboratory QM
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Generalizations of and
Alternatives to Laboratory QM

® Necessary for cosmology (e.g. consistent (or
decoherent) histories quantum theory).

® Desirable for experiment.

® |tis striking that so far it has not been
possible to find a logically consistent theory
that is close to quantum mechanics other than
quantum mechanics itself.” (5. VWeinberg)
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Probabilities as Instructions for Betting
De Finetti |

Asserting that the probability of an event A is p means
that, if a2 bookie offers a payoff S if A occurs, you will

put up pS and consider it a fair bet. (S can be negative.)

All the rules of probability follow
from the requirement that it not be
possible for the bookie to pick

payoffs such that you always lose.
(A Dutch book.)

In particular probabilities have to
bepositive.
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Why Probabilities are Positive

You bet on events Aand A (not A)
with probabilities P1and P 4
and stakes S and Sj .
Your gains GG 4and (& ;are:
Ga = S5a—paSa—paSa

Gz = S3—PaSa—paSa

. Suppose py <0 .
The bookie picks Sa4 <0, Sz =0.
Ga = (1 —pa)Sa
Gi = —paSa

" Both gains are negative!
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Why Probabilities are Positive

You bet on events Aand A (not A)
with probabilities PAand P 4
and stakes S jand Sj .

You Lose

Suppose pa <0 . |
The bookie picks S4 <0, Sz = 0.
Ga = (1—pa)Sa
Gz = —pada

Pirsa:; 11020124 = = = S e 2 Page13/128

Both gains are negative!




Physical Theories as Tip-Sheets
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Physical Theories as Tip-Sheets

A physical theory provides reliable probabilities for
betting on the regularities of the universe.
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Physical Theories as Tip-Sheets

A physical theory provides reliable probabilities for
betting on the regularities of the universe.




The de Finetti derivation
of the rules of probability
assumes that all

alternatives described by
the theory are the basis
of a settleable bet.
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Quantum mechanics describes sets
of alternative histories that are not
the basis of settleable bets.




Non-Settleable Alternatives
Present a Choice

. |

I.P"Z'

Assign probabilities only to alternatives that are
settleable in principle (a decoherence condition).

Extend the notion of probability and assign
extended probabilities (not necessarily postive) to

oooooooooooooooooooo




Extended Probabilities

Extended probabilities satisfy the usual |
rules except they are not necessarily
positive or less than one for
non-settleable bets.
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Extended Probabilities

Extended probabilities satisfy the usual |
rules except they are not necessarily
positive or less than one for
non-settleable bets.

A negative probability or one bigger
than one for an alternative is an
instruction not to bet --- it can’t be
— settled. @~ =
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Wigner Distribution

_ 1 e
wiz,p) = o [ dE v*(z+2) P/ y(z -

2n

DD |y

)

® Not generally positive.

® x and p are not simultaneously measurable
and do not correspond to a settleable bet.

® Coarse graining x and/or p leads to positive
probabilities and settleable bets.
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If a physical theory for
calculating probabilities yields a
negative probability ... we need
not conclude that the theory is
incorrect. ... [A] possibility is
that the situation for which the
probability appears to be
negative is not one that can be

verified.




A Model

Universe in a
Box
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The most general objective of any quantum theory are
the (extended) probabilities for the members of sets of
coarse-grained alternative histories of the closed system.
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Theoretical
Inputs

Pirsa: 11028124

_———ann Mpe —




The most general objective of any quantum theory are
the (extended) probabilities for the members of sets of
coarse-grained alternative histories of the closed system.

irsa: 11020124 Page 30/128




The most general objective of any quantum theory are
the (extended) probabilities for the members of sets of
coarse-grained alternative histories of the closed system.

irsa: 11020124 Page 31/128




Theoretical
Inputs
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Pirsa:

Two things necessary to specify

11111111

an extended probability
quantum theory (EP)

® The description of sets of fine- and coarse-
grained alternative histories.

® The prescription for assigning extended
probabilities for each member of these sets.



Alternatives at a
Moment of Time

Yes/no alternatives at a
moment of time are
represented by exhaustive
sets of exclusive projection
operators {F,(t)} \

Pa(t)P3(t) = 6apPult) Y Pa(t)=1

P.(t) = e*Ht/R P (0)etHI/R

One-dimensional P’s are fine-grained, others are
C8dFse-grained.




Histories

® Sets of histories are specified by a sequence of sets
of alternatives at a series of times £;,f5.-- -1,

{P,(t1)} {Pa,(t2)}. - - {Pa, (tn)}

® An individual history ¢, is a particular sequence of
alternatives: @ = (1. 2. - -, ) represented
by the chain

C.=rc0)—F @)

X ny
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Fine-grained and Coarse-grained.
Co = Pr_i:,l_ (i) -~ P.ii (£1)

® Fine grained histories a have one-dimensional
P’s at each and every time (like Feynman paths)

® Coarse graining is partitioning a set of histories 1€a}
into bigger classes {Ca }

E@ — UC]:’E& Ca _Tri' == Z Ci@c

Pirsa: 11020124 o Page 36/128



Extended Probabilities

*Assumed Input: 1 | W)
eHistories: C, = P” (t,,) - *Pgll (t1)

On

p(a) = Re(¥|C, |¥)

*Not generally positive.

* Agrees with usual QM for single time histories
pla) = (V| P |¥)

*Sum rules satisfied exactly:
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Extended Probabilities

*Assumed Input: 1 | W)
eHistories: C, = P” (t,)--- P, (1)

¥ i2)

p(a) = Re(¥|C, | )

*Not generally positive.

* Agrees with usual QM for single time histories
pla) = (V| Py |¥)

*Sum rules satisfied exactly:



Extended
Probabilities for
the Two-Slit Expt. /4 Hi

A *
¥
4.

'y

E

& =
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Coarse-Graining
and Positive
Probabilities = SRS
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Coarse-Graining
and Positive
Probabilities

Appropriate coarse-
graining can make
probabilities positive.
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Coarse-Graining
and Positive
Probabilities R
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Extended Probabilities

*Assumed Input: /1 | W)
eHistories: C, = P, (I,)-- *Pi_l (t1)

¥

p(a) = Re(¥|C, | )

*Not generally positive.

* Agrees with usual QM for single time histories
pla) = (V| Py |¥)

*Sum rules satisfied exactly:



Fine-grained and Coarse-grained.
C& == an_(tn) == P.il(_fl)

® Fine grained histories a have one-dimensional
P’s at each and every time (like Feynman paths)

® Coarse graining is partitioning a set of histories 1€a}
into bigger classes {Ca } i

Ca— Ugea Cn = Z Ca
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Extended Probabilities

*Assumed Input: 1 | )
eHistories: C, = P (t,)-- -Pél (t1)

X

p(a) = Re(¥|C,|¥)

*Not generally positive.

* Agrees with usual QM for single time histories
pla) = (V| P |¥)
*Sum rules satisfied exactly:

Car Y Co P@=Yp@) Y platml

P



Extended Probabilities

*Assumed Input: /1 | W)
eHistories: C, = P (t,)-- *Pgll (t1)

Xy

pla) = Re(¥|Cqo|¥)

*Not generally positive.

* Agrees with usual QM for single time histories

p(a) = (Y|P, |¥)

*Sum rules satisfied exactly:



Extended
Probabilities for
the Two-Slit Expt. L o

i *
v
4

L

L

- D —
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Coarse-Graining
and Positive
Probabilities =
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Coarse-Graining
and Positive
Probabilities

Appropriate coarse-
graining can make
probabilities positive.

How negative p is is
a measure of how
much coarse
graining is needed.
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—n

Initial State:
1
¥) = —= (14) +1B) +1C))
Final State:
®) = —= (14) +|B) —[€)

Given that the particle is in the final
state | @ >, what is the probability that
it-was in box A, B,or C at an

- - -
----i--n“-pnuu-l-—i-n J--MA)

mamen T hree-Box Example

A single particle that can be in one of three
boxes A, B, C in states |A>, |B>, |C>. H=0.

Vi e

A B> I
4



Projections: Pa=|A)(4], Pi=1- Py lA> [B> !C>
Histories: PsP4. PsPp, PsFc.
Extended Probabilities: p(®, A) = Re(V| P P4| V)

Resul: p(A|®)=1. p(B|®)=1. p(C|®)=-1

.l‘llrd_

(14 +B)+]C)  |®) =
V' 3

(14) + |B) —463)



Three Box --- Histories /lQP\
Projections: Pa=|A)(A], Pi=1- P IA> [B> lc>

Ny

Extended Probabilities: p(®, A) = Re(V|PsP4|¥)

Histories: PsPs, FPsPg, PsFg.

Resule: p(Al®)=1. p(B|®)=1, p(C|®)=-1

= \ —— .
(14) +|B) +(C})) = — (|A) + | B) —d&)



Projections: Pa=|A)(Al. P =1— Py IA> [B> !C>
Histories: PsPi. PsPp, PsPc.
Extended Probabilities: p(®, A) = Re(V|PpP4| V)

Result: p(Al®)=1. p(B|®)=1 pC|®)=-1

(14) +1B) +|C))  |®) =—+ (|4) +|B) —63)

1
a3



Three Box --- Histories /IQ{B\

Projections: Pa=|A4)(A|, P3=1—-Pj lA> [B> !C>

Ny

Extended Probabilities: p(®. A) = Re(V|PpP4| V)

Histories: PsPs, FPsPg, PsFec.

Resul: p(A|®)=1 p(B|®)=1 p(C|®)=-1

No settleable bet is possible on whether the particle
is in box A, B, or C at the intermediate time.

bl = — (|4) +[B) +[C)) @) = —= (|4) +|B) —46%)

== ==
3 /2



Coarse Graining /®

Coarse grained question: | } \ \‘t_

Is the particle in box A or not at IA> | B> | £

the intermediate time? \ | §1P> /A-
p(Al®) =1, p(B|®)=1. p(C|®)=—1 . S

p(Al®) =1, p(A|®) =0,
p(B|®) = 1. p(B|®) =0

p(C|®) =—-1, p(C|®) =2
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Coarse Graining /®

Coarse grained question: | } \ \“..

Is the particle in box A or not at IA> | B> | co

the intermediate time? \ | é?) /A-
p(A|®) =1, p(B|®)=1. p(C|®)= -1 p, e

p(A|®) = 1. p(A|®) =

0
p(B|®) =1, p(B|®) =0,

p(C|®) =—-1, p(C|P)=2.
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Coarse Graining /®

Coarse grained question:
Is the particle in box A or not at [

the intermediate time? \
p(A|®) =1, p(B|®)=1, p(C|®)=—-1

p(Al®) = 1. p(A|®) =
p(B|®) =1, p(B|®) =

p(C|®) =—-1, p(C|®)=2.
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Coarse Graining /®

Coarse grained question:

| \,1_
Is the particle in box A or not at [A> l B> , D
the intermediate time? \l 1 /A-

N

p(Al®) =1, p(B|®) =1, p(C|®)=—-1

p(Al®) =1, p(A|®) = 0.
0

p(B|®) =1, p(B|®) =

p(C|®)

|

1 pfCle) —2

The probability to be inAis 1, the prob.to be in B is 1.

11111111111111111111111

it’s in A. then its not in B.



Coarse Graining /®

Coarse grained question:

a

Is the particle in box A or not at IA> l B> | co
the intermediate time? \

!

p(A|®) =1, p(B|®)=1. p(C|®)=—-1
p(A|®) =1, p(A|®) =

0
p(B|®) =1,  p(B|®) =0,

p(C|®) = -1, p(C|®) = 2.

The probability to be inA is 1, the prob.tobeinBis 1. |
That is not a contradiction since a bet can’t be settled on if |

RIS M) 20 1 R e e e R g el 611Y/128

it’'s in A. then its not in B. |



Records

® No bet is complete without a prescription of how to
settle it.

® A record of the outcome is one way of settling a bet.

® A set of histories is strongly recorded if there are an
exhaustive set of exclusive projections such that

Ra Cﬁ \Ij> — 5& 3 Cd ‘ \II> ‘

® Then there is a correlation between histories and their
records

-

p(a, B) = busp(B)

® |ndividual bettors may require more than just

irsa: 11020124 Page 62/128

correlation e.g. the NY Times.



Coarse Graining

Coarse grained question: / l \
Is the particle in box A or not at Il&{ | B> | o

the intermediate time?

p(A|®) =1, p(B|®)=1. p(C|®)=—1 L S
p(Al®) =1,  p(A|®) =

0
p(B|®) = 1. p(B|®) = 0,

p(C|®) =—-1, p((C|®)=2.
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Three Box --- Histories /m{»\
Projections: Pa=|A4)(A|, Py=1—- P, IA> lB> !C>

Ny

Extended Probabilities: p(®, A) = Re(V| Py P4|Y)

Histories: RPP‘.JL. P{DPB- P@P@.

Result: p(A|®)=1. p(B|®)=1, p(C|®)=-1



Three Box --- Histories /IQ{X\
Projections: Pa=|A4)(4|, Py=1I—-P, lA> [B> lC>

N’

Extended Probabilities: p(®. A) = Re(W|PpP4| V)

Histories: PsP., FPsPg, PsFc.

Resul: p(A|®)=1. p(B|®)=1. p(C|®)=-1

No settleable bet is possible on whether the particle
is in box A, B, or C at the intermediate time.

— | : _* a V)
o 1) = 5 (|14) +|B) +|C)) |®) = == (|A) +|B) —46&i3)



Coarse Graining /ﬁ>\

Coarse grained question: | ’ \ \'x,‘_

Is the particle in box A or not at IA> | B> | C>__

the intermediate time? \ | 1? /A-
p(Al®) =1, p(B|®)=1. p(C|®)=-1 \\\_2////

p(A|®) =1, p(A|®) =0,




Coarse Graining /®

Coarse grained question:

e
Is the particle in box A or not at lA) l B> | C_>_
the intermediate time? \f 1 /A-

N

p(A|®) =1, p(B|®)=1 p(C|®)=—-1
p(Al®)=1,  p(A]|®)=

0
p(B|®) =1,  p(B|®) =0,

p(C|®) =—-1, p(C|®)=2.

The Pl;:babilit)’ to be in A is 1,the Prob'to be in B is 1
I hatis nota contradiction since a ber can't be settded on if |

| it's in A. then its not in B.



Records

® No bet is complete without a prescription of how to
settle it.

® A record of the outcome is one way of settling a bet.

® A set of histories is strongly recorded if there are an
exhaustive set of exclusive projections such that

R,C3|¥®) = 6,3C35|¥)

® Then there is a correlation between histories and their
records

® |[ndividual bettors may require more than just
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Coarse Graining /®

Coarse grained question:

| \
Is the particle in box A or not at lA) | B> | £o
the intermediate time? \ /

p(A|®) =1, p(B|®) =1 p(C|®)=—1 e S
p(A|®) =1, p(A|l®) =0,
p(B|®) =1, p(B|®) = 0,

p(Cl®) =—1, p(Cl|®) =2.
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Coarse Graining /®

Coarse grained question:

dnn
Is the particle in box A or not at [A> l B> , C_>__
the intermediate time? \i 1 /A-

p(Al®) =1, p(B|®)=1, p(C|®)=—-1
p(A|®) =1, p(A|®) = 0.
p(B|®) =1, p(B|®) =0,
p(C

The probsbility to be inA is 1 theprob tobeinBis 1.

@ —1 pCl1P)—2
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it’s in A. then its not in B.



Coarse Graining /®

Coarse grained question:

= \

Is the particle in box A or not at [A>‘ | B> | C>__
the intermediate time? \ |

!

p(Al®) =1, p(B|®)=1 p(C|®)=-1
p(A|®) =1, p(A|®) =

0
p(B|®) =1, p(B|®) =0,

p(Cl®) =—-1, p(C|®)=2

The probability to be inA is 1, the prob.to be in B is 1.
That is not a contradiction since a bet can’t be settled on if |
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Coarse Graining /® |

Coarse grained question:

&= E
Is the particle in box A or not at [A> l B> | C_>__
the intermediate time? \i 1 /A-

p(Al®) =1, p(Bl|®)=1. p(Cl®)=-1

p(A|®) =1, p(A|®) =0,

11111111111111111111111

it’s in A. then its not in B.



Records

® No bet is complete without a prescription of how to
settle it.

® A record of the outcome is one way of settling a bet.

® A set of histories is strongly recorded if there are an
exhaustive set of exclusive projections such that

Ra C_x’3 ‘le) — 5& JCJ ‘ \II>

® Then there is a correlation between histories and their
records

p(a, B) = dapp(H)

® |ndividual bettors may require more than just
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Recorded Histories are the basis
for Settleable Bets
RaC3|W) = 5,5C5|W).
Summing over [J gives:

Ra‘\p> == C&‘qj>
thus,

p(a) = Re(¥|C,|¥) = (¥|R,|¥) > 0.

Extended probabilities are positive for recorded
histories and bets on them are settleable.
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Recorded Histories are Decoherent
Ra‘q}> = Cct‘llj> = |\Ija>
‘W, ) is the branch state vector for the history cv.

(Ua|¥s) = (P|RaRs|¥) = dasl|Cal¥)|I°

Recorded sets are decoherent sets (and vice versa).
Summing over [J we get:

(U|Ra|¥) = (¥|Cu|T) = ||Ca®)|?

This is the usual probability rule. Recorded
(decoherent) sets have positive probabilities

R p(a) = Re(¥|Co|¥) = [|Ca|T)|[|* mn




Recorded Histories are Decoherent

‘lpa> IS

Decoherent sets have
positive probabilities and

y .

V. bets on them can be V)

Recorded

rsa).

Summing

settled by their records.

(¥|Ra|¥) = (¥|Cal¥) = [|Ca®)||’

This is the usual probability rule. Recorded

(decoherent) sets have positive probabi

e p(ar) = Re(¥|Ca|¥) =

ities

2
zt’l‘@'> “ PPPPPPPPPP



Comparison of EP and

DH

Deccherent Histories

Extended Probabilities

; :
Probs: Assigned to decoherent Sl benallint
Exprobs sets
Probs/

Exprobs for fine No Yes

grained histories

Probability Sum
Rules

Satisfied to the accuracy
of decoherence

Satisfied exactly

Records correlated
with Recorded

Approximately

Approximately

- dettleable bets

Decoherent Sets

Recorded Sets.......us




Sum-Over-Histories N
) %

'Fine-grained histories are paths +

1(t) in configuration space. (Like #
ield histories.) <

‘Coarse-grainings are partitions 't |
f the set of fine-grained

listories into classes Cq . tl
» Translation identity: 0 T : i
-.'\l‘;fj{f._ § = _--'-f'::!?_i:fl_ﬁl W) — / (%) ‘L’Ir; £ s f\[}{f"‘h J._rla" ff-f-lj;‘-:'q“,f”

ey X ]

*SOH formula for extended probabilities
e pla) = Re(¥| / 0qexp{iS|q(t)|/h}|L) ™™=



The Fundamental Distribution
® A set of alternative fine grained histories {g(t)}.

® A fundamental distribution w[q(t)] for the extended
probabilities of the fine-grained histories.

wlq(t)] = Re | ¥*(qf.1¢) exp{fs[fl(tﬂ/h}‘i’(%hfn)} .

® Coarse-grained histories as partitions of the fine-
grained set into classes €. .

® Extended probabilities for coarse-grained histories as
sums over the ex. probabilities for fine-grained ones

= po)= [ squla®] e

of ™ .



Quantum Mechanics can be thought of|

as a classical stochastic theory '
with extended probabilities

in a preferred set of variables.

wlq(t)] = Re [‘1’ (qr.t5) exp{iS[q(t)]/A} ¥ (qo. fw)}
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The Fundamental Distribution
® A set of alternative fine grained histories {q(t)}.

® A fundamental distribution w[q(t)] for the extended
probabilities of the fine-grained histories.

wlq(t)] = Re [ﬁ!*(q‘f,tf) exp{iS[q(f)}/h}‘i’(Q{hTU)} .

® Coarse-grained histories as partitions of the fine-
grained set into classes C. .

® Extended probabilities for coarse-grained histories as
sums over the ex. probabilities for fine-grained ones

e p(a) —/ dewigtlll —— -
" cagin



Sum-Over-Histories N

'Fine-grained histories are paths + " L s
1(t) in configuration space. (Like
ield histories.) -1‘:3 3
‘Coarse-grainings are partitions 't —
f the set of fine-grained A
listories into classes Co . t, s '
0 4 =
» Translation identity: 0 % |
(B| P (t,)--- PL (t,)|¥) = / Sq(t) (g, tr) exp{iS[q(t)]/h}¥(qo. to

Epy X7

*SOH formula for extended probabilities
= p(a) = Re(¥ / 0q exp{iS|q(t)|/h}[E) ™=



Quantum Mechanics can be thought of|

as a classical stochastic theory '
with extended probabilities

in a preferred set of variables.

wlgq(t)] = Re [‘1’ (q5.ty) exp{iSq(t)]/ P} ¥ (qo. fn)}
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Quantum Mechanics can be thought of

as a classical stochastic theory '
with extended probabilities

in a preferred set of variables.

wlg(t)] = Re [‘1’ (q5.t) exp{iS[q(t)]/A}¥ (qo. fu)}

That’s hidden variables but not in conflict with
the Bell inequalities because they require
~wDOSitive probabilities in their derivation:




(Classical Statistical ' Quantum Mechanics o
2 "
Mechanies w
* - - - - - n
real fine-grained a path in phase space z(t) | a path in configuration space. g(f) jab)
me-grained historv | obeving eguation of meotion between fo and £ E
: : e
ensemble alternative alternative configuration space ct
phase space paths paths between £y and ¢ Z
3 M
betting with probabilities . with extended probabilities n:_
nstructions Q_}
e | , el
state distribution on phase space wave function (a ¥
p{zp-to) ' W(gy. to) O
fundamental wiz(t)] = - wig(t)] =
distribution J dzpd(z(t) — ze(z0)]p(z0) Re {‘I’”‘ (g5, tr) exp{iSiq(t)| /R } ¥ (g0, t”ﬂ
coarse graining partitions of the ensemble into | partitions of the ensemble into

classes ¢, (coarse-erained histories)

classes ¢, (coarse-grained histories)

probabilities for

cRirie0d X ained
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Reality
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Quantum Reality in Decoherent
Histories

® Fine grained sets are not decoherent.

® Mutually incompatible sets for which there is no
common fine graining that is also decoherent.

® One can say that one history in each set is real (or all
the histories in all sets are real).

® Restricting to SOH variables
doesn’t help.
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Quantum Reality in Decoherent
Histories

® Fine grained sets are not decoherent.

® Mutually incompatible sets for which there is no
common fine graining that is also decoherent.

® One can say that one history in each set is real (or all
the histories in all sets are real).

® Restricting to SOH variables
doesn’t help.
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Quantum Reality in Decoherent
Histories

® Fine grained sets are not decoherent.

® Mutually incompatible sets for which there is no
common fine graining that is also decoherent.

® One can say that one history in each set is real (or all
the histories in all sets are real).

® Restricting to SOH variables
doesn’t help.

In DH reality is relative to
~rhe set of alternatives.




Gibbs’ Ensemble Method

Coarse-grained regularities can be
described by conceptually embedding
the real history in an ensemble of
alternative fine-grained histories and
assigning probabilities to them so the
coarse-grained regularities have high
probability.

*Then we can use these probabilities to bet on coarse
grained regularities.

* The probabilities are a measure of our ignorance of
the.fine-grained history.



Classical Gas of N Particles

® The gas has one real fine-grained history z(t) in 6N
dimensional phase space.

® Newton’s laws imply regularities of this fine-grained
history but it is not possible to measure, store,
retrieve, or compute the information in them.

® Accessible regularities are highly coarse grained such as
those summarized by the Navier-Stokes equation (eg
the approach to equilibrium.)

® |f we knew the real history we could deduce the
coarse-grained regularities but we don’t.
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QM as an Ensemble Theory

® There is one real fine-grained history g(t).

® The fine-grained regularities (if any) are inaccessible to
measurement.

® TJo exhibit the coarse-grained regularities implied by
the real gq(t) we conceptually embed it in an ensemble
of other histories with extended probabilities

wiq(t)] = Re [q’ (qf.t5) exp{iSiq(t }/h}q’ qo- fo)}

® We can use the extended probabilities to bet on the
coarse grained regularities when the bets are
lllllll gettleable (recorded).



Pirsa: 1

Extended Probabilities as
Measures of Ignorance

Extended probabilities are measures of ignorance of
the real fine-grained history.

Usual probabilities implicitly assume that in principle
we could find out what the real history is.

QM requires a new level of ignorance to represent
the physical situation that the real fine-grained history
cannot be determined by any means.

It is also impossible to determine the real history of
the 10%° particles in the classical universe or even

wvrite down their description.



Advantages of this Reality

® [tis close to the classical idea of reality.

® |t provides a unified perspective on coarse-graining. A
unique fine-grained history is realized but is
inaccessible to discovery by experiment or
observation.

® |t allows the use of ordinary language without
qualification by the set of histories referred to. E.g. the
coarse grained history which happened is the one
containing the real fine-grained history.

® |t allows for an interpretation of extended
- wmprobabilities as measures of ignorance.



A Starting Point for
Generalization

"It is striking that so far it has not been
possible to find a logically consistent
theory that is close to quantum mechanics
other than quantum mechanics itself”

But we can investigate fundamental distributions that are
small deformations of

wlq(t)] = Re {\IJ (gs.t7) exp{iS[q(t)] /A }¥(qo. tn)]

and use them to parametrize experimental tests.
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Emergent Features of QM

States at a moment of time,
Unitary evolution,
Hilbert Space,
Linearity,

Principle of Superposition

are features emergent from the particular form of the FD
w(q(t)] = Re [li'“(qf. tr) exp{iS[q(t)] /A } ¥ (qo. t”)]

We cannot expect them in any generalization.
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Emergent Features of QM

States at a moment of time,
Unitary evolution,
Hilbert Space,
Linearity,

Principle of Superposition

are features emergent from the particular form of the FD

wiq(t)] = Re [lD (q¢.t¢) exp{iSiq(t)] /f?}‘l’(fm fuﬂ

We cannot expect them in any generalization.

But, in quantum gravity we don’t expect states evolving
through 5pacelike surfaces because there is no fixed

999999




A fundamental formulation
of quantum mechanics
should be based on:
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A fundamental formulation
of quantum mechanics
should be based on:

A set of fine-grained

histories in a preferred set
of variables,

irsa: 11020124
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A fundamental formulation
of quantum mechanics
should be based on:

A set of fine-grained

histories in a preferred set
of variables,

In which one history is real.
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A fundamental formulation
of quantum mechanics
should be based on:

A set of fine-grained

histories in a preferred set
of variables,

In which one history is real.

Here it is!

irsa: 11020124
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Outstanding Questions
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Outstanding Questions

An information theory for extended probabilities.
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Outstanding Questions

An information theory for extended probabilities.

What's so special about
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Outstanding Questions

An information theory for extended probabilities.

What's so special about

wlq(t)] = Re L@*[r}f. tr) exp{iS[q(t)] /A } ¥ (qo. to }}
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The Main Points Again

® Quantum mechanics can be formulated as a theory of
sets of alternative histories in which each history is
assigned an extended probability giving instructions for
betting.

® Records of histories can be used to settle bets. Recorded
sets have positive probabilities and are decoherent. DH
and EP are equivalent for recorded sets.

® [n a sum-over-histories formulation, quantum mechanics is
a classical stochastic history with a fundamental
distribution giving extended probabilities for fine-grained
histories. One history is real.

® This formulation can be the basis for generalizations of

Pirsa: 11020124 Page 106/128
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Don’t be afraid
of negative probabilities.
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Don’t be afraid
of negative probabilities.

They give a new
perspective on quantum theory
that may be useful.

RS A M1 ) 2 11 ] R e P2 X0 8/128



0801.0688
quant-ph/0401 108

forthcoming with
M. Gell-Mann

ggggggggggg



Don’t be afraid
of negative probabilities.
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Outstanding Questions
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Emergent Features of QM

States at a moment of time,
Unitary evolution,
Hilbert Space,
Linearity,

Principle of Superposition

are features emergent from the particular form of the FD

wlq(t)] = Re [lD (qf.t¢) exp{iSlq(t) /fl}‘L’ (qo. fu)]

We cannot expect them in any generalization.

But, in quantum gravity we don’t expect states evolving
through spacelike surfaces because there is no fixed
“$Pacetime, and in cosmology there is only one staté:”




A fundamental formulation
of quantum mechanics
should be based on:
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Emergent Features of QM

States at a moment of time,
Unitary evolution,
Hilbert Space,
Linearity,

Principle of Superposition

are features emergent from the particular form of the FD

w(q(t)] = Re [li'“(qf. t¢) exp{iS[q(t)] /A }¥(qo, tl-J)]

We cannot expect them in any generalization.
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A fundamental formulation
of quantum mechanics
should be based on:

A set of fine-grained

histories in a preferred set
of variables,

In which one history is real.
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Outstanding Questions

An information theory for extended probabilities.

What'’s so special about
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Outstanding Questions

An information theory for extended probabilities.

What's so special about

wlg(t)] = Re {‘I“ a5 tr) exp{iS[q(t)]/A} ¥ (qo. to)

(]
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Classical Gas of N Particles

® The gas has one real fine-grained history z(t) in 6N
dimensional phase space.

® Newton’s laws imply regularities of this fine-grained
history but it is not possible to measure, store,
retrieve, or compute the information in them.

® Accessible regularities are highly coarse grained such as
those summarized by the Navier-Stokes equation (eg
the approach to equilibrium.)

® |f we knew the real history we could deduce the
coarse-grained regularities but we don’t.
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QM as an Ensemble Theory

® There is one real fine-grained history q(t).

® The fine-grained regularities (if any) are inaccessible to
measurement.

® TJo exhibit the coarse-grained regularities implied by
the real gq(t) we conceptually embed it in an ensemble
of other histories with extended probabilities

wlq(t)] = Re [LD (q5.t5) exp{iS|q(t ]/ﬁ}q’ q0- fn)}

® We can use the extended probabilities to bet on the
coarse grained regularities when the bets are
lllllll gettleable (recorded).



Classical Gas of N Particles

® The gas has one real fine-grained history z(t) in 6N
dimensional phase space.

® Newton’s laws imply regularities of this fine-grained
history but it is not possible to measure, store,
retrieve, or compute the information in them.

® Accessible regularities are highly coarse grained such as
those summarized by the Navier-Stokes equation (eg
the approach to equilibrium.)

® |f we knew the real history we could deduce the
coarse-grained regularities but we don’t.
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Reality
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Sum-Over-Histories &

'Fine-grained histories are paths -+ t s
1(t) in configuration space. (Like
ield histories.) -1‘:3 : +—
‘Coarse-grainings are partitions ‘E: = , .
f the set of fine-grained A p A .
! Bq < A
listories into classes Ca . t, g !
=== o ==

*» Translation identity: 0 % : 2

W -{}r? (t,)--- f}' (t1) llf = / ririre t) IL!’| df. fr)exp l,r*-. ff' h}ly”!r te

*SOH formula for extended probabilities
s pa) =Re(¥| [ sqexp{iSla(t))/n}w)



Recorded Histories are Decoherent
Ro|¥) = Co|¥) = [¥,)
‘W, ) is the branch state vector for the history c.

(Wa|¥s) = (¥|RaRs|¥) = 8as||Cal ¥)||?

Recorded sets are decoherent sets (and vice versa).
Summing over (7 we get:

(¥|Ra|¥) = (¥|Cal¥) = [|Ca®)

This is the usual probability rule. Recorded
(decoherent) sets have positive probabilities

e p(@) = Re(¥|Ca|¥) = [|Cal T)|[2 wom



Records

® No bet is complete without a prescription of how to
settle it.

® A record of the outcome is one way of settling a bet.

® A set of histories is strongly recorded if there are an
exhaustive set of exclusive projections such that

Ra Cd ‘IIJ> — 5'& 3 Cj ‘ l]:!> :

® Then there is a correlation between histories and their
records

p( QL 3) — 3P (3 )

® [ndividual bettors may require more than just

irsa: 11020124 Page 124/128

correlation e.g. the NY Times.



Coarse-Graining
and Positive
Probabilities S =
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Fine-grained and Coarse-grained.
C& = Rf:” (tn) g Pl (fl)

2 5
® Fine grained histories a have one-dimensional
P’s at each and every time (like Feynman paths)

® Coarse graining is partitioning a set of histories 1€
into bigger classes {Ca}

T — Uaeﬁ Ca e — Z Ca

ey
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Extended Probabilities

*Assumed Input: /7 ‘\IJ>
eHistories: C, = P (t,)--- Pél(tl)

ny

p(a) = Re(¥|C, | )

*Not generally positive.

* Agrees with usual QM for single time histories

pla) = (V| P, |¥)

*Sum rules satisfied exactly:






