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Abstract: Several current experiments probe physics in the approximation in which Planck's constant and Newton's constant may be neglected, but,
the Planck mass, is relevant. These include tests of the symmetry of the ground state of quantum gravity such as time delays in photons of different
energies from gamma ray bursts. | will describe a new approach to quantum gravity phenomenology in this regime, developed with Giovanni
Amelino-Camelia, Jersy Kowalski-Glikman and Laurent Freidel.

This approach is based on a deepening of the relativity principle, according to which the invariant arena for non-quantum physics is a phase space
rather than spacetime. Descriptions of particles propagating and interacting in spacetimes are constructed by observers, but different observers,
separated from each other by trandlations, construct different spacetime projections from the invariant phase space. Nonetheless, all observers agree
that interactions are local in the spacetime coordinates constructed by observers local to them.

This framework, in which absolute locality is replaced by relative locality, results from deforming momentum space, just as the passage from
absolute to relative simultaneity results from deforming the linear addition of velocities. Different aspects of momentum space geometry, such asits
curvature, torsion and non-metricity, are reflected in different kinds of deformations of the energy-momentum conservation laws. These are in
principle all measurable by appropriate experiments.
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with Giovanni Amelino-Camelia, Laurent Freidel, Jerzy Kowalski-Glikman

arXiv:1101.0931  _and papers in preparation.

Many thanks to Sabine Hossenfelder and to R Schutzhold and Bill

Unruh for raising the issue of non-locality in theories with deformed
lorentz invariance.

Thanks also to Michele Arzano, Florian Girelli, Etera Livine, Seth
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50, look around: do you see spacetime?’

If fact we don’t see spacetime, we see momentum
space...

We see photons arriving with different momenta and energies at
different angles.
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50, look around: do you see spacetime?

If fact we don’t see spacetime, we see momentum
space...

We see photons arriving with different momenta and energies at
different angles.

Spacetime is inferred. As Einstein taught us, distant

spacetime coordinates are inferred from momentum space
measurements.

(%.£)=(0.5)

(x,8)=(S/2,S/2)
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But, do we dll infer the same spacetime?
Do we infer the same spacetime at different energies?

In special relativity the answers are yes. Why?

*The conservation laws that generate transformations between
observers are linear in momenta.

JP!flu.f = E [};f

r
*Total momentum generates translations:

ff.f"; — {ri;f b P“”'« — B
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But, do we all infer the same spacetime?
Do we infer the same spacetime at different energies?

In special relativity the answers are yes. Why?

*The conservation laws that generate transformations between
observers are linear in momenta.

'P{'*,”r — E ‘uf

I
* Total momentum generates translations:
ri.f'}! — {filf i p{!u.’} — hrf

*How much a worldline is translated, does not depend on how much
nomentum and energy it carries.

*Hence we all construct the same spacetime.

*'If an interaction is local for one observer it is local for all observers
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*How much the spacetime coordinates of a worldline are translated,
wvill now depend on how much momentum and energy it carries.

*The description of events are different at different energies.
'If an interaction is local for one observer it will not be inferred to be

ocal for distant observers.

*For every interaction, observers local to it will infer it to be local.

We call this the principle of relative locality.

There is a simple and coherent mathematical
framework for it, based on the geometry

o momentum space.
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The classical Planck-mass regime

(;_'\'\f.““f”” — “
h — 0
m / . constant
. |

e relativistic particle mechanics with invariant mass, mp and velocity
., characterizing non-linearities in momentum space.
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The classical Planck-mass regime

G Newton 0
h — 0

h
my — \/ constant

G
T Newton

e relativistic particle mechanics with invariant mass, m, and velocity
., characterizing non-linearities in momentum space.

The experimental question: what is the symmetry of the ground state
of quantum spacetime?

Possibilities:

*Poincare invariance (as in classical GR)

ebroken Poinare invariance (ie. a prefered frame)
* deformed or modified Poincare invariance
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The classical Planck-mass regime

GNewton — 0
h — 0

h
my — G constant
T N ewton

e relativistic particle mechanics with invariant mass, m, and velocity
., characterizing non-linearities in momentum space.

What is the scale of quantum gravity effects in this limit?
leu,-ru*k = \/hG_\"f-: wton ~— 0

Quantum gravity effects now show up at very large scales:

/ JZET \ fj =
R = ( = p=1,2
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The classical Planck-mass regime

G Newton — [}
h — 0

[ h
my — - constant

1
V G N ewton

Experimental windows into this regime:

eGamma Ray burst time of flight measurements at Fermi etc
o Tests of GZK cutoff at AUGER

*Birefringence of photons, ie polarized radio galaxies, Gamma rays etc.

These.can be modeled by positing non-linearities in momentum space.,,. ...




Since its launch Fermi, nee GLAST, has seen 8 GRB’s with Gev scale photons.

,
Two have been the source of new bounds on Mge. -
—-—.crmi
E r
v=¢fl+ ) ’
AT — T AE _ . . mp  Tpigne AE
light =7 — 1S€C 7 =
Jtagh Mog Mgoe 1019 years 10 Gev
GRB Redshift Duration counss; o, E_, &% &%
080916C 435 Long Strong 13 GeV 45s >10"s
0810248 Short 3GeV 02s
090510 09 Short Strong >1GeV <1s =60s
090328 0.7 Long >1 GeV = 900 s
090323 4 Long Strong >1 GeV >10° s
090217 Long ~1s =20s
i 1) 82 SC Long Wesk 06GeV 3s >40s

NR1715A Weak 0O GV



/t

GRB 090510 S, cr'mt,
redshift: .9 / 5 lescope
short burst

highest energy photon: 32 Gev comes .8
sec into the burst

Mac> 1.2 Mp GRB 090510

Pulsar GRB AGN GRE AGN GRB0O80916C Planck ms

{ft 99) tmlt-ﬁtl (Biller 98) (Boggs 04) (Albert 08)
10" 1.8x10"* 0.9x10° 4x10% 10" 1.8x107 0.2x10"

101E

min M,
(GeV)

10" 1.5x10"= 10™ 1
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Geometry of momentum space

Operational point of view: an observer is equipped with a
-alorimeter and a clock.

-rom her measurement she conclude that each isolated sxﬁtem
yossess 4 conserved quantities: Energy momentum space

she can realise two type of measurements:

One particle measurements: measurement of the mass and kinetic
anergy determines the metric

Multi particle measurements: sacttering processes, interactions,
nerging. determines the connection.
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' Geometry of momentum space

ne postulate that single particle measurements determine the
eometry of P

is a lorentzian metric manifold

The mass is interpreted as the timelike distance from the origin
,

D*(p) =D’ (p.0) =m"

The kinetic energy defines the geodesic spacelike distance between a
| . E o : | |
particle p at rest and a particle P of identical mass 2(p)=D(p) =m

2 /
D (p,p) =—-2mK
rom these measurements we can reconstruct the metric on P

dk> = h (k)dkdk;
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Geometry of momentum space
Momenta combine in interactions: we need a rule:

(k. q) — ko = Ka & 4o

k., & p, This is a rule for combining geodesics
on a curved manifold, so it defines
a connection or parallel transport.

p

,l-;ﬂ D dpﬂ = Afa =8 (T(A} i dpb
= ‘[‘1(1 i dpa =3 rickbdpr? =

Complicated process are built up:
(ke D Ga) P Pa

We assume neither commutativity nor

associativity.

We do assume there is an inverse

Pa — SPa;  (OPa) ® Pa = Qe



















The free relativistic particle:

eCanonical coordinates, X3, and canonical momenta ks

Energy-momentum relations

expressed as a constraint: Clk) =—kg+k-k+m” =0

Canonical Poisson brackets: {25 ki) =86
Equations of motion: N=lagrange multiplier
Notice that the free particle action makes no reference

to a metric for spacetime. Spacetime geometry is inferred
from the geometry of momentum space.
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Two kinds of spacetime coordinates:

eCanonical coordinates, X3, from the variation of the free action

o / ds (23] + N,C (K))
F @ plE  coch F @ by ¢

These are momentum dependent.They live in the cotangent
space of momentum space at momentum k.

H__T*

/ v (s)

Phase space = T*P







Relating the two kinds of spacetime coordinates:

*|s a consequence of the equations of motion at the endpoints

0K (k(o))
— ' 5kL(0)
The interaction point is related to the endpoint of the worldline
by a parallel transport between the spaces where they live.

LY
- Ok,

0.5

—2% — 2%(0))0k,(0)

._I‘H(O) —— LT(A)E:E} L*(A)g

If the conservation K, is linear, U=I and x? = z¢
Then the interaction is local.

When K, is non-linear, the interaction is relatively local
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Relating the two kinds of spacetime coordinates:

*|s a consequence of the equations of motion at the endpoints

oK (k(o))
~ SkL(0)
The interaction point is related to the endpoint of the worldline
by a parallel transport between the spaces where they live.

5S 2 2% _ 2%(0))6ka(0)

= — : o
£%(0) = U(k)2=°, | UK)E ="
r (O) l ( )b (‘( )b Jka
T
P
k=0
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Specializing the geometry
The correspondence principle:

Special relativity holds for momentum smaller than a mass scale Mqc

*Torsion and non-metricity = O(Mqc™)
*Curvature = O(Mqc?)

The dual equivalence principle:

The geometry of momentum space is universal.

Maximal symmetry:

Momentum space has as many symmetries as flat spacetime

ie it has a deSitter or AdS geometry with radius of curvature Mq

~=Fheorists propose but experiments decide.




The Gamma Ray Burst (GRB) problem

Long ago and far away there was a GRB.

Two photons were created simultaneously (according to a
local observer there) but with very different energies.

Are they detected by the Fermi satellite simultaneously?
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The Gamma Ray Burst (GRB) problem

Long ago and far away there was a GRB.

Two photons were created simultaneously (according to a
local observer there) but with very different energies.

Are they detected by the Fermi satellite simultaneously?

Naive (wrong) argument: you can choose coordinates on
curved momentum space so that the speed of light is energy

d dent. 1E E
e =0 ———— 1)
{'I.'p ﬂ[@(;
Hence there is a time delay
AE Tetion AFE
AT ngiyhf — lsec E e

\f(ﬁ)(, = \IOG 10“] years 10 Gev
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The problem with this: you can also choose coordinates
on momentum space so the speed of light is a constant!

These are Riemann normal coordinates:

D(p) = Uabpapb

{;,_)bgb{?!p:fj =0—-I'=T+N
So is there no time delay??

To find out you have to compute the proper time between
detections of the two photons.
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The time delay is due to relative locality: observers see
distant events as smeared out non-locally.

Observers at the GRB see the
emission events to be local while
the detection events are smeared
out proportionally to distance and
energy.

‘51

Si=0

photon |, E; atom in
detector

atom in GRB

Pirsaé\(‘)?mlﬁ— “Sil — Ej T ]-_v_'___-_
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The time delay is due to relative locality: observers see
distant events as smeared out non-locally.

S2

Si=0

photon |, Ei atom in
detector

atom in GRB

i —y —EFo L' F

___ FY rFr AT+

Observers at the detector see
the detection events to be local
while the emission events are
smeared out proportionally to
distance and energy.

All observers agree that there is
a time delay and agree on its value.

There will be higher order curvature
terms.
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The time delay is due to relative locality: observers see
distant events as smeared out non-locally.

Observers at the detector see
the detection events to be local
while the emission events are
smeared out proportionally to
distance and energy.

Observers at the GRB see the
emission events to be local while
the detection events are smeared
out proportionally to distance and
energy.

atom in GRB

This is paradoxical if you insist that both observers see events
unfolding in an invariant spacetime. Once you understand
~sfyacetime is relative and phase space is invariant, the paradox e«

P e Ry PRGSO













The soccer ball problem

If elementary particles scatter like:
[k ek ooz be, ig.
pc]: = pi{ I kﬂ — P 5 ’l‘ﬂ 5 E rrlcpbkff el e

Why don’t soccer balls scatter like:

J _ pt ~ S ) | ; bepyiy |
7?(1 — pf_l ~:-‘ fcﬂ. — P;_I_ EE K:r_'g ] B rﬂ phk(_’ S

Pg_ — ;\? Pa
K a = Nk a

They clearly don’t because
P >> me
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The soccer ball problem

If elementary particles scatter like:

But a calculation shows that:

Pﬂ = IV Pa
K. — NE_

So there is no problem because

P| << N mp
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Other experimental windows:

*Closed loops in momentum space create new effects from
curvature of momentum space, analogous to Thomas precession.

E')"
rotation: [\ ~ —A
i mz
O p
Girelli, Livine

X

® Proper time is energy dependent: interferometry in phase space.

_2w

20} Ap ~Thw?mae

w

w
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gpeculative remark on the black hole information loss problem

Relative locality implies that there is an ambiguity in the localization of a particle ata timeT in the

future of length -

| P
Ar=~T | —
s
f the particle has momentum p, and fits into a black hole of mass M

- t. 1 rm "1
| > Ap>h/GM — Az > -2 (_p)
& y / = GM \ M

At T, the uncertainty in position larger than Rscw :

(GM)™+!
nl — #n
The evaporation time is | P‘
. 2
tp

Hence, forn=1 Ta<T. Forn=2Tsi~T.

For these cases, by the time the black hole evaporates the uncertainty in the location of a particle is
F;!east as large as Rsaww . SO we cannnot predict whether a bit of information is at that time inside
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Conclusions:

Physics takes place in Hilbert space.
There is an experimental regime, in which the arena is a phase space

G;\rfzwtc}n — @
h — 0

h
my = \/ - constant

G Newton

m, can measure the geometry of momentum space, P.

*[f momentum space is curved there is no invariant notion of

spacetime.
*There is only an invariant phase space, T*(P)

If so, spacetime is as misleading a concept as space is in special relativity.
O(m,) phenomena appear paradoxical if one attempts
t&-describe them using a notion of invariant spacetime.
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Conclusions:

These apparent paradoxes appear to be resolved by working consistently
in the phase space.

*No soccer ball problem
*Distant coordinate ambiguities not paradoxical, leads instead to
consistent predictions of phenomena like GRB time delays.

Geometry of momentum space is measurable and characterizes an
interesting regime of accessible quantum gravity phenomena.

*GRB time delays.
*Interferometry in phase space.
*Dual Thomas precession. (Girelli-Livine precession.)

_And around the corner:turn on hand G

Page 57/62




The time delay is due to relative locality: observers see
distant events as smeared out non-locally.

Observers at the detector see
the detection events to be local
while the emission events are
smeared out proportionally to
distance and energy.

photon 2, E; S2

Si=0
| photon 1, E; omin Observers at the GRB see the

detector emission events to be local while
the detection events are smeared
out proportionally to distance and
energy.

atom in GRB

This is paradoxical if you insist that both observers see events
unfolding in an invariant spacetime. Once you understand
spyaeetime is relative and phase space is invariant, the paradox r«s=»

— R — | ———




The time delay is due to relative locality: observers see
distant events as smeared out non-locally.

The Fermi event GRB 090510

S2 | bounds the non-metricity tensor:

photon 2, E;

~ 1
N 1.24 [pf’a nck

Si=

photon |, E atom in

detector

atom in GRB
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peculative remark on the black hole information loss problem

elative locality implies that there is an ambiguity in the localization of a particle at a time T in the

ture of length -

ANr~=T ¥4

m
b
the particle has momentum p, and fits into a black hole of mass M

| t.1] /rm "1
| > Ap > h/GM — Az P (_E’)
g d | i GM \ M

t T the uncertainty in position larger than Rschw :

(GJ[) n+1

il —

Tk
The evaporation time is | P ‘
(GM)?
€ )
tp

Hence, for n=1 T4<T.. Forn=2T,~T..

For these cases, by the time the black hole evaporates the uncertainty in the location of a particle is

at least as large as Rsenw . SO we cannnot predict whether a bit of information is at that time inside
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The soccer ball problem

If elementary particles scatter like:

L e AU RGN | = i . o
Pa = Pa T ;‘"I'-I e g‘ﬂ 2 rf_'l pb;’f-? -

But a calculation shows that:
pﬂl - 4\?10{-1
Ke = Nk

So there is no problem because

IP| << N mp
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The soccer ball problem: energy-momentum?

In Riemann normal coordinates: > - 9
D7(p) =n""Papp = m

Pa D Pa — Epu

SO: :Da - *\rp a

satisfies 7*°P.Ps = (Nm)?
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